

VIENNA COMPUTATIONAL MATERIALS LABORATORY

A SPECIAL RESEARCH AREA, FUNDED BY THE AUSTRIAN SCIENCE FUND (FWF)

Sensengasse 8/12, 1090 Vienna, AUSTRIA | t: +43 (0)1 4277-51402 | @: seiichi.chikama@univie.ac.at

AB INITIO MANY BODY THEORY AND CALCULATIONS OF ELECTRONIC EXCITATIONS, SPECTROSCOPY AND QUANTUM TRANSPORT.

A TALK BY DR. PAOLO E. TREVISANUTTO,

NATIONAL NANOTECHNOLOGY LABORATORY OF THE CONSIGLIO NAZIONALE DELLE RIĆERCHE IN LECCE, ITALY

DATE / TIME	05.12.2011, 4:00 p.m. (CET)
LOCATION	Seminar Room 138C, Vienna University of Technology, "Freihaus"-building, 9th floor, "yellow" – Wiedner Hauptstraße 8-10, A-1040 Vienna, AUSTRIA)

P. E. Trevisanutto

CNR national nanotechnology labs, Lecce (Italy)

Ab initio GW approximation (GWA) calculations have been widely used to provide the quasi particle band structure of semiconductors, large-gap insulators, metals [1].

GWA is also defined as a dynamically screened Hartree-Fock (HFA) approximation where the bare Coulomb potential v in the HFA self energy is replaced by a dynamically screened potential W. The electron-electron correlation in the screened potential W is set by long range charge-density ("plasmons") oscillation which makes the GWA be suitable for solids with delocalised s and p orbitals (called "weakly correlated systems"). Static approximation to GWA self energy is a sum of Screened Exchange potential plus a Coulomb Hole (Cohsex approximation). Recently, self-consistent (SC) GWA and Cohsex calculations have been performed to describe some systems considered strongly correlated [2].

The optical spectrum where the hole-electron interactions play a role, is obtained by solving the Bethe Salpeter equation (BSE).

We present ab initio many-body GWA and BSE calculations of the electronic excitations in graphene as compared to graphite [3, 4]. We further discuss the results of ab initio GWA calculations in the Landauer approach for the Quantum Transport problem [5].

Finally, we propose a functional based on Cohsex for the Reduced Density Matrix Functional Theory (reduced density matrix extension of the Density Functional Theory).

- [1] F. Aryasetiawan and F. Gunnarson Rep. Prog. Phys. 61, 237 (1998)
- [2] M. Gatti et al. Phys. Rev. Lett 99, 266402 (2007)
- [3] P.E.Trevisanutto et al. Phys. Rev. Lett. 101, 226405 (2008)
- [4] P.E. Trevisanutto et al. Phys. Rev. B 81, 121405(R) (2010)
- [5] T. Rangel et al. Phys. Rev. B 84, 045426 (2011)