
TRIQS TUTORIAL
VICOM School Vienna

Markus Aichhorn

February 2017

1 A few words on TRIQS

TRIQS is a software package, released under GPL, that allows to do effi-
cient numerical simulations using dynamical mean-field theory and related
approaches. The source code can most easily be downloaded form github

https://github.com/TRIQS/

where you will need most probably the triqs, cthyb, and dfttools packages.
For help with the installation, follow the guide on the main triqs web site,
https://triqs.ipht.cnrs.fr/.

1.1 Basic Philosophy

The main idea of TRIQS is to provide

1. a base layer, written mainly in C++, with all the necessary routines
and libraries.

2. a python interface that allows for lightweight programming and com-
bination of different modules and libraries.

We will use only the Python interface for our purposes. Python is a very
easy-to-use scripting language, it can be started by typing

1

[training@n41-001 ~]$ python

Python 2.7.11 (default, Nov 8 2016, 09:26:25)

[GCC 4.9.3] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>>

It is built on the concept of modules that can be loaded and used. For
instance, if you want to do numerical calculations you most probably will
use the NumPy package. You can load it by

>>> import numpy

and try to initialize a 3-by-3 matrix with zeros:

>>> A = numpy.zeros([3,3])

>>> print A

[[0. 0. 0.]

[0. 0. 0.]

[0. 0. 0.]]

>>>

You see, there is no explicit declaration of variables in python, so be careful
when typing, in particular with capital letters (A and a are different)! For
further information on python and its usage, I have to refer to the online
resources. A very good starting point is

https://docs.python.org/2.7/tutorial/

Note that we are using python 2.7, and not python3, which has some changes
in the syntax and usage.

In simple terms, TRIQS is also coming as a python module. In order to have
the location of this module automatically loaded into the PYTHONPATH
environmental variable, we have an executable pytriqs instead of python. But
before entering the details of how to use pytriqs, we will start with the density
functional calculation that we need as input for the DMFT calculations.

2 Step 1: The DFT calculation

The first part of every DFT+DMFT calculation is of course the DFT calcu-
lation. We will study NiO here, and will restrict ourselves for the time being

2

to the paramagnetic case. DMFT is complicated enough...

Ideally, you have already a converged Wien2k calculation for NiO fcc. In
order not to screw up your previous tutorials, it is highly recommended to
do everything in the triqs subdirectory for this part on TRIQS! So change to
this directory and create a sub dir for the Wien2k related steps,

[training@n41-001 ~]$ cd triqs

[training@n41-001 triqs]$ mkdir NiO

[training@n41-001 triqs]$ cd NiO

[training@n41-001 NiO]$

I strongly suggest that you redo the non-magnetic calculation for NiO in
the fcc crystal structure, that you have already done in the Wien2k tutorial.
As input file, use NiO.struct which you find in the Wien2kfiles subdirectory.
As parameters, please use 20000 k-points in the IBZ, and the PBE func-
tional (flag 13 in Wien2k/lapw0). The self-consistent solution of this DFT
calculation should give a total energy of:

TOTAL ENERGY IN Ry = -3192.09454270

3 Step 2: Construction of Wannier Functions

3.1 DOS and bands

First, we have a look on the density of states, projected to the Ni d orbitals.
You can use the NiO.int file provided in the Wienk2files directory. Copy it
to the directory where you did the DFT calculation and do

[training@n41-001 NiO]$ x lapw2 -qtl

[training@n41-001 NiO]$ x tetra

[training@n41-001 NiO]$ xmgrace -block NiO.dos1ev -bxy 1:3

This plots the eg density of states, which you can see in Fig. 1.

This gives already a hint on the energy window that we want to use for the
projective Wannier function procedure. However, let’s have a look also on
the band structure. Copy the NiO.klist band file into your directory, and do

[training@n41-001 NiO]$ x lapw1 -band

[training@n41-001 NiO]$ x lapw2 -band -qtl

3

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3

ω / eV

0

0,5

1

1,5

2

Figure 1: Density of states of the Ni-eg states.

W L Γ X W K

-8

-6

-4

-2

0

2

E
n

er
g

y
(e

V
)

NiO atom 1 D-eg

E
F

Figure 2: Band structure of NiO fcc, with Ni-eg fat band character.

4

You now copy NiO.insp, check that the Fermi energy is set correctly, and
produce the band structure with eg fat bands. The result should be similar
to Fig. 2.

3.2 Projective Wannier Functions

In order to calculate the projective Wannier function, we use the little pro-
gram dmftproj that comes with the TRIQS/DFTTools package. To prepare
the input for dmftproj, we have to run lapw2 with a special flag, and to one
SC loop before (why?):

[training@n41-001 NiO]$ run -i 1 -NI

[training@n41-001 NiO]$ x lapw2 -almd

The program dmftproj now needs an input file, NiO.indmftpr (you can find
it in the Wien2kfiles directory). It looks like

2 ! Nsort

1 1 ! Mult(Nsort)

3 ! lmax

cubic ! choice of angular harmonics

0 0 2 0 ! l included for each sort

0 0 2 0 ! If split into ireps, gives number of ireps. for a given orbital (otherwise 0)

10 ! eg yes, t2g no

0 ! SO flag

cubic ! choice of angular harmonics

0 1 0 0 ! l included for each sort

0 0 0 0 ! If split into ireps, gives number of ireps. for a given orbital (otherwise 0)

wmin wman ! Ni eg bandwidth

The only thing you need to do is to define the energy window for the projec-
tion to the eg states. You have to give the two numbers wmin and wmax in
Rydberg, where the conversion 1 Ryd= 13.605 eV.

(You should get something close to -0.12 Ryd and 0.11 Ryd).

3.2.1 Switching to TRIQS

Now we have everything prepared for the calculation of the Wannier func-
tions. Since this step is part of the TRIQS package, we have to load the

5

TRIQS module. TRIQS is a rather big library, that is linked to a quite
large number of other libraries. In order to set all the relevant paths and use
TRIQS, we provide a shell script that does it for you:

[training@l33 ~]$ source init_triqs.sh

Unloading intel/16.0.0

Unloading intel-mpi/5

Unloading intel-mkl/11.3

Unloading elpa/2015.11.001

Unloading xcrysden/1.5.60

Unloading vesta/3.4.0

Unloading suitesparse/4.4.1

Unloading octave/3.8.2

Unloading gcc/5.3

Unloading gnuplot/5.0.5

Unloading vasp/5.4.1.05Feb16

Unloading python/2.7

Unloading gobject-introspection/0.10.8

Unloading numpy/1.9.1

Unloading pycairo/1.8.8

Unloading pygobject/2.28.4

Unloading pygtk/2.24.0

Unloading p4vasp/0.3.29

Unloading grace/5.1.25

Loading gcc/5.3 from: /opt/sw/x86_64/glibc-2.17/ivybridge-ep/gcc/5.3.0/

Loading python/2.7 from: /opt/sw/x86_64/glibc-2.17/ivybridge-ep/python/2.7.11/gcc/5.3

Loading intel-mkl/11

Loading numpy/1.9.1 from: /opt/sw/x86_64/glibc-2.17/ivybridge-ep/numpy/1.9.1/gcc/5.3/intel-mkl/11/python/2.7

Loading scipy/0.18.0 from: /opt/sw/x86_64/glibc-2.17/ivybridge-ep/scipy/0.18.0/gcc/5.3/intel-mkl/11/python/2.7/numpy/1.9.1

Loading openmpi/1.10 from: /opt/sw/x86_64/glibc-2.12/ivybridge-ep/openmpi/1.10.2/gcc-5.3.0

Loading intel/14.0.2

Loading grace/5.1.23

Unloading intel/14.0.2

Loading gnuplot/5.0.5 from: /opt/sw/x86_64/glibc-2.17/ivybridge-ep/gnuplot/5.0.5/gcc/5.3

We can no try to start TRIQS:

[training@n41-001 ~]$ pytriqs

Python 2.7.11 (default, Nov 8 2016, 09:26:25)

6

[GCC 4.9.3] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>>

which ends at the python prompt. For instance, the functionalities of the
Greens function class of TRIQS can now be loaded as

>>> from pytriqs.gf.local import *

We can now check that there is a Matsubara Green function class available:

>>> GfImFreq

<type ’pytriqs.gf.local.gf.GfImFreq’>

>>>

In this tutorial, you will not have to write your own python scripts from
scratch for the calculations, but can start with predefined scripts and try
to play around with them. If you want to learn the details of how to use
all the TRIQS modules, please visit the tutorials on the TRIQS website
https://triqs.ipht.cnrs.fr/.

By the way, you can exit the interactive python/pytriqs interpreter by CTRL-
D.

3.2.2 Running scripts in TRIQS

If you want to run some python code that you previously wrote to a file, it
is executed by

[training@n41-001 ~]$ pytriqs look_inside.py

This executes the script and exits the interpreter, you get back to the shell
prompt.

3.2.3 Peculiarities on VSC3

Note that the script that loads the TRIQS modules unloads Wien2k and
VASP modules, for some compiler library reasons. So if you want to go back
to either Wien2k or VASP, you have to do

[training@l33 ~]$ module purge

[training@l33 ~]$ source .bashrc

This loads the modules necessary for Wien2k or VASP.

7

3.2.4 dmftproj

After this initialization step, we can use our little program to calculate the
eg-like Wanniers:

[training@n41-001 NiO]$ dmftproj

This step writes a couple of text files, with all the necessary input data.

3.3 Conversion to TRIQS format and Check

We will leave now the working directory of Wien2k, and continue in a different
place. However, we have to copy the files produced by dmftproj that we need:

[training@n41-001 NiO]$ cd ..

[training@n41-001 triqs]$ cp NiO/NiO.ctqmcout .

[training@n41-001 triqs]$ cp NiO/NiO.symqmc .

Now we can convert the text data to the file format that is used by TRIQS
(hdf5):

[training@n41-001 triqs]$ mpirun -np 1 pytriqs tut_dmft_ex1.py

Note that we need to run it under MPI, since we are doing this tutorial on
a computing cluster, and forget about the ’fork’ warning, in case you get it.

This produces a file, called NiO.h5, with all the DFT data inside that we
need for the DMFT calculation. We can have a look inside:

[training@n41-001 triqs]$ pytriqs -i lookinside.py

>>> A[’dft_input’][’corr_shells’]

[{’sort’: 1, ’dim’: 2, ’l’: 2, ’irep’: 1, ’SO’: 0, ’atom’: 1}]

>>>

Among many others, there is one entry in the archive called ’corr shells’ with
the information that we provided by the input file for dmftproj. As you can
see, the dimension of this eg problem is 2, as it has to be. (Exit by CTRL-D).

From now on, we always need this file NiO.h5 with the input data. For a
start, we can calculate the density of states of our Wannier functions,

[training@n41-001 triqs]$ mpirun -np 1 pytriqs tut_dmft_ex2.py

8

-8 -6 -4 -2 0 2

ω / eV

0

0,5

1

1,5

2

2,5

3

Figure 3: Comparison of Wien2k projected DOS (black) and the Wannier
DOS (red) with Lorentian broadening 0.01.

You can plot and compare it to the Wien2k DOS using xmgrace:

xmgrace -block NiO/NiO.dos1ev -bxy 1:3 DOS_wann_up_proj0.dat

The result is shown in Fig. 3, where the Wannier DOS is multiplied by a
factor of 2 in order to account for the spin. First of all, there is no Wannier
weight below -2 eV, since this is below the projection window. Moreover, the
result is quite spiky due to the simple point integration that TRIQS uses for
the k summation. You can increase the broadening factor in tut dmft ex2.py
to a larger value (c.f. 0.3), and compare again.

4 The Impurity Solver

4.1 Local DFT Green function

We now start setting up the DMFT calculation. For that, we have to cal-
culate to local non-interacting Green function from the DFT input, which
serves as the first input to the impurity problem. So lets calculate it by

mpirun -np 1 pytriqs tut_dmft_ex3.py

9

0 1 2 3 4 5 6 7 8 9 10

iω

-1,5

-1

-0,5

0

Re GDFT
Im GDFT

Figure 4: Real and imaginary part of the Matsubara Greens function GDFT ,
the input from DFT.

This produces text files with the data of this Greens function, which is also
plotted in Fig. 4. Note that a finite value of ImGDFT (iω) for ω → 0 stands for
metallic behavior, because A(ω = 0) = limωn→0ImGDFT (iω) For an insulator,
there are no states at zero energy, and therefore this value has to be zero.

As a next step, we can check whether the chemical potential is set correctly,

mpirun -np 1 pytriqs tut_dmft_ex4.py

We get density close to 2.12 for the eg manifold, which is close to the DFT
value.

4.2 Setting up the Impurity Problem and Solver

After having checked the main input, we continue with the interaction Hamil-
tonian. The script tut dmft ex5.py is already a bit longer, and will do this
job for you. The main parameters to look at are:

Setup the Hamiltonian

U = 4.0

J = 0.9

10

0 50 100 150 200
-300

-200

-100

0

100

200

Figure 5: Real and imaginary part of the Matsubara self energy, without tail
fit and Hartree constant.

U4ind = U_matrix(l=2,U_int=U, J_hund=J, basis = ’cubic’)

Umat_eg = eg_submatrix(U = U4ind)

H = h_int_slater(spin_names, orb_names, Umat_eg, off_diag = False)

Parameters for the CTQMC Solver

p = {}

p["max_time"] = -1

p["random_name"] = ""

p["random_seed"] = 123 * mpi.rank + 567

p["length_cycle"] = 200

p["n_warmup_cycles"] = 1000

p["n_cycles"] = 20000

Some of them are self-explanatory. The most important one for the Monte
Carlo solver is the number of MC cycles in the last line. We start with a low
number, and just let it run:

mpirun -np 1 pytriqs tut_dmft_ex5.py

First of all, the charge of the impurity problem is very low, around 0.6 as
compared to 2.12. In addition, when looking at one of the self energies, e.g.

11

0 5 10 15 20 25 30

-2

0

2

4

6

8

Real part

Imaginary part

Figure 6: Real and imaginary part of the Matsubara self energy, without tail
fit but with Hartree constant. Low energy looks not so bad.

xmgrace -nxy Sigma_ex5_up_0.dat

this does not look nice. Let’s first take a look at the charge. The problem
is that we do not start with a good guess for the self energy, which was just
setting it to zero. Instead we initialize it now with the constant Hartree
energy in the next example script,

mpirun -np 1 pytriqs tut_dmft_ex6.py

As guess for the Hartree energy, we use the value for double counting cor-
rection. This concept is the same as in DFT+U, where one has the correct
for the interaction energy that is already included in DFT. We use here the
full-localized-limit (FLL) variant (flag use dc value=0).

Now, the density is much better (around 2.02). We also increased the number
of MC cycles a bit to 100000 to get better data. Nevertheless, the problem
at high energies persists, and we have to take care of what is called the tail of
the self energy. As can be seen in Fig. 6, the low energy part is okay, and we
need to replace the noise at high energy with some analytic form. This we
do by tail fitting, which is implemented in tut dmft ex7.py. The parameters
are

12

0 5 10 15 20 25 30

-2

0

2

4

6

Real part

Imaginary part

Figure 7: Real and imaginary part of the Matsubara self energy, with tail fit
but with Hartree constant. 16 MPI processes have been used for this plot.

#This is for the tail:

p["fit_max_moment"] = 3

p["fit_min_n"] = 70

p["fit_max_n"] = 170

p["perform_tail_fit"] = True

We fit three moments of the high-frequency expansion, and use data between
Matsubara frequency index 70 and 170 for the fit. Note that the Matsubara
frequencies are defined as ωn = π/β(2n+1), where n is the Matsubara index.

Now the self energy looks much better, with good analytic behavior towards
high energies. However, we still have problems with good statistics, since we
do not use enough sampling in our problem. This can be cured either by
increasing the number of MC cycles further, or by using more MPI threads
on the computing cluster. You can increase the latter number simply by

mpirun -np 16 pytriqs tut_dmft_ex7.py

which let’s the code run with 16 instances. This just increases the number
of MC data by this factor.

13

0 1 2 3 4 5 6 7 8

-1,2

-1

-0,8

-0,6

-0,4

-0,2

0

DFT
DMFT

Figure 8: Imaginary parts of the local DFT Green function (black), and of
the converged DMFT impurity Green function (black). Whereas the first one
is clearly metallic, the latter one is a clear insulator, even without magnetic
symmetry breaking.

5 DMFT

Now we have set up our Solver correctly for the DMFT calculation. We have
a ready made script that let’s the self consistent cycle with this setup run
for 6 iterations,

mpirun -np 6 pytriqs tut_dmft_ex8.py > outDMFT 2>&1 &

We let it run in the background, since it takes some time, but pipe all output
into a file outDMFT. You can check the progress of the calculation by several
means, for instance

grep ’Total charge’ outDMFT

tells you the current values of the impurity and local lattice density. These
numbers have to converge, of course. The script also prints all the self energies
into files, which you can check for convergence.

As a final result, you should get something similar to Fig. 8. The input from
DFT was clearly metallic, but for our values of Coulomb interaction U = 4.0

14

and Hunds coupling J = 0.9 we get as a result an insulator, even in the
paramagnetic case. This is qualitatively different to any DFT calculation,
and is the paradigmatic example of a Mott insulator.

5.1 Further tasks

1. As a further problem you can look at smaller interaction values. Chang-
ing the values to U = 1.0 and J = 0.2 is not difficult in the scripts, but
be aware that also the tail fit is sensitive to the interaction values and
has to be done carefully again! At the end, you might up with different
results as for the U = 4.0, J = 0.9 case.

2. You could try out whether the ferromagnetic state is stable in DMFT.
For this, you have to initialize the Self energy for the first run with
different values for up and down spins. Then you do all procedures
as above and check, whether the iteration is stable and converges to a
finite magnetic moment. This is already a quite advanced task.

15

