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Finite-field implementation of NMR chemical shieldings for molecules:
Direct and converse gauge-including projector-augmented-wave methods
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Two finite-field implementations for the calculation of chemical shieldings of molecular systems
using a plane-wave basis set and the Gauge-Including Projector-Augmented-Wave method are pre-
sented. The direct approach mimics the nuclear magnetic resonance experiment in that it puts the
molecule in a uniform magnetic field and obtains shieldings from the current response. The other
is based on the recently introduced “converse method” [T. Thonhauser, D. Ceresoli, A. A. Mostofi
et al., J. Chem. Phys. 131, 101101 (2009)]. In both methods two-center contributions to the shield-
ings can be included via a numerically simple augmentation construction. Results obtained with both
methods are discussed as well as (dis)similarities in their behaviors. © 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4810799]

. INTRODUCTION

Nuclear magnetic resonance (NMR) spectroscopy is a
powerful tool to study the structure of molecules, liquids, and
solids. One of the key parameters determining the spectrum is
the chemical shielding tensor o g, ﬂ,l’z defined as

oy
[7
9BS

ORap = (1)
where Bli{‘(f is the induced magnetic field at a specific atomic
nucleus R when an external field B;’“ is applied (o and B de-
note Cartesian directions). Retrieving the structural informa-
tion from the measured shielding in general is a complicated
process, as there exists no simple direct mapping from shield-
ing to structure. Solving this issue has motivated the develop-
ment of ab initio and first-principles techniques to calculate
shieldings.

Calculation of chemical shieldings for molecular systems
is now a mature discipline in quantum chemistry (see, e.g.,
Ref. 3 and references therein), for wave function methods
as well as Density Functional Theory (DFT) methods. As
crystalline systems pose additional challenges first-principles
DFT methods for solids have been developed somewhat later.
The fundamental problem of dealing with a finite applied
field in a periodically repeated system was solved by Mauri,
Pfrommer, and Louie in the 1990s, using linear-response (LR)
in the long wave-length limit.* Later, an alternative route
was developed by Sebastiani and Parrinello.> Furthermore,
Gregor, Mauri, and Car showed that the shielding due to core

) Present address: CEA Saclay, IRAMIS, SIS2M, CEA/CNRS UMR 3299,
F-91191 Gif-sur-Yvette cedex, France.
b)Electronic mail: g.dewijs@science.ru.nl

0021-9606/2013/139(1)/014109/16/$30.00

139, 014109-1

electrons can be considered rigid, i.e., can be calculated sep-
arately, when adopting an appropriate gauge for the vector
potential.® This solved a major practical problem because
many solid state codes remove the core states from the cal-
culation. An important breakthrough occurred with the intro-
duction of the Gauge-Including Projector Augmented Wave
(GIPAW) method by Pickard and Mauri.” The GIPAW
method permits to obtain accurate chemical shielding with a
plane-wave (PW) basis set. It recovers the shape of the all-
electron Kohn-Sham (KS) orbitals near the nucleus via an
augmentation procedure as in Blochl’s Projector Augmented
Wave (PAW) method.® Moreover, it solves the gauge problem
arising from incompleteness of the atom-centered augmenta-
tion functions in a way similar as done for molecules in the
Gauge Independent Atomic Orbital (GIAO) method.” The ex-
tension to non-norm-conserving pseudo orbitals in the PAW
was done by Yates, Pickard, and Mauri (YPM).! The com-
plete methodology resulting from these developments, often
just called “GIPAW method,” has been implemented in sev-
eral plane-wave codes and is currently widely used in the
solid-state NMR community for an extensive range of appli-
cations (see, e.g., Ref. 11 and references therein). Recently
also an extension of the linear response formalism for solids to
GIAO and Augmented-Plane-Wave (APW) methods has been
realized.'> !4

All these are direct methods, i.e., they mimic the physics
of the NMR experiment: The material is put in a uniform
external field B®™, the induced current is calculated, and
from that the induced field B¢ at the atomic nucleus is ob-
tained. Recently, a new method to calculate chemical shield-
ings was introduced by Thonhauser et al.,'> building on im-
portant developments in the theory of orbital magnetization
of crystals.'® This converse approach exploits a different

© 2013 AIP Publishing LLC
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physical setting. The shielding tensor o' g, 4 is calculated from
the induced orbital moment m™ when an external ideal mag-
netic dipole m®™! is placed on a specific nucleus R, from the

formula:
o5y o’
— = O = — . 2
0Bt N T T amgy @

The left-hand-side expression is the usual definition of the
shielding tensor in the direct approach, Eq. (1). To prove this
expression one notes that the induced magnetic field can be
written as minus the derivative of the (total) energy with re-
spect to the magnetic moment (for vanishing moment), and
that the induced magnetic moment can be written as minus the
field derivative of the energy (for vanishing magnetic field):'”

OE OE
omg 9B5"

and mg‘d =

By = — 3)

Contrary to the direct methods, in the converse approach
a local perturbation is applied, and a global response re-
sults. Moreover, the response is calculated by directly apply-
ing a finite field, i.e., there is no need for a linear response
calculation. This even holds for crystals, as the orbital mo-
ment of a crystal can be directly obtained from the Hamilto-
nian, eigenvalues and k-derivatives of the cell periodic part of
the orbitals.'® A first-principles solid-state converse method
based on the GIPAW reconstruction of the valence states
has been developed by Ceresoli, Marzari, Lopez, and Thon-
hauser (CMLT).'® It has been implemented in QUANTUM-
ESPRESSO (QE) (Ref. 19) and VASP (Vienna ab ini-
tio simulation package).””?! See, e.g., Refs. 22 and 23 for
applications.

In this paper we apply the DFT GIPAW approach to
molecular systems. The implementation discussed here is
based on VASP. We report on both (a) a simple direct method
and (b) a converse molecular method. In both approaches a
finite field is applied directly. In this respect (a) differs from
previous direct molecular GIPAW implementations all rely-
ing on linear response.” ! For (b) the converse GIPAW ap-
proach of CMLT (Ref. 18) is closely followed. However, here
it is specifically geared towards usage for molecules, allowing
for a straightforward and simple calculation of the moment of
the plane-wave part of the current, avoiding the recurrence to
the modern theory of orbital magnetization of Ref. 15. More-
over, we generalize the method to pseudo partial waves that
are not normalized, and demonstrate the equivalence of both
approaches.

Finally, for both methods, we provide a simple augmen-
tation correction that accounts for two-center contributions
to the shielding. Typically such corrections are small, and
have hitherto been neglected in GIPAW implementations.”- '
For hydrogen—having a very small range of shieldings—we
show these corrections to be relevant for some applications.

We expect the implementation to be particularly rele-
vant for larger molecular systems. For small systems quan-
tum chemical codes using, e.g., Gaussian basis sets are much
faster, since the plane wave basis sets are notoriously inef-
ficient in the vacuum requiring an equally dense real space
spacing there as close to the atom. However, for very large
molecules, where the vacuum region takes up a smaller frac-
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tion of the computational cell, the inefficiency of the plane-
wave basis set is less acute and the good scaling of plane
waves [up to 1000 atoms predominantly N*log (N)] makes
plane waves competitive. Furthermore, the converse method
allows to consider just a small fraction of the molecule (e.g.,
near the active site) as the effort scales linearly with the num-
ber of shielding tensors calculated. This feature carries over
to molecular systems.

This paper is organized as follows: In Sec. II, we
briefly review the general theory of the chemical shieldings
for molecules using the direct and converse approaches. In
Sec. 111, the formulas within the GIPAW framework are sum-
marized, together with details of the implementation in VASP.
Section IV compares results for small molecules obtained
with both molecular approaches, the linear response approach
of Yates, Pickard, and Mauri (Ref. 10) as implemented in
VASP and QUANTUM-ESPRESSO,'? and the molecular lin-
ear response from DALTON.?>*2 This section also deals with
numerical issues such as basis set convergence and conver-
gence criteria for orbital optimization, and demonstrates the
feasibility of the present approach for larger molecular sys-
tems. Section V concludes with a short summary.

Il. THEORY

This section summarizes the general theoretical back-
ground related to the calculation of the chemical shielding
tensor for both the direct and converse approaches in a basis-
set independent “all-electron” picture. For both approaches
we present the all-electron Hamiltonian and the respective in-
duced quantities. Thereafter, we introduce the notation of the
PAW and GIPAW transformation needed in Sec. III.

A. Hamiltonian and current operator
1. Hamiltonian

In the presence of a magnetic field the all-electron (AE)
Hamiltonian H is given by

1 e \2
H = 2me (p — EA) +eV(r), (4)

where V(r) is the all-electron local potential, p is the momen-
tum operator, and e = —|e| is the electron charge. The vector
potential A depends on the external field or perturbation.

2. Current density and current operator

The computation of the chemical shielding in both ap-
proaches requires computing the current density. It is a func-
tion of the position r and can be decomposed into para and
diamagnetic contributions:

i) = jpara(r) + Jaia (). 5)

The current densities are obtained from the respective current
operators:

#
Joura = —; (VIr) (] + I} (x| V), ©6)
im,
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2

‘ ~A) ) (x| %)

e

Jaia = —

In a one-electron picture and for the Hamiltonian (4), the cur-
rent densities are just a simple sum of expectation values:

jpara(r) =

efi .
e Z LYV, 8)

62
- A(r)p(r), ©))

e

Jaia(®) = —

where f,, are the occupation numbers (0 or 2) and p(r) is the
AE charge density.

3. Vector potential

For the vector potential A of the uniform, external mag-
netic field B we use
1
Ao(r) = —B X T, (10)
and for the vector potential A of an ideal dipole my at position
R, we use

_mx(r—R)
M x@—Ry

(11)

Ir — Ry

Both vector potentials obey the Coulomb gauge condition
V - A = 0. In general, the vector potential is a sum of both:
A(r) = Ay(r) + A4(r), so the AE Hamiltonian is
1
" 2m,

2
[P- A +A@)] +ev. 12

To first order in external moment and field it is

2 2

e e
b (Ao +A)-p+——
2m,  mec mec

H =

Ag-Ag+eV(r).
(13)

B. Direct approach
1. Hamiltonian

We only apply a uniform field: A; = 0. To first order in
the field, the AE Hamiltonian (Eq. (13)) is then:

2
=L ® Ao-p+eVi. (14)

2m, mec

2. Induced field

There are several ways to derive an expression for the
induced field. In the traditional approach one uses the Biot-
Savart law to calculate the (non-uniform) induced field from
the induced current:

Bia(r') = - /Wd . (15)

The induced AE current ji,q is given by Eq. (5) with A = A,.
To obtain the shielding tensors, the field has to be calculated
at the nuclear positions R. If the perturbation is sufficiently

J. Chem. Phys. 139, 014109 (2013)

small the response is in the linear regime and

Bindg.o(R)
ORep = —B—ﬁ (16)
An alternative route runs via the energy derivatives of
Eq. (3), i.e., via the key observations of Thonhauser et al.'”
that underpin the formulation of the converse method, and the
Hellmann-Feynman theorem:

occ

P an Wil

In the next step we have to determine the sum of the matrix
elements (Y ,|H|Y,). For H, we use Eq. (13) and retain only
the terms linear in A;. We obtain

ind __
BRot -

et Il/fn> A7)

occ 2

_an (Y| —
1 oce 2
=m, - / ( anw OV — - — )

Ry —1)
|Rs - rl3

A0 AslYn)

3 ind
d’r =my - Bg".

Here, obviously, Ry = R. To derive this we had to insert A
from Eq. (11) and reorder the vector and inner products. In
the final expression one can clearly recognize the Biot-Savart
law (Eq. (15)) and the current density (Eq. (5)) in uniform
external field. We obtain Bli{‘g by differentiating with respect

ext
to mg,-

C. Converse approach
1. Hamiltonian

A magnetic moment mg is placed at the atomic po-
sition Rg. There is no uniform external magnetic field:
Ay = 0. The Hamiltonian of Eq. (13) simplifies and
becomes:

2

P ° A -p+eVir). (18)

H = —
2m, m,cC

2. Induced moment

Analogous to the induced field in Sec. II B 2 above, there
are again two ways to arrive at the induced moment.

(i)  Application of the external moment mg gives rise to an
induced current ji,q that is calculated from Eq. (5) with
A(r) = A4(r). In turn, this induced current gives the in-
duced magnetic moment mj,g. In a molecular set-up it is
straightforwardly calculated using the definition of the
orbital magnetic moment:

1 .
my,g = 2—/1' X Jina d°r. (19)
c
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(i) Following CMLT,'® one can also use Eq. (3) to obtain
mj,q using the Hellmann-Feynman theorem:

oH
mj, = S_ZcMind = - <§>3_0 s (20)
(€2 is the cell volume). To do so, one needs to retain the
vector potential Ay of the uniform field in the Hamilto-
nian, i.e., work with the full expression in Eq. (13). One
obtains:
1

Mg = 2_c r

h occe
x ( S S ®V Y

im,

€2
- As(r)p(r)>d3r,
C

in which Eq. (19) is easily recognized.

In an infinitely large crystal, Eq. (19) is not applicable
and an alternative expression from the modern theory of or-
bital magnetization has to be used.'®'? In any case, the final
shielding is:

Mingd,
Mg (Rs) .

OR,up = — 2D

D. PAW and GIPAW methodologies
1. Basics of PAW

In Blochl’s PAW method (Ref. 8) the one-electron Kohn-
Sham orbitals 1, are related to the pseudo orbitals v, via a
linear transformation:

) = |¥) + Z(|¢i> — 1@ Pi V) (22)

The orbitals ,,, where n is the band index, are expanded in
plane waves and represent the variational degrees of freedom.
The all-electron partial waves ¢; are obtained from a refer-
ence atom calculation. They are stored as products of spher-
ical harmonics and radial functions. The latter are tabulated
on a logarithmic mesh, so as to allow for high accuracy in the
immediate vicinity of the nucleus. The pseudo partial waves
@, are equivalent to the all-electron partial waves outside the
PAW spheres, and match continuously onto ¢; inside the PAW
spheres. The projector functions p; are dual to the pseudo par-
tial waves:

(Pilg;) = &ij. (23)

The PAW transform of any given quasi-local operator is
given by

0 =0+ |1p)(D5I01-DLION) (B, (24)
ij

where
D/,[0]1=(¢:|0|¢;) and D}[0]= ($|01$;) (25

defines the strength parameter as introduced in Ref. 27. Here
O is the AE operator and O is the corresponding operator in
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the plane wave basis, i.e., for the expectation value:

(0) = ful¥ul O 1) =D fu (Ful O V)

=" fu (Yul O W) + pi; (D};[01 = D/};10])

here f,, and p;; are the band and the augmentation occupancies,
respectively, with

pij = D Ful Wl Bi) (P 1) (26)

The expectation value is calculated as the sum of the expec-
tation value of the AE operator taken with the pseudo orbitals
and one-center corrections.

We use periodic boundary conditions and a plane wave
basis set for the pseudo orbitals:

i 1 .
w}’l,k(r) = F Z Cr?,k el(k+G) l‘. (27)
k Gk

Here, G are the reciprocal lattice vectors of the applied unit
cell and k labels the k-points. Brillouin zone sampling is arti-
ficial in a molecular system, but a judicious choice may speed
up convergence with cell size. However, all results reported
were obtained using the I"-point only.

2. Basics of GIPAW

The GIPAW transform was introduced by Pickard and
Mauri to restore the correct phase change when a system is
translated in a uniform magnetic field.” The need for such a
transform is dictated by the observation that in the presence
of a linearly increasing vector potential Ay (i.e., in constant
magnetic field with gauge of Eq. (10)), the groundstate or-
bitals acquire an additional phase factor upon translation over
a vector t:

U k(1) — /MOAMOT G\ (r — 1), (28)

The exponent describes a rapid oscillation in space that cannot
be properly sampled by the usual projectors, however, the on-
site “Gauge” transformation of the GIPAW effectively cancels
the phase oscillation in the pseudo orbitals, and allows the use
of a modest number of partial waves and projectors.

In the GIPAW, the partial waves and projector functions
hence receive an additional “phase twist.” The phase twisted
operators (denoted here by an additional bar) are related to the
PAW operators as

(@il = (| eTre/mObT

(@il = (i] e/, (29)
(Bil = (pi| /MM,

Here Ap(R) is the vector potential of the magnetic field at
the center of the PAW sphere: Ap(R) = (B x R)/2. Defin-
ing phase twisted strength parameters and projector func-
tions, the GIPAW transform can be written just as compact as
Eq. (24),i.e.,

0 =0+ 1p)(D5101-DLION (. (30)
ij
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Here the projector functions are phase twisted (“outer oper-
ator” twist). The modified strength parameters have the AE
operator phase twisted (“inner operator” twist):

Dll][o] — (¢1| e(—iE/hc)Ao(R)-rOe(ie/ﬁc)Ao(R)-l‘ |¢/> . (31)
Note that the seemingly different sign in comparison with
YPM and CMLT is due to a difference in the sign of
charge.”!%18 In the following we always use a “bar” to de-
note phase twisted quantities, e.g.,

Bij = ful Wl Bi) (B 1) (32)

The GIPAW largely removes the gauge problem in the
one-center augmentation. It effectively shifts the gauge origin
to the center of each PAW sphere (see below).

If the plane wave basis is sufficiently large, the variation
of the pseudo orbitals introduced by the linearly increasing
vector potential can be described exactly (e¢/#4%®T hag the
form of a plane wave) although effectively reducing the plane
wave cutoff by o (ie/fic)Agy(t).

We use the same projector functions and partial waves for
both GIPAW and PAW calculations. The difference is just in
applying the phase twists.

lll. MOLECULAR GIPAW METHODS

This section provides expressions for the GIPAW Hamil-
tonians and the induced response properties, i.e., magnetic
field and moment for the two methods, respectively. In the
present implementation, we compute the response by apply-
ing a finite field: in the direct method, a finite magnetic field
is applied and the induced field at each nucleus is determined,
whereas for the converse method, a finite magnetic dipole is
placed at a specific nuclear position, and the induced current
and moment are calculated.

A. Direct approach

The use of a finite magnetic field B with a correspond-
ing vector potential Ay according to Eq. (10), is obviously in-
consistent with the periodic boundary conditions. To remedy
this we apply a saw-tooth vector potential. The molecule is
located at the origin, and in the vacuum, ideally where the
electronic density becomes minimal, the potential makes a
jump (we apply the jump half-way the cell, see Fig. 1). This
jump is smoothed in order to avoid unwanted artifacts in the
fast Fourier transforms. The corresponding magnetic field is
consistent with periodic boundary conditions, and we chose it
such that the average field is zero (G = 0 component).

1. GIPAW Hamiltonian

Here we describe the modifications of the Hamilto-
nian when the saw-tooth vector potential is switched on. In
zero external field the usual PAW Hamiltonian (Eq. (47) of

J. Chem. Phys. 139, 014109 (2013)

BL/4

A(X) /

-BL/4

FIG. 1. One-dimensional representation of the vector potential in a supercell
of size L. Due to the vector potential discontinuity in the middle of the box,
the center of mass of the target molecule should be placed at the origin.

Ref. 27) and overlap operator apply:

2

p ~ ~ A ~ ~
H™W = > + et + Z |pri) (Dij + Dilj - Dilj) (Prjl
Rij

and (33)
STV = " pri) Qij (Pr;l -
Rij
See Ref. 27 for a more detailed discussion of the individ-
ual terms. Switching on the field, all projection operators in
HW and SPAV become gauge twisted, i.e., p; — p; (we ap-
ply the projectors in real space, Ref. 28). Inclusion of the
vector potential Ay(r) (cf. Eq. (14)) yields the total GIPAW
Hamiltonian

HGIPAW
=A™~ AP —— Y Ihri)
m.c m,c ey
(Do, TAo(r — R) - pl — D, [Ao(r — R) - pl) (.

(34)

Here A™V is the original Hamiltonian of Eq. (33) without
field but with gauge twisted projectors. As discussed before,
the gauge twisted projectors move the origin of the vector
field in the one-center terms to the origin of each PAW sphere.
Here we explicitly label the PAW spheres with R.

2. Total induced field

There are several routes leading to Bjq(R’), i.e., the in-
duced magnetic field at nucleus R’. First, we briefly outline
the direct route via Eqgs. (3) and (17). In this case we start with
an AE Hamiltonian, Eq. (12), with both the uniform magnetic
field (vector potential Ay) and a magnetic dipole placed at nu-
cleus of interest (vector potential A; with Ry = R’). With help
of the Hellmann-Feynman theorem the induced field is

, dE — . . 0H
BuaR) = ——— == fulVal
R’ n

|&n>mg=0~

omg

Here H denotes the GIPAW transform of the AE Hamilto-
nian. There are no overlap and double counting terms because
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they are not explicitly dependent on my. B;,q(R") consist of a
(pseudo) contribution that is calculated on the grid and one-
center corrections:

Bina(R) = Bing(R') + B ,(R") — B} 4(R)).

The first is the field at R” due to the pseudo current:

B 1 ﬁ occ B B
Bin(R) = - f (:n PRI
e? . R —r)
— mecAQ(l')ﬁ(l‘)) X m dSV
Sl (R-D)
= - / i) x ey (35)

The one-center corrections are

o N ) i (R—1)
Bl,g(R)~Bj,y(R)= - > bwij <D}, [Ji‘{(r) X R1p
R ij

<1 [in R —r)

Note that the terms R # R’ have a multi-center charac-
ter. These can be handled via an augmentation procedure
(Sec. III A 3). The currents jil;‘(r) have the gauge origin shifted
to the center of the PAW spheres [Ay(r) — Ayo(r — R)].

Now we discuss the “standard” route to B;,q(R"), i.e., the
route via the current density. The GIPAW transform, Eq. (30),
of the current operator yields three terms:

In=Jo+Y (ho-ko). 6D
R

Here J is just the sum of the AE para and diamagnetic current
operators, Eqgs. (6) and (7). The first term on the right-hand
side is the usual plane wave part, whereas the second and
third terms are the all-electron and pseudo one-center terms,
respectively.

For the plane wave part, the current operator is identical
to the usual all-electron current operator. An important issue
to address is that the vector potential, and hence the diamag-
netic current, increases linearly with the distance from the
gauge origin. In the complete basis set limit this increase is
exactly compensated by the paramagnetic current, as is easily
recognized by considering Eq. (28), and the action of the gra-
dient operator in the paramagnetic current on the exponent.
However, the further the atoms are located away from the
gauge origin, the more the “local” effective plane wave cutoff
is reduced at a specific site. Hence, the freedom in the basis
set expansion (Eq. (27)) is locally reduced, and a higher global
kinetic energy cutoff is needed. The familiar gauge problem
now manifests itself in slower plane-wave basis set conver-
gence. We did not attempt to correct for this effect,”® since
convergence in the plane wave basis, i.e., perfect cancellation
over the molecule, is fairly easy to attain by increasing the
plane wave cutoff (see Sec. I'V).

J. Chem. Phys. 139, 014109 (2013)

For the one-center current terms the GIPAW transform
yields

JR@®) =D 15i) Dy [T (551
ij(R)
=Y 151 (i () |¢) (B (38)
ij(R)
and an analogous term for the pseudo one-center current op-
erator j{z(r). Here Dlllij [Jiﬁ‘(r)] is implicitly defined in the
second line and the gauge twisted current operator in the
one-center spheres is

fl 2
; (V |r) (] + [r) (x| V) — —
im,

Jr(@®) = Ao(r —R) [r) (r|.

(39)
As always, the gauge problem is eliminated by shifting the
gauge origin to the center of the PAW sphere. Note that the
D}, ; [Jin(r)] are functions of r.

The Biot-Savart law (Eq. (15)) now provides the route
from j to the induced field Bj,q at a nucleus R’. It consists
of a contribution arising from the pseudo-current density and
multi-center corrections:

Bina(R)) = Bina(R') + B 4(R). (40)

mec

The first term on the right-hand side is

I

Bu(R) = éZf / (Tl T 1) Hd%
where J is the total current, i.e., the sum of Egs. (8) and (9). It
is Bina(R) as obtained before in Eq. (35). The plane wave cur-
rent density j = 3 f, (V| J [¥,,) is set up on the plane wave
grid, and Biot-Savart is applied using a combination of fast
and slow Fourier transforms (just as by YPM).!? The multi-
center corrections are

1 . - )
BL(R) =~ 33 s / (DL [I2m)] - DL [IRm))
ij

¢ R
R —r) 3
de r, (41)

where the integrations are restricted to the PAW spheres, as
the partial waves vanish outside. Although the expression
seems to be somewhat different from Eq. (36), it actually is
identical (the different notation is due to the GIPAW trans-
form being done either on the expectation value of the Hamil-
tonian or on the current density). Expression (41) consists of
two-center (R # R’) contributions and a single one-center
(R = R’) contribution for each atom R’. The latter is cal-
culated numerically exact, expanding all contributions in ra-
dial functions times spherical harmonics, where the radial in-
tegrals are performed on logarithm radial meshes. Since the
two-center terms are generally quite small, YPM neglect these
contributions in their linear response method.'” Below we
describe a simple procedure wherein these terms are accu-
rately approximated by pseudized augmentation contributions
on the plane wave grid analogously to the charge augmenta-
tion in the PAW method. Numerical tests for this extra term
are shown in Sec. IV, finding important corrections for the
shielding of hydrogen atoms.
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3. Current augmentation

The two-center contributions in Eq. (41) are conveniently
handled via a multipole expansion. As the Dl.lj are from other
PAW spheres than R/, the detailed current pattern inside the
spheres does not matter, and only the moments of the current
density determine the field at R’. Hence, we can replace the
rapidly varying currents Dilj [Jif{(r)] by a smooth current den-
sity, i.e., slowly varying in space, with equal moments, with
the requirement that the “pseudo” current density can be ac-
curately described on the plane wave grid. The corresponding
field is once again obtained via the Biot-Savart law on the
plane wave grid.

The implementation is analogous to the calculation of the
compensation charge density,”’ and it is reminiscent of the
current integration in the LAPW.'* The moments of the differ-
ence between the all-electron current and the pseudo current
are calculated as integrals over the PAW sphere:

I = / (D}, [IR®)] =D} [JR®)]) Ir—R[“ YL (R) r* dr dQ

(42)
and, for R # R/, the following replacement is made in
Eq. (41):

DL[JR®)] — DL [Jem] - > Tk e (r —RDYLu(R).
LM
(43)

Here the g; are smooth functions with moment 1. So the latter
can be represented on the plane wave grid. It is multiplied
with pr;; and added to the plane wave current density j. In
practice, we suppress the diamagnetic contribution to Jil‘{(r).
The GIPAW has already made it vanish at R, i.e., it is very
weak.

B. Converse approach

Starting point is again the AE Hamiltonian, Eq. (12).
Here A (r) is the vector potential of the external magnetic
dipole my that is put at the nucleus Ry whereof we want to
calculate the shielding. It is given by Eq. (11). Ag(r) is the
vector potential of a uniform magnetic field according to Eq.
(10). It is used to calculate the induced moment as magnetic
field derivative, see Eq. (44) below.

We now derive the PAW Hamiltonian to be used in the
self-consistent calculation and an expression for the response,
i.e., the induced total magnetic moment. We closely follow
CMLT,'® but here extend to PAW with non-norm-conserving
partial waves and restrict to a molecular picture. It is more
natural to first discuss the response and next the Hamiltonian
used for the self-consistent calculation.

1. Total induced moment

Using the Hellman-Feynman theorem, the total induced
magnetization Mj,q can be obtained as follows (cf. Eq. (20)):

occe

oH - 0 I~
mjpg = —<§> = - an(llfﬂﬁ(f] — € )| Vn) B=o.
n 44)
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Here H is the GIPAW transform of the AE Hamiltonian. To
first order in A the AE Hamiltonian is:

1

e 2
HY =5 (P - EAind(r)) +eV(r),
e
HY == —@ A +A;-p)
e
2
2 (Aind - As + As - Ajna)-

In converting to the GIPAW Hamiltonian we only retain terms
linear in B. First we consider H©, Its inner operator GIPAW
transform yields a one-center contribution:

°_B.|pri) (D, [Lrl — D [Lel) (. (45)

2m,c

where Lg = (r — R) x p is the angular momentum operator
centered on atom R. It vanishes for PAW data sets with norm-
conserving pseudo partial waves. The outer operator trans-
form [of V(r)] yields an another one-center term linear in B:

%B - (R x [r, Vu]) where

~ 1 ™ | ~
Vo =|Pri) (Dgi;[eV] — Dgj;[eV]) (Prjl.
Here the strength parameters are understood to include also
the usual one-center contribution to the kinetic energy. Trans-

forming the second term (H") yields the one-center contri-
bution:

(46)

62

~ |
WB' | Pri) (Dgy; [(r — R) x A(]

— Dy [(r — R) x A])(pr;l. 47

This is the diamagnetic term of CMLT (ER", their Eq. (17)).'8
The first term of H", which is independent of B, only yields
a linear contribution via the outer transform:

%B (R x [r, Ky]) with

e
2m,.c

- Dllz,-j[P . As +As ' P]) <ﬁjR|~

Transforming the overlap operator gives a result similar to the
above with S, instead of K,

Sl = | Pir) Orij (P jrl. (49)

We now add the one-center contributions (45)—(49) to the
AE Hamiltonian (to linear order in B, Eq. (13)). The result,
H — €,S is substituted in Eq. (44), giving the total induced
magnetic moment mjq:

Ku=—=—1pir) (Di;;[p- A +As-p]  (48)

Mg = QMipg = Mipg +my, +mj;, +my; .

Here M;,q is the plane wave contribution, i.e., the magnetic
moment of the current with a field A according to Eq. (19):

1 e e
~in - — nI *V nl —
g 26/rx<me;f [y VY]

d3

2

mec

As(l’)ﬁ(r)>

r. (50)
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The one-center contributions are:

.. 1 L. —_ N1 ..
e % pijr (Dii;[Lr] — Dgy;[Lr]) .

e

I _
m; =

2
] —_ e ..
my, = — Tecz UZRIOUR
(Dllzij [(r = R) x Ag] — Dllz,‘j[(r —R) x As]) ,
ie - -
mll\IL == % Z Jn ZR X A llr, Vi + Ko — €, 8Sull¥).
n R

Comparing to the magnetization expressions of CMLT, we
observe that mj and the overlap contribution to m{; are ab-
sent in their method, as these vanish for norm-conserving
PAW data sets. Our mcllia corresponds to their My;,. The Vy
and K, parts of m{; correspond to the long range part of
their Mnp, and Mg, respectively (Egs. (22) and (25) of
Ref. 18).

2. PAW Hamiltonian

The starting point is again the Hamiltonian for zero mag-
netic field, Eq. (33). We again consider the first-order changes
upon switching on the external dipole moment my at Ry, but
now in vanishing magnetic field, i.e., the GIPAW becomes
regular PAW:

PAW,s __ 77PAW €
H =H chAS )

e
Zpin(Dll{,'j[As ‘p+p-Al
ijR

2m,c =

_Dllz,‘j[As'p“‘p'As])- (51

The vector potential on the plane wave grid is conve-
niently set up in reciprocal space. The one-center terms split
into two kinds: (a) There is one contribution to the sum with
R = R;. This term is calculated numerically exact, by ex-
panding the term in products of spherical harmonics and ra-
dial functions, and performing the radial integration on the
logarithmic PAW one-center grid. (b) The other terms, i.e.,
where R # Ry, are usually small and typically neglected.
However, analogous to the “current augmentation” described
above (Sec. IIT A 3), they can also be included in an aug-
mentation procedure on the plane wave grid. This is described
below.

3. Completing the Hamiltonian: D;; augmentation

The Dllzi ; in Eq. (51) can be calculated using the expan-
sion of the paramagnetic current operator in Eq. (43) from
Sec. III A 3. We rewrite the one-center strength parameters
using:

h
(@il As-plo;) = lf/d3r (il As - Ir) (x| V |))

#
== / &r A - (1) (€] V 1)) -
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In fact, the strength parameters are proportional to the inte-
gral over the PAW spheres of the product of A and the para-
magnetic current density. We approximate the latter using the
expansion in Eq. (43), since A is slowly varying except for
the sphere R = Ry, where the integral is done numerically as
described in Sec. III B 2. Since the current augmentation re-
stores the moments of the all-electron current density exactly,
and source terms are absent except at R = R, the described
procedure allows for an exact evaluation of two center terms

in (¢:| As - p o).

IV. NUMERICAL CONSIDERATIONS AND TESTS

Below we provide general computational details, dis-
cuss basis set, box size convergence, required accuracy of
the Kohn-Sham (KS) orbitals, linearity of the response, as-
sess the importance of two-center terms (Egs. (34) and (51)),
and validate the implementation for several molecules. For
the latter we compare to results obtained with various linear-
response implementations. Finally, we briefly discuss compu-
tational performance.

A. General computational details

To obtain all 9 independent components of the shielding
tensor in general three calculations are needed, one for each
Cartesian direction of the external perturbation in Eq. (16) or
(21). In the direct approach one thus obtains the shielding ten-
sors for all nuclei. In the converse approach this yields the
tensor for one selected nucleus, so calculations need to be re-
peated for each nucleus considered.

NMR experiments do not provide direct access to all 9
components of the shielding tensor. To obtain the NMR ob-
servables one first has to symmetrize the tensor and bring it to
principal axes by diagonalization. Following Mason (Ref. 30)
the isotropic absolute shielding o ,, the span 2 and the skew
k are obtained as

1
Oiso = 5(011 + o2 + 033),

Q =o033 — 011, (52)
_ 3(022 - Uiso)
=g
where the three principal components o ; are ordered such that

o11 < 02 < 033. (53)

This is one of the frequently used definitions of the Chemi-
cal Shielding Anisotropy (CSA) tensor. o, €2, and « can be
obtained from experimental spectra in principle.

Below we only report the valence contribution to the
shielding. In the Coulomb gauge the core contribution is inde-
pendent of the chemical environment.® Wherever we compare
to all-electron results obtained with DALTON the core shield-
ing has been subtracted.’!

In all calculations the GGA-PBE (Generalized Gra-
dient Approximation-Perdew-Burke-Ernzerhof) DFT func-
tional was used,*33 with consistently build PAW data sets.
Table I lists a brief compilation of the most important
parameters.
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TABLE 1. Parameters of the PAW data sets used. r¢ are the cutoff radii for
the partial waves.

rf (a.u.)
Frozen core =0 (=1 =2

H 1.1 1.1

H_GW 0.95 1.1 1.1
C,C_GW 1s2 1.2 1.5

0,0_GW 1s2 1.2 1.52

O_h_GW 1s2 1.0 1.1 1.1
N, N_GW 1s2 1.3 1.5

N_h 1s2 1.1 1.1

F_GW 1s2 1.1 1.4

P 15225%2p® 1.9 1.9

P_d 1s22522p® 1.9 1.9 1.9

B. Convergence issues

Here we focus on the main parameters controlling the
accuracy of the chemical shielding tensor. Following CMLT
we use a water molecule as illustration.®* PAW data sets
practically identical to the standard data sets provided with
VASP were used (named: H_GW, O_GW);* as already em-
phasized these potentials are not norm-conserving and require
charge augmentation on the plane wave grid. Both the H and
the O data set have 2 augmentation channels for £ = 0 and
£ = 1. The H data set has a single £ = 2 augmentation channel
whereas for O the £ = 2 channel provides the local pseudopo-
tential.

The accuracy of the calculated shieldings is not only de-
termined by the size of the plane-wave basis set (via the cut-
off energy E.,), but also by the quality of the PAW data set.
To test this aspect we carried out some calculations with a
(non-standard) harder O data set (see “O_h_GW” in Table I),
constructed with smaller core radii and ¢ = 3 local pseudopo-
tential (unless explicitly stated, the standard O data set was
used).

The data sets were not optimized for shielding
calculations.

1. Plane wave basis set and super-cell convergence

Figure 2 shows how the 'H isotropic shielding depends
on the cutoff energy E., on the plane wave basis set, the
molecular position ¢ in the super-cell and the super-cell size
L (cf. Fig. 3). For the direct approach, the dependencies on
E.y and molecular position ¢ are related. Below we first dis-
cuss the direct approach, and next compare to the converse
approach.

In the direct approach the saw-tooth vector potential
makes a “jump” half-way the cell. To obtain meaningful
shieldings, the Kohn-Sham orbitals should have vanishingly
small amplitude in that region. This is illustrated in Fig. 2(a).
It shows how the shielding for one of the H nuclei in the H,O
molecule changes when it is translated along one of the edges
of the cell. Near r = 0 and r = L we observe a plateau. Here
we obtain a meaningful number for the shielding. In the re-
gion halfway the cell the orbitals sense the jump in the vector

J. Chem. Phys. 139, 014109 (2013)
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FIG. 2. Convergence properties of the direct approach illustrated with 'H
isotropic chemical shielding of a HO molecule. (a) Shieldings as a function
of molecular position (¢ is the distance of the H nucleus from the origin)
for supercells of various sizes L using the direct approach. The molecule is
translated along the (x) edge of the supercell. (b) and (c) Shieldings for a fixed
length cell (L = 12 A) as a function of kinetic energy cutoff for the direct (b)
and converse (c) approach.

FIG. 3. Position of the H,O molecule in the unit cell. It lies in the xy-plane.
The right-hand-side H nucleus is at distance ¢ from the corner of the unit cell
(the gauge origin). Unit cell boundaries are indicated with a black dashed
line. The applied vector potential makes a jump half-way the unit cell at L/2
(dashed-dotted green lines).
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potential and large deviations from the correct shielding oc-
cur. The plateau region, where the correct shielding is ob-
tained, increases linearly with the cell size L.

The plateau in Fig. 2(a) has a small inclination. This is
due to the gauge problem described in Sec. IIT A 2. It is better
illustrated in Fig. 2(b) that shows the cutoff dependence of the
shielding for the molecule that is dragged along the edge of
the cell. The further the H nucleus is from the gauge origin
at t = 0, the larger the deviation from the true value. For a
kinetic energy cutoff of 400 eV the variation of oy, across
the inclined plateau is about 3 ppm, and the error can be as
large as 2 ppm. Increasing the cutoff reduces the inclination.
For an 800 eV cutoff the maximum error is less than 0.1 ppm,
which is sufficiently accurate for practical purposes, even for
H shieldings. For 1200 eV it is of the order of ~0.02 ppm.
As the error is linear in the distance, large molecules might
require a slightly larger cutoff. In practice good accuracy is
easily attained (see the illustration below, Sec. IV E).

In the converse method the need for a discontinuous vec-
tor potential does not emerge, however, Fig. 2(c) shows that
half-way the cell meaningless results are obtained. This is an
artifact of the moment calculation: the range of r in the cal-
culation of the plane-wave moment m;,q in Eq. (50) is from
—L/2 to L/2 (a similar restriction applies to R in the cal-
culation of MY ) so meaningless results are obtained if the
molecule crosses the “boundary” at L/2. Further we note that
the plateaus do not exhibit any inclination. This is because
a gauge problem has been avoided by choosing the origin
for the moment calculation always at the nucleus were my
is placed.

Figure 4 shows the convergence of the isotropic shielding
with increasing plane wave kinetic energy cutoff E.y, with
the relevant nucleus placed at the gauge origin. Both methods

T L B L I N
315 - . hard O PAW, converse ¢ ]
‘ hard O PAW, direct <
‘ @ converse e
g 310L direct O 1
e @ s ]
& o A R R
30.5 - -
F 1 @ 4
H seo00000e @ ?
1 P IR S I | 1 1
T "‘I L L T T
' 170
52 - . -
e |
& \
& L Megeseeeeee
50F @ -
©e@OOOO® @ T
| IR I NI S S ST |
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Ecyt (V)

FIG. 4. Convergence of the hydrogen (top) and oxygen (bottom) chemical
shielding of a water molecule as a function of the kinetic energy cut-off. For
the direct approach the H (O) shielding has been calculated with the H (O)
nucleus at the gauge origin. L = 16 A.
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TABLE II. Oxygen and hydrogen isotropic chemical shielding calculated
with various PAW data sets. Shieldings are extrapolated to infinite cell size
and converged in plane wave basis set (Eqy = 2000 eV). DALTON calcula-
tions in vacuum are with an aug-cc-pCV5Z basis set.

Converse Direct
Augm. o('H) a(170) o('H) a(170)
Standard O No 30.84 49.49 30.84 49.49
Standard O Yes 30.34 49.60 30.34 49.60
Hard O No 31.33 50.37 31.33 50.37
Hard O Yes 30.71 50.48 30.71 50.48
DALTON 30.76 50.58 30.76 50.58

yield identical shieldings, and also exhibit a similar conver-
gence behavior. Only for low cutoff small differences occur.
With standard PAW data sets very good convergence is at-
tained for E; = 800 eV. For this cutoff the plane-wave gauge
problem is only marginal (see above). For practical purposes
even a cutoff of 600eV would be sufficient. This cutoff is
somewhat larger than typically needed for calculation of total
energies, forces, etc.

Figure 4 also shows the plane-wave convergence with the
harder O data set (same data set for H as before). Evidently
convergence is much slower. For oxygen reasonable (not full)
convergence is attained at £, = 800 eV. Hydrogen shield-
ings are well-converged for E.,, = 900 eV. The figure also
shows that the harder O PAW data set yields different (plane-
wave) converged shieldings. Table II compares the converged
shieldings to accurate AE numbers. Depending on whether
two-center corrections are applied (see Sec. IV C for a dis-
cussion), and on the PAW data set quality, hydrogen (oxygen)
shieldings vary over a range of 0.5 (1) ppm. Without two-
center augmentation corrections and using a standard O PAW
data set, the hydrogen shielding agrees very well with the AE
number (from DALTON). This nice agreement is fortuitous, as
two-center corrections decrease the shielding by 0.5 ppm. In-
deed, only with a hard oxygen data set and with two-center
corrections applied, both the H and O shieldings are within
0.1 ppm of the AE numbers.

Another aspect of our supercell approach is the spurious
interaction with periodic images. It is apparent in Fig. 2(a)
where the inclined plateaus do not exactly coincide for dif-
ferent cell sizes. This error is typically small, and arises for
any periodic method. There is no direct chemical interaction
between the molecule and its periodic images. The magnetic
field arising from the induced currents in the periodic images
is felt, however. In leading order it is a dipolar field (or higher,
depending on the molecular geometry and the position of the
nucleus in the molecule). So we expect a scaling of the spuri-
ous contributions to o; with 1/L3 (or higher). This is illus-
trated in Fig. 5, where o, (H) is plotted against 1/L3. For
L > 10 A a perfect scaling is observed. The line is a linear
extrapolation from only the L = 10 and L = 12 A results. So
it is easy to correct for errors arising from the induced cur-
rents in the periodic images. However, often such errors are
small. In the following we typically use cells of 16 A edge
length (1/L? = 2.4 x 10~* A~?) and neglect remaining errors.
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FIG. 5. 'H isotropic chemical shielding of a H,O molecule as a function of
inverse supercell volume using the direct method. The molecular position is
fixed and the kinetic energy cutoff E,; = 2000 eV. L is the supercell size.

Table III shows the dependence on super cell size. Again
we see that both methods yield identical shieldings, for box
sizes sufficiently large that chemical interactions with the im-
ages are absent. Application of a periodic array of moments
(in the converse approach) has the same effect as putting im-
ages of the molecule on the same array in a finite uniform field
(in the direct approach). Also note that the spurious (dipolar)
field from the periodic images is not uniform throughout the
molecule.

2. The linear regime and orbital convergence

Both methods use a finite-field approach. To ensure reli-
able calculated shieldings the response fields should depend
linearly on the applied perturbations. In order to establish the
linear regime for both methods we performed calculations
for a wide range of the strengths of the external field. Fig-
ure 6 shows an overview of these tests for the two sites of
our water test molecule. We plot the difference between the
isotropic shielding for a given perturbation and a fixed refer-
ence value while the strength of the perturbation is varied. The
linear regime is indicated by the plateau (at zero). For both ap-
proaches the linear regime extends over many decades.

The perturbations applied are typically very small. So a
very good convergence of the KS orbitals is mandatory. Here
we pressed convergence to the limit. So the lower bound on
the linear regime is set by inaccuracies of the code, the upper
bound by nonlinearity of the response.

TABLE III. Convergence of oxygen and hydrogen shielding in a water
molecule for the direct and the converse approach as a function of the size
L of the cubic supercell. E¢,e = 1000 eV.

J. Chem. Phys. 139, 014109 (2013)

Converse Direct
L(A) o('H) o('0) o('H) o('70)
8 30.40 49.04 30.42 49.11
12 30.71 49.51 30.71 49.51
16 30.79 49.53 30.78 49.53
20 30.81 49.53 30.81 49.53
24 30.82 49.53 30.82 49.53
DALTON 30.76 50.58 30.76 50.58
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FIG. 6. Dependence of the calculated chemical shift on the strength of the
external field for the two sites of a water molecule: (top) By the direct ap-
proach and (bottom) by the converse approach. All calculations are PBE.
Ecu = 1000eV, L =16 A.

In practice one should choose the size of the perturba-
tion as large as possible, but the response should still be
linear. Thus the number of required iterations is minimized.
Often it is most efficient to start from a well-converged so-
lution that was obtained without any perturbation applied.
No self-consistency in the perturbation is needed, so one just
takes the fixed Kohn-Sham potential and applies the external
moment or field. One should not restart from KS orbitals ob-
tained with a different direction of the external perturbation
as that gives slow convergence. Typically convergence for the
converse approach is a bit faster.

C. Two-center contributions

Two-center contributions to the shieldings were not in-
cluded in previous implementations of GIPAW chemical
shielding.'"'® Here, we explore the effect of two-center con-
tributions using the augmentation schemes of Secs. III A 3
and III B 3. We confirm that the two-center contributions
yield only small corrections to the shielding. For nuclei with
a large chemical shielding range these can safely be ne-
glected. For hydrogen, its nucleus having a small shielding
range (~20 ppm), two-center corrections do matter. They re-
move most remaining discrepancies between GIPAW and all-
electron shieldings. We already saw this illustrated for the
H,0 molecule in Table II.

Table IV presents hydrogen chemical shieldings of var-
ious small molecules containing carbon, nitrogen, or phos-
phorous. We list isotropic shieldings calculated with the two
finite-field methods, both without and with augmentation con-
tributions (current and D;-augmentation for direct and con-
verse, respectively), and calculated using DALTON. For both
methods the augmentation corrections are nearly identical.
In some cases, they significantly contribute to the hydro-
gen chemical shielding. For example, for C,H,, the non-
augmented result is o, = 28.43 ppm whereas DALTON
yields 30.39 ppm. Adding the augmentation contribution
gives i, = 30.41 ppm, nearly equal to the DALTON num-
ber. A similar improvement of almost 2 ppm is observed for
N,H,. Both molecules have a triple C—C bond. For the other
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TABLE IV. Hydrogen shieldings of various small molecules obtained by
the direct and the converse approach with (“Yes”) and without (“No”) aug-
mentation currents. Also shown: shieldings calculated in linear response with
DALTON and VASP (VASP LR). Cubic supercells with 16 (14) A edge length
were used for the VASP finite field (linear response) calculations. Standard
PAW data sets as supplied with VASP were used (for N the “N_h" data set
was used, see Table I).

VASP finite field DALTON®  VASPLR

Direct Converse
Aug. No Yes No Yes No
CHy4 31.03 31.06 31.02 31.05 31.19 31.03
CHy 2843 3041 2843 3041 30.39 28.43
CoHy 2490 2507 2490 25.07 25.20 24.90
C,Hg 30.17  30.17  30.17 30.17 30.36 30.17
CgHg" 2336 2346 2336 2347 23.66 23.33
N,H; 11.69 1344 11.69 1344 13.69 11.69
NH3 31.33  31.14 31.33 31.14 31.27 31.33
P (std)
PH; 29.67 29.69 29.67 29.68 29.31 29.62
P d
PH3 29.66  29.25  29.67 29.25 29.31 29.62
PoH4(1)¢ 29.00 28.60 29.00 28.61 28.79 29.00
PoH4(2)¢ 2797 2758 2797 27.58 27.78 27.97

“aug-cc-pCVSZ but aug-cc-pCVQZ for phosphorous.
®18 A box for finite field and 17 A box for VASP LR.
¢ All VASP calculations with 14 A box.

hydrocarbons and NHj3 the two-center effects are smaller. Hy-
drocarbons with only single bonds have negligible two-center
corrections, those with double and aromatic bonds exhibit
small corrections (~0.2 ppm).

For the systems containing phosphorous we used two dif-
ferent PAW data sets. The less accurate, standard P data set
shows hardly any two-center corrections. The P_d data set
is more accurate: it has explicit d-channel orbital reconstruc-
tion (r. = 1.9 a.u. for all channels, the f~channel is the local
pseudopotential). For the latter the two-center corrections are
small but noticeable (~0.4 ppm). Evidently, the augmentation
correction derives from the d-channel. Indeed, also core radii
and augmentation charge densities affect such corrections.

Table V shows the impact of the augmentation correction
on 2 and « for the hydrocarbons. Augmentation improves the
agreement with the DALTON numbers for most molecules. We
attribute remaining discrepancies to the in-completeness of

TABLE V. Hydrogen anisotropic parameters €2 and « of different hydrocar-
bon molecules obtained by the direct approach with and without augmenta-
tion current compared to DALTON results. All calculations are GGA-PBE.

VASP direct, finite field

No aug. Current aug. DALTON?
Q K Q K Q K
CH4 9.06 1.000 8.60 1.000 9.21 1.000
CoHy 17.48 1.000 14.52 1.000 15.49 1.000
CoHy 7.10 —0.114 5.80 —-0.129 5.62 —0.035
CyHs 10.47 0.385 10.10 0.394 10.69 0.416

4Linear response, aug-cc-pCV5Z.
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FIG. 7. Induced pseudo current density in a CoH; molecule calculated with
the direct method. The molecule is on the x-axis. The applied field is in the
positive y direction. The current density is represented by arrows on the plane-
wave grid in the xz plane. Pseudo-current (a) without and (b) with current
augmentation. Circles represent the PAW sphere radii, which are 1.5 a.u. and
1.1 a.u. for carbon and hydrogen, respectively.

the projectors in the PAW methods but cannot entirely exclude
issues with the Gaussian basis sets, too.

Finally, we return to the C,H, system, where the aug-
mentation corrections are large. Figure 7 shows current den-
sity plots obtained with the direct method for this extreme
case. The top (lower) panel shows the total pseudo-current
without (with) the augmentation. The bare plane wave (i.e.,
without augmentation) current pattern shows strong currents
in the region of the triple bond, but not at C—H bonds. The
augmentation currents show an inverted picture, with strong
currents in the region of the C—H bonds and weak currents
in the region in-between the carbon atoms. The sum, shown
in the lower panel, then exhibits neat circular currents going
round both carbon nuclei. So both the yy and zz components of
the shielding (in the axes of the figure) are strongly affected.
The xx component is not affected.

D. Small molecules

In this section, we present a validation of the implemen-
tation of the two finite-field GIPAW approaches using small
molecules. We present only calculations on phosphorous-
containing molecules,*® as the shielding of this nucleus is
known to be poorly (insufficiently) reproduced in a pseudo-
potential plane-wave approach, i.e., a GIPAW reconstruction
of the KS orbitals is known to be crucial.” !0 Indeed, for light
elements a pseudo-potential-only approach can give satisfac-
tory results.*

In Table VI, the results of both finite-field approaches are
compared to shieldings obtained with LR methods as imple-
mented in the plane wave codes (i) VASP and (ii) QUANTUM-
ESPRESSO, and (iii) in the all-electron code DALTON. Both
(i) and (ii) are crystal methods, according to Refs. 10 and 7,
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TABLE VI. Absolute isotropic phosphorous chemical shifts for several
molecules calculated with the two finite-field (FF) approaches. Linear-
response (LR) results obtained with VASP, QUANTUM-ESPRESSO(QE)
and DALTON are presented for comparison. All calculations are GGA-PBE.
A P_d data set was used for VASP (E¢, = 1000 eV). No PAW D;; and cur-
rent augmentation were applied. The core contribution of 908.9 ppm has been
removed from QUANTUM-ESPRESSO and DALTON results.

VASP FF VASP QE? DALTON®
Converse Direct LR LR LR

Py 4334 43.40 43.58 47.74 47.33
PH; 331.29 331.29 331.34 331.43 332.15
P,H, 389.28 389.28 389.34 389.22 388.56
H3PO4 627.90 628.10 627.98 623.17 623.71
PF3 758.13 758.13 758.16 750.88 753.08
P, 1225.77 1225.77 1225.61 1227.52 1210.26
MAE® 5.05 5.08 5.01 3.63 0.0

100 Ry, cubic box of 16 A, NC GIPAW potential.
baug-cc-pCVQZ.
¢Mean absolute error compared to DALTON.

respectively. Again, both finite-field approaches yield almost
identical numbers that are also very similar to the VASP linear
response results. Indeed, all those results have been obtained
with identical PAW data sets (except the QE results). On av-
erage VASP and QE do an equally good job in reproducing
the all-electron DALTON shieldings. VASP and QE results are
somewhat different, showing the dependence on the PAW data
sets (standard, non-norm-conserving P_d data set for VASP,
and a norm-conserving data set for QE).

We would like to emphasize the fact that whereas the
two finite-field approaches give identical results for the total
shielding, they exhibit a very different behavior if one con-
siders the various contributions to the shielding tensor. Ta-
ble VII shows the partitioning into the two main contribu-
tions: the plane-wave (PW) and the one-center contributions.
In the direct approach, the main contribution is given by the
one-center terms. This is consistent with previous findings by
Pickard and Mauri.” However, for the converse approach the
behavior is radically different: the main contribution is given

TABLE VII. Partitioning of phosphorous chemical shifts into plane-wave
(PW) and one-center terms for the finite-field (FF) direct and converse ap-
proach. All calculations are GGA-PBE.

Molecule PW One-center Total
FF Converse (VASP)
Py 38.73 4.60 43.33
PH3 402.46 —71.17 331.29
P,Hy 455.82 —66.54 389.28
H3;POy 566.15 61.75 627.90
PF3 710.92 47.22 758.13
Py 1289.62 —63.85 1225.77
FF Direct (VASP)

P4 —62.97 106.37 43.40
PH; —27.28 358.56 331.29
PoHy —20.08 409.36 389.28
H3POy4 31.99 596.10 628.10
PF; 31.33 726.81 758.13
Py 46.39 1179.38 1225.77

J. Chem. Phys. 139, 014109 (2013)

FIG. 8. Venlafaxine molecule, containing oxygen (red), carbon (grey), nitro-
gen (blue), and hydrogen (white) atoms. Saturated ring: 1-2a-3a-4-3b-2b-1
and aromatic ring: 8-9a-10a-11-10b-9b-8. Figure made with Jmol.*

by the plane-wave term. Indeed, for a rough indication of the
shielding one can neglect the one-center contributions.

E. Large molecules: Venlafaxine

Here we illustrate the feasibility of the approach for a
relatively large molecule. We use a single venlafaxine (free
base) molecule, C170,NH;7. We study the gas phase shield-
ings, with the molecule frozen in its crystal conformation.?’
It contains a six-membered aromatic carbon ring, a saturated
carbon ring, and several smaller groups (Fig. 8). It is put into
a repeated cubic box of 15 x 15 x 15 A3, Thus the periodic
images are separated by vacuum regions of at least 5.7 A in
all three directions.

We calculate the shieldings using the direct and con-
verse approaches without and with augmentation (current and
Djj-augmentation, respectively). For reference we compare
with linear response calculations using the (crystal) GIPAW
method of YPM (Ref. 10) with both VASP and QUANTUM-
ESPRESSO, and the molecular GIAO linear response of
DALTON. In our VASP calculations we used standard PAW
data sets, as supplied with the package (data sets named:
0O, H, N, C). For QUANTUM-ESPRESSO we used norm-
conserving data sets. All VASP calculations employed a ki-
netic energy cutoff of 900 eV. In the direct and converse
molecular finite-field calculations we used I'-point sampling
only.

Figure 9 summarizes the main results. Panels [(a) and (b),
(d) and (e)] show that both molecular approaches yield re-
sults that are identical to the YPM linear response (VASP im-
plementation). This demonstrates the internal consistency of
the VASP results. We also find very good agreement with the
QUANTUM-ESPRESSO results [panels (c) and (f)]. There
are some small differences that we attribute to differences in
the PAW data sets.

