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We study the fluctuation properties of a one-dimensional many-body quantum system composed of

interacting bosons and investigate the regimes where quantum noise or, respectively, thermal excitations

are dominant. For the latter, we develop a semiclassical description of the fluctuation properties based on

the Ornstein-Uhlenbeck stochastic process. As an illustration, we analyze the phase correlation functions

and the full statistical distributions of the interference between two one-dimensional systems, either

independent or tunnel-coupled, and compare with the Luttinger-liquid theory.
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Measurement of fluctuations and their correlations
yields important information on regimes and phases of
many-body quantum systems [1]. In ultracold atomic sys-
tems, these correlations revealed the Mott insulator phase
of bosonic [2] and fermionic [3] atoms in optical lattices,
and they allowed detection of correlated atom pairs in
spontaneous four-wave mixing of two colliding Bose-
Einstein condensates [4] and Hanbury-Brown–Twiss cor-
relation for nondegenerate metastable 3He and 4He atoms
[5] and in atom lasers [6]. Furthermore, they have allowed
studies of dephasing [7] and have been employed as noise
thermometers [8,9].

A key question in the physics of many-body quantum
systems at finite temperature is how many of the observed
fluctuations and their correlations are fundamentally quan-
tum and which are caused by the thermal excitations in the
system. In the present Letter, we address this problem
starting from a description of the excitations in the system
and their occupation numbers. This allows us to directly
explore the contributions of quantum (ground state) noise
and thermal excitations.

We consider a quantum degenerate spin-polarized gas of
bosonic atoms in an extremely anisotropic trap, with trans-
versal confinement frequency !? much larger than the
longitudinal confinement frequency !k (typically

!?=!k > 1000). If both the temperature T and the

mean-field interaction energy per atom are small compared
to the radial confinement (kBT � @!?, n1Das � 1, where
n1D is the linear atom-number density and as is the atomic
s-wave scattering length), the atomic motion is confined to
the radial ground state of the trapping potential. In this 1D
regime a ‘‘quasicondensate’’ emerges, which can be char-
acterized by a macroscopic wave function with a fluctuat-
ing phase [10–12].

The statistical properties of the fluctuating phase are the
focus of this study. They can be probed by interfering two
identically prepared 1D systems by creating quasiconden-
sates in two parallel, identical traps [13]. When released

they expand freely, overlap, and interfere. The local phase
of the interference reflects the fluctuating relative phase
�ðzÞ of the quasicondensates. The fluctuations in �ðzÞ
manifest themselves in the phase correlation function
C�ðz� z0Þ ¼ hexp½i�ðzÞ � i�ðz0Þ�i. The full distribution
function of the interference contrast has been derived in
Refs. [14,15].
In our investigation we consider the general case of two

1D quasicondensates which can be tunnel coupled to each
other, described by the effective Hamiltonian [16]

Ĥ ¼
Z

dz

�X2
j¼1

½ĉ y
j ðzÞT̂ ĉ jðzÞ þ g

2
ĉ y2

j ðzÞĉ 2
j ðzÞ�

� @J½ĉ y
1 ðzