Overview and special topics in magnetism

J.Kübler

1. Spin density functional theory

2. Basic applications of SDFT: Curie T etc

3. The anomalous Hall effect (AHE) and topology

- We need to write down a few definitions
- Operator for density

$$\hat{n}(\mathbf{r}) = \sum_{i=1}^{N} \delta(\mathbf{r} - \mathbf{r}_{i})$$

• Density matrix: let

$$\Phi(r_1, r_2, \dots, r_N) \quad (r_i = \mathbf{r}_i, \sigma_i)$$

be the groundstate wave function of the N-particle system.

Then the density matrix is defined as follows:

$$\rho(r_{1}, r_{2}, ..., r_{N} | r_{1}, r_{2}, ..., r_{N}) = \sum_{\ell=1}^{n} c_{\ell} \Phi_{\ell}(r_{1}, ..., r_{N}) \Phi^{*}_{\ell}(r_{1}, ..., r_{N}) ,$$

with $0 \le c_{\ell} \le 1$ and $\sum_{\ell} c_{\ell} = 1$.

n: degeneracy of state /

The electron density

is obtained from

 $n(\mathbf{r}) = \mathrm{Tr} < \rho \ \hat{n}(\mathbf{r}) >=$ $\sum_{n=1}^{2} \int \mathrm{d}r_{2} \ldots \mathrm{d}r_{N} \rho(\mathbf{r}\alpha, r_{2}, \ldots, r_{N} | \mathbf{r}\alpha, r_{2}, \ldots, r_{N})$ $\alpha = 1$

The spin density matrix

has elements $n_{\alpha\beta}(\mathbf{r})$ given by

$$n_{\alpha\beta}(\mathbf{r}) = N \int \mathrm{d}r_2 \dots \mathrm{d}r_N \rho(\mathbf{r}\alpha, r_2, \dots, r_N \mid \mathbf{r}\beta, r_2, \dots, r_N)$$

Definition:

$$\widetilde{n}(\mathbf{r}) = \frac{n_{11}(\mathbf{r}) + n_{12}(\mathbf{r})}{n_{12}^*(\mathbf{r}) + n_{22}(\mathbf{r})}$$

Density and magnetization

• Density

$$n(\mathbf{r}) = \operatorname{Tr} \widetilde{n}(\mathbf{r})$$

Magnetization

 $\mathbf{m}(\mathbf{r}) = \operatorname{Tr} \vec{\sigma} \widetilde{n}(\mathbf{r})$, where components of $\vec{\sigma}$ are Pauli spin matrices **Basic assertion**:

The electronic structure is anambiguouly determined by the density. We do not need to determine the wave function.

Hohenberg, Kohn, Kohn, Sham

The Kohn-Sham-Schrödinger equations

Consider the total energy

• Essential step: the total ground-state energy is a functional of the density matrix \widetilde{n}

$$E[\widetilde{n}] = F[\widetilde{n}] + V^{\text{ext}}[\widetilde{n}] ,$$

$$F[\widetilde{n}] = T[\widetilde{n}] + \iint \frac{n(\mathbf{r})n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r} d\mathbf{r}' + E_{\text{xc}}[\widetilde{n}] ,$$

$$V^{\text{ext}}[\widetilde{n}] = \sum_{\alpha\beta} \int v^{\text{ext}}_{\alpha\beta}(\mathbf{r}) n_{\beta\alpha}(\mathbf{r}) d\mathbf{r} ,$$

 $T[\tilde{n}]$ being the kinetic energy.

- Essential step : for any many-electron system the energy functional has a minimum equal to the ground-state energy at the ground-state density matrix.
- This step leads to a variational principle to approximate the total energy and the density matrix.
- The corresponding Euler–Lagrange equations are called the Kohn-Sham equations ("effective single particle Schrödinger equations").

Euler-Lagrange / Kohn-Sham Equations

• as

$$\sum_{\beta=1}^{2} \left[-\delta_{\alpha\beta} \Box^{2} + v_{\alpha\beta}^{\text{eff}}(\mathbf{r}) - \varepsilon_{i} \delta_{\alpha\beta} \right] \psi_{i\beta}(\mathbf{r}) = 0$$

• Lagrange parameter \mathcal{E}_i and

$$v_{\alpha\beta}^{\text{eff}}(\mathbf{r}) = v_{\alpha\beta}^{\text{ext}}(\mathbf{r}) + 2\delta_{\alpha\beta}\int \frac{n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \,\mathrm{d}r' + \frac{\delta E_{xc}}{\delta n_{\beta\alpha}(\mathbf{r})}$$

The local density approximation

• The gas of interacting electrons is used for exchange-correlation density, then

$$E_{xc} = \int \mathrm{d}\mathbf{r} [ne_{xc}(n)]_{n=n(\mathbf{r})}$$

• whence

$$v_{\alpha}^{xc}(\mathbf{r}) = \frac{\delta E_{xc}}{\delta n_{\alpha}(\mathbf{r})} = \left[\frac{\mathrm{d}}{\mathrm{d}n_{\alpha}} n e_{xc}(n_{\uparrow}, n_{\downarrow})\right]_{n=n(\mathbf{r})}$$

The self-consistency problem

 Solutions of the Kohn-Sham equations give the density matrix

$$n_{\alpha\beta}(\mathbf{r}) = \sum_{i=1}^{N} \psi_{i\beta}(\mathbf{r}) \psi_{i\alpha}^{*}(\mathbf{r})$$

- which determines the effective potential
- More -- we diagonalize the density matrix:

Diagonalize the density matrix

• Choose spin-1/2 rotation matrix to do the job:

$$U\widetilde{n} U^{+} = \begin{pmatrix} n_{\uparrow} & 0 \\ 0 & n_{\downarrow} \end{pmatrix}$$

Spin rotation matrix defines the directions of magnetic moments

Global vs. local frame of reference

• Kohn-Sham equations in global frame

$$(-\Box^2 \mathbf{1} + \mathbf{v}^{\text{eff}})\psi_i = \varepsilon_i \psi_i$$

Potential

$$\mathbf{v}^{\text{eff}}(\mathbf{r}) = \sum_{n\nu} U^{+}(\theta_{\nu}, \phi_{\nu}) \begin{pmatrix} v^{\text{eff}} \uparrow_{\nu}(\mathbf{r}_{n\nu}) & 0 \\ 0 & v^{\text{eff}} \downarrow_{\nu}(\mathbf{r}_{n\nu}) \end{pmatrix} U(\theta_{\nu}, \phi_{\nu})$$

$$\mathbf{r}_{n\nu} = \mathbf{r} - \mathbf{R}_n - \vec{\tau}_{\nu}$$

2. Basic applications of the SDF approximation to the problem of magnetism in solids

Theory of Itinerant Electron Magnetism, Oxford University Press, 2009

Magnetic Susceptibility

- Assume magnetic field ΔB . It induces magnetization Δm and leads to
- change of exchange correlation potential = effective increase of applied field:

Enhanced magnetic susceptibility, *I* : Stoner exchange const.

$$\Delta m = \chi_0 \Delta B + \chi_0 I \Delta m$$
$$(1 - \chi_0 I) \Delta m = \chi_0 \Delta B$$
$$\therefore \chi = \frac{\chi_0}{1 - \chi_0 I}$$

Linear response theory for susceptibility

Moruzzi et al (1978) Calc. Electronic properties of metals, Pergamon Press

Energy eigenvalues

bcc-Fe

Angle-resolved photoemission, Eastman et al (1979)

Thermodynamics

Curie-Weiss susceptibilities

Order parameter

The Classical Heisenberg Hamiltonian

$$H_{mag} = -\sum_{ij} J_{ij} \vec{\sigma}_i \vec{\sigma}_j + \dots$$

 J_{ij} are the exchange interaction parameters (the energy of changing from parallel to antiparallel alignment of spins in *i* and *j* sites).

There are several ways to obtain J_{ij} from ab initio calculations. (A. Lichtenstein, M. Katsnelson, 1984) (JK 2009)

A useful non-collinear moment arrangement

Spinspiral

 $\mathbf{M}_{n} = M \left[\cos(\mathbf{q} \cdot \mathbf{R}_{n}) \sin \theta , \sin(\mathbf{q} \cdot \mathbf{R}_{n}) \sin \theta , \cos \theta \right]$

Consider symmetry (Sandratskii, Herring)

Optain from total energy differences j(**q**)

The determination of j(q) is simple for elementary ferromagnets such as Fe, Co and Ni, but is somewhat involved for compounds.

For the former:

$$\Delta E = M^2 \sin^2 \theta j(\mathbf{q}) \doteq \Delta E(\mathbf{q}, \theta) ,$$

Spin-wave dispersion relation

$$\omega(\mathbf{q}) = \lim_{\theta \to 0} \frac{4}{M} \frac{\Delta E(\mathbf{q}, \theta)}{\sin^2 \theta} \,.$$

Mean-field theory

$$\mathcal{H} = \sum_{i,j}^{\prime} M^2 J_{ij} \hat{\mathbf{e}}_i \cdot \hat{\mathbf{e}}_j ,$$

$$\langle \mathcal{H} \rangle_0 = \sum_{i,j}^{\prime} M^2 J_{ij} m_i m_j$$

"Molecular" or "mean field"

$$h_i = -\frac{\partial \left< \mathcal{H} \right>_0}{\partial m_i} \,,$$

$$h = 2M^2 m \sum_{q} j(q) .$$

$$\chi(T) = \frac{1}{3k_{\rm B}T - 2M^2 \sum_{q} j(q)} .$$

Mean-field approximation for Curie Temperature

$$k_{\rm B}T_c = \frac{2}{3} \sum_{\mathbf{q}} M^2 j(\mathbf{q}) .$$

Quality of mean-field approximation

$$k_{\rm B}T_c = \frac{2}{3} \sum_{\mathbf{q}} M^2 j(\mathbf{q}) .$$

Quick fix:

$$k_{\rm B}T_c = \frac{2}{3} \sum_{\tau} \mathcal{L}_{\tau}^2 \left[\sum_{\mathbf{k}n} \frac{1}{j_n(\mathbf{k})} \right]^{-1} .$$

So-called spherical approximation

To derive the quick fix one can use

the **partition** function proposed by Moriya

and the spherical approximation, also as proposed by Moriya

Partition function

$$\exp(-F/k_BT) = \int dL^2 \int \prod_{\mathbf{q}} d\mathbf{M}_{\mathbf{q}} \exp[-\Psi(M, L^2, \mathbf{M}_{\mathbf{q}})/k_BT]$$

L^2 Length of magnetic moment $\mathbf{M}_{\mathbf{q}}$ Fluctuation vector $\mathbf{M}_{\mathbf{q}} = (m_{x\mathbf{q}}, m_{y\mathbf{q}}, m_{z\mathbf{q}})$ MOrder parameter (magnetization)

Functional details

Functional Ψ

$$\Psi = \sum_{\mathbf{q}} j(L^2, \mathbf{q}) |\mathbf{M}_{\mathbf{q}}|^2 + E(M, L^2)$$

$$+\sum_{\alpha=1}^{3}\lambda_{\alpha}(L_{\alpha}^{2}+\delta_{\alpha z}M^{2}-\sum_{\mathbf{q}}|m_{\alpha \mathbf{q}}|^{2})$$

Lagrange multiplier -> spherical approximation

A Usefull formula derivable from Moriya's theory in the spherical approximation Also called RPA

$$k_{\rm B}T_{\rm C} = \frac{2}{3} \sum_{\tau} L_{\tau}^2 \left[\frac{1}{N} \sum_{\mathbf{q}} \sum_{n} \frac{1}{j_n(\mathbf{q})} \right]^{-1}$$

Another example: and application for Heusler compounds

FIG. 5.17. Calculated versus measured Curie temperatures of a collection of Co_2 -Heusler compounds. For the calculations the spherical approximation was used. From Kübler *et al.* (2007).

The topics that now follow are not contained in my book

3. The anomalous Hall effect (AHE)

Topology
Topology in chemistry, example from Ajami et al. Nature 426, 819 (2003)

Topology from textbook (Wikipedia): Möbius strip

Topology in real space

• The Berry connection

Insulators

• The Berry curvature

Metals

Topological properties

Berry phase

Proc. Roy. Soc. A 392 (1984) 45

Parameter space

Berry phase

Proc. Roy. Soc. A 392 (1984) 45

Parameter space

Berry phase

Proc. Roy. Soc. A 392 (1984) 45

Time development:

Substitute into time-dependent Schrödinger equation

$$\frac{d}{dt}\gamma(t) = i \left\langle n(\mathbf{R}) \right| \nabla_{\mathbf{R}} n(\mathbf{R}) \left\rangle \frac{d}{dt} \mathbf{R}(t)$$

Going around the circuit C

$$\gamma(C) = i \oint \langle n(\mathbf{R}) | \nabla_{\mathbf{R}} n(\mathbf{R}) \rangle d\mathbf{R}$$

Called Berry phase

Specify parameter space

Density functional theory: Single-particle Schrödinger equation

$$\left[\frac{p^2}{2m} + V_{eff}\right]\psi_n = E_n\psi_n$$

for crystal periodic systems

$$\psi_n(\mathbf{r}) = e^{i\mathbf{k}\mathbf{r}}u_n(\mathbf{r}) \longrightarrow$$

$$\left[\frac{\left(\mathbf{p}+\mathbf{k}\right)^{2}}{2m}+V_{eff}\left(\mathbf{r}\right)\right]u_{nk}\left(\mathbf{r}\right)=E_{nk}u_{nk}\left(\mathbf{r}\right)$$

$$\gamma_n(C) = i \oint \left\langle u_{n\mathbf{k}} \left| \nabla_{\mathbf{k}} u_{n\mathbf{k}} \right\rangle d\mathbf{k} \right\rangle$$

Berry connection

$$\mathbf{A}(\mathbf{k}) = i \sum_{n \text{ occup}} \left\langle u_{n\mathbf{k}} \right| \nabla_{\mathbf{k}} u_{n\mathbf{k}} \right\rangle$$

Physics?

The connection of the polarization with the Berry connection is the origin of the modern theory for the macroscopic electric polarization

> King-Smith, Vanderbilt and Resta (RMP 66, 899 (1994))

> > **Overview:**

Di Xiao, M-C. Chang, Q. Niu: Rev. Mod. Phys. 82,1959 (2010) The derivation starts with the Kubo

formula and uses the idea that the

polarization originates from an

adiabatic current flow

Details: another talk

From the Berry phase to the Berry curvature

The Hall effect

$$\varrho_{xy} = R_0 H_z + R_S M_z$$

Hall resistivity Anomalous Hall effect

The new discovery is an added term to the velocity

obtained by optimizing (Euler –Lagrange) a wave package

$$\mathbf{\dot{r}} = \mathbf{v}(\mathbf{k}) = \frac{\partial \varepsilon(\mathbf{k})}{\hbar \partial \mathbf{k}} - \mathbf{\dot{k}} \times \Omega(\mathbf{k})$$

so that with the equation
$$\mathbf{\dot{h}} \mathbf{\dot{k}} = -e\mathbf{E} - e\mathbf{\dot{r}} \times \mathbf{B}$$

we get a Hall effect without a magnetic field **B**

$$\mathbf{v}(\mathbf{k}) = \frac{\partial \varepsilon(\mathbf{k})}{\hbar \partial \mathbf{k}} + \frac{e}{\hbar} \mathbf{E} \times \Omega(\mathbf{k})$$

$$\sigma_{xy} = -\frac{e^2}{\hbar} \frac{1}{V} \sum_{(B.Z.)} \Omega (\mathbf{k})_z f(\mathbf{k})$$

$$\Omega(\mathbf{k}) = \nabla_k \times A(\mathbf{k})$$

Berry curvature

Di Xiao et al. Rev. Mod. Phys. 82, 1959 (2010)

From Gradhand *et al.* J. Phys. CM 24, 213212 (2012)

Complications Degeneracy of bands Non-abelian Berry phase So how do we quickly compute the abelian Berry connection and curvature? My numerics

$$\mathcal{A}(\mathbf{k}) = i \sum_{n} \langle u_{\mathbf{k},n} | \nabla_{k} | u_{\mathbf{k},n} \rangle,$$
$$\Omega(\mathbf{k}) = \nabla_{\mathbf{k}} \times \mathcal{A}(\mathbf{k}).$$

n, m in occupied states

$$U_{\mathbf{j}}(\mathbf{k}) = \det[\langle u_{n\mathbf{k}} | u_{m\mathbf{k}+\mathbf{j}} \rangle],$$
$$\mathcal{A}_{\mathbf{j}}(\mathbf{k}) = \operatorname{Im} \ln U_{\mathbf{j}}(\mathbf{k}),$$
$$\Omega_{z}(\mathbf{k}) = \operatorname{Im} \ln \frac{U_{y}(\mathbf{k} + \hat{\mathbf{k}}_{x})U_{x}(\mathbf{k})}{U_{y}(\mathbf{k})U_{x}(\mathbf{k} + \hat{\mathbf{k}}_{y})}.$$

$$\det \exp A = \exp \operatorname{tr} A$$

"Kubo"

bcc-Fe from Yao et al. PRL 92, 037204 (2004)

Calculated value 700 S/cm Experiment about 1000 S/cm

bcc Iron Calculated value (our) 600 S/cm Our calculation Г

Heusler Compounds

PHYSICAL REVIEW B 85, 012405 (2012)

Berry curvature and the anomalous Hall effect in Heusler compounds

Jürgen Kübler^{1,*} and Claudia Felser²

AHE in half metallic ferromagnets

FIG. 4. (Color online) Band structure near the Fermi edge of Co₂VSn. Majority-spin electron states appear in red, minority-spin states in black. Note the Dirac cone at the Γ point at about -0.22 eV.

Compound ^a	N_V	<i>a</i> (nm)	M ^{exp}	$M^{ m calc}$	σ_{xy}	P (%)
Co ₂ VGa	26	0.5779	1.92	1.953	66	65
Co ₂ CrAl	27	0.5727	1.7	2.998	438	100
Co ₂ VSn	27	0.5960	1.21	1.778	-1489	35
Co ₂ MnAl	28	0.5749	4.04	4.045	1800	75
Rh ₂ MnAl	28	0.6022		4.066	1500	94
Mn ₂ PtSn ^b	28	0.4509 (1.3477)		6.66	1108	91
Co ₂ MnSn	29	0.5984	5.08	5.00	118	82
Co ₂ MnSi	29	0.5645	4.90	4.98	228	100

Why so large?

Bernevig 2015 Nature

Figure 1 | Weyl semimetals in momentum space. Two Weyl nodes (red) act as monopoles, which have linear band dispersions (black) and are connected by a Dirac string (yellow). The top plane (grey) shows the two-dimensional projection, which has a Fermi arc (yellow) that connects the nodes and can be observed in photoemission experiments.

Weyl nodes

AHE in half metallic ferromagnets

Huge Hall conductivity $\sigma_{xy} = 1800 \text{ S/cm}$ calc. $\sigma_{xy} \approx 2000 \text{ S/cm}$ meas.

Kübler, Felser, PRB 85 (2012) 012405 Vidal et al. APL. 99 (2011) 132509 Kübler, Felser, EPL 114 (2016) 47005.

Weyl points are the origin for a large Berry phase

Weyl point

Berry curvature with Fermi energy shifted to Weyl point

 $H_{Weyl} = \pm cp\sigma$

Chern-number

Chirality=sign det(velocity tensor)

The **Chern** vector

$$\frac{1}{2\pi} \int_{BZ} \Omega_n^p(k) d^3k = C_n G_n^p$$

Integral is over a non-degenerate band labelled n, p is the vector component. The right hand side is the Chern number times a reciprocal lattice vector

(Kohmoto, Halperin, Wu PRB 45, 13488 (1992))

Return to basic relation

$$\varrho_{xy} = R_0 H_z + R_S M_z$$

Antiferromagnet ?

Role of Orbital Polarization in Weak Ferromagnetism

L. M. Sandratskii and J. Kübler

Institut für Festkörperphysik, Technische Hochschule, D-64289 Darmstadt, Germany (Received 8 December 1995)

Also: Sticht, Höck, JK: J. Phys. CM 1, 8155 (1989)

EPL, **108** (2014) 67001

Non-collinear antiferromagnets and the anomalous Hall effect

J. $KÜBLER^1$ and C. $FELSER^2$

¹ Institut für Festkörperphysik, Technische Universität Darmstadt - D-64289 Darmstadt, Germany
 ² Max Planck Institute for Chemical Physics of Solids - D-01187 Dresden, Germany

received 10 November 2014; accepted 2 December 2014 published online 10 December 2014

The ground-state configuration and the band structure along symmetry lines

(all other components are zero)

Non-collinear AFM in metallic Mn₃Ge

Kübler and Felser EPL 108 (2014) 67001

Non-collinear AFM Mn₃Ge/Mn₃Sn

Nayak et al. Science Advances 2 (2016) e1501870 Kiyohara, Nakatsuji, preprint: arXiv:1511.04619, PRX 2016

LETTER

doi:10.1038/nature15723

Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature

Satoru Nakatsuji^{1,2}, Naoki Kiyohara¹ & Tomoya Higo¹

Nakatsuji, Kiyohara, & Higo, Nature, doi:10.1038/nature15723

Fermiarcs in the Weyl AFM

Hao Yang, et al. New J. Phys. 19, 015008 (2017)

Bands at the Fermi energy

Bands below the Fermi energy

Thanks for hanging on