The effect of current and Dj-augmentation is quite small.
For C, N, and O it can be safely neglected (not shown). For
H the effect is also small, but as its shift has a very small
range, it can be important nevertheless (see above). Panels (d)
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FIG. 9. Calculated shieldings for the venlafaxine free base molecule. Ab-
scissa: isotropic shieldings calculated with linear response (LR) and VASP
(no augmentation corrections). Ordinate: isotropic shieldings calculated with
the direct molecular method [(a) and (d)], with the converse molecular meth-
ods [(b) and (e)] and with QUANTUM-ESPRESSO using linear response [(c)
and (f)]. Hydrogen shieldings calculated with the molecular methods are with
(red diamonds) and without (black solid circles) augmentation corrections.
All shieldings are absolute (valence only).

and (e) demonstrate that also for this molecule the augmen-
tations have small, noticeable effects (diamonds). The current
(direct) and Dj;;-augmentation (converse) again yield identical
corrections. Note that the corrections depend on the PAW data
set.

Figure 10 shows the convergence with the kinetic energy
cutoff on the KS orbitals (for the direct method). For the C, N,
and O shieldings, good results are still obtained with a 600 eV
cutoff, but even a cutoff as low as 400 eV could be used
as the deviations are just a few ppm and to a large extent
just linearly dependent on the oy, For the hydrogen shield-
ings, their small range requires higher accuracy, so a cutoff of
400 eV is insufficient. The dependence of the isotropic shield-
ing on cutoff is generally stronger for nuclei that are located
at larger distance from the origin. This is a manifestation of
the gauge problem discussed in Sec. III A 2. This error is only
dominant, i.e., noticeable for the H shieldings.

For optimal computational speed, all calculations of the
shieldings can be started from well-converged KS orbitals and
corresponding Kohn-Sham potential as obtained without any
moment or field applied. For the converse method, the optimal
setting is an external moment of 100 ug, and 10 iterations®

J. Chem. Phys. 139, 014109 (2013)
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FIG. 10. Cutoff dependence of shieldings for the venlafaxine molecule us-
ing the direct (molecular) method. Abscissa: isotropic shieldings calculated
with 900 eV kinetic energy cutoff. Ordinate: isotropic shieldings calculated
with 400, 600, and 750 eV cutoffs (see legend). All shieldings are absolute
(valence only).

per nucleus per direction. At a 900 eV cutoff, then for each
nucleus it takes ~17 min to converge the shielding tensor on
a single Intel Xeon L5520 processor (using 8 cores). With
these settings carbon and hydrogen shieldings are converged
better than 0.01 ppm, and O and H better than 0.1 ppm. For
the direct method attaining convergence requires a bit more
effort in general. For an external field of 100 x 107¢ ;p/A3,
10 iterations are sufficient to obtain a convergence better than
0.01 ppm for H and of ~0.1 ppm for C, O, and N.

For completeness Table VIII compares to available
experiment.*’ Only C shieldings of the solid state system
have been measured. Although our molecule is in vacuum,
it still has the conformation of the molecules in the crystalline

TABLE VIII. Carbon isotropic shieldings of venlafaxine free base. Linear
response (LR) and converse VASP results were obtained with 900 eV kinetic
energy cutoff. QE denotes QUANTUM-ESPRESSO. All columns are refer-
enced to their average. The bottom line reports the mean absolute deviation
from experiment.

Expt.® LR LR Converse QE

Aug. No No No Yes No
Geom.  Cryst. Cryst. Mol. Mol. Mol. Mol.

8 —-60.0 —6088 —6145 —6144 —62.01 —62.58
9b —56.1 —5646 —5466 —54.65 —5500 —5549
10b —448 —4506 —43.44 —4343 —4380 —4421
11 —-853 —8630 —87.18 —87.17 —87.83 —88.36
10a —348 —-3276 —31.87 —31.86 —3195 —3244
9a —-585 —59.71 -60.08 —60.08 —6046 —60.95
5 22.0 21.36 19.64 19.65 19.62 19.63
4 —-12 —4.46 —2.96 —2.96 —3.21 —2.44
3b 36.7 37.71 35.10 35.12 35.43 35.49
2b 51.1 52.24 52.97 52.98 53.44 53.65
1 46.1 46.74 47.25 47.26 47.65 47.89
2a 51.6 51.74 53.27 53.28 53.61 53.92
3a 42.8 45.12 44.51 44.52 44.80 4491
6 11.6 11.66 9.35 9.35 9.38 9.49
7b 30.7 32.20 32.30 32.31 32.42 32.82
Ta 26.5 26.53 26.78 26.73 27.05 27.33
12 20.8 20.33 20.47 20.40 20.88 21.34
MAE 0.0 1.0 1.6 1.6 1.7 1.8

2Reference 40.
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FIG. 11. Absolute isotropic hydrogen shieldings for the venlafaxine
molecule. Abscissa: VASP isotropic shieldings calculated with 900 eV ki-
netic energy cutoff. Ordinate: GIAO aug-cc-pCVTZ isotropic shieldings cal-
culated with DALTON. VASP shieldings have been extrapolated to infinite
cell size (0.8 ppm correction). Blue dot: VASP shielding with hard O PAW
data set.

polymorph 1. In order to enable a comparison, we reference
the experimental and the various calculated C shieldings to
their average (i.e., all columns in the table have average 0).
For a linear response calculation on the full crystal geometry,
the mean-average-error compared to experiment is 1.0 ppm.
For calculations on the molecule in vacuum it increases to
1.6 ppm. Indeed, from the table it is evident that deviations
between both geometries are small throughout and that agree-
ment with experiment is very good, i.e., allowing to clearly as-
sign the shieldings to the correct nuclei. A possible exception
are C 2a/2b that have nearly degenerate shieldings. The a/b
assignments are based on theory only. All other assignments
could be made in Ref. 40. The augmentation corrections do
not improve agreement with experiment here. However, they
are negligible anyway for C.

The importance of augmentation corrections is again ev-
ident for the hydrogen shieldings. In Fig. 11 the GIPAW
isotropic shieldings are compared to quantum-chemical
GIAO results obtained with DALTON and an aug-cc-pCVTZ
basis set. Without augmentation applied, there is some scat-
ter (left panel). The scatter is largely removed when the two-
center augmentation corrections are included (right panel);
the data points are on a nearly straight line, except for a single
point at the lower end of the shielding range. This point per-
tains to a hydrogen bonded to oxygen. All the other hydrogens
are bonded to carbon. For this single hydrogen, the two-center
corrections are particularly large. The situation resembles the
H,O test from Sec. IV B, where a fortuitous agreement disap-
pears when augmentation is applied. Using the hard oxygen
data set of Sec. IV B improves the results also here (blue dot).
The difference in shifts for this point is reduced to 0.2 ppm.
Further improvement might result from an optimized PAW
O data set or a more complete quantum-chemical basis set.
However, calculations at the aug-cc-pCVQZ level for this
molecule are already very demanding.

V. CONCLUSION

We present two simple finite-field implementations
for the calculation of chemical shieldings specifically for

J. Chem. Phys. 139, 014109 (2013)

molecules using a periodic supercell approach and a plane-
wave basis set in first-principles DFT. One is a direct method,
mimicking to a large extend the actual NMR experiment, the
other is of the novel class of converse methods. Both ap-
proaches have a GIPAW reconstruction of the shape of the KS
valence orbitals in the region near the core to obtain good ac-
curacy. The direct approach is conceptually very simple, and
relies on the application of a saw-tooth shaped field.

We have discussed (gauge related) basis-set
(in)completeness and finite size effects. The implementation
was validated using several (small and large) molecules,
containing also a “difficult” nucleus such as phosphorous.
Particular emphasis was put on hydrogen shieldings, as these
are relatively more sensitive to small errors.

We go beyond previous GIPAW implementations in
two respects: (a) We include two-center contributions to the
shieldings. For hydrogen this noticeably improves the accu-
racy. (b) The converse GIPAW approach is generalized to non-
norm-conserving PAW.

The simplicity of, in particular, the direct approach makes
it easy to implement in any PAW plane wave code. As a linear
response calculation is avoided, it should be easier to gener-
alize to post-DFT methods in principle (also an advantage of
any converse method, see Ref. 18).

Although the converse approach is more demanding on
computational resources in principle, as calculations need to
be repeated for each nucleus, we expect it to be useful anyway.
It is a bit more robust in convergence and can have a mini-
mal E. (no gauge problems). For zooming-in on a specific
part of a large molecule (e.g., near an active site) it could be
the method of choice. Otherwise the direct method is prefer-
able. Both are less-involved than a full-scale GIPAW linear
response calculation.
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been optimized at the PBE level.

3Jmol: an open-source Java viewer for chemical structures in 3D, see
http://www.jmol.org/.
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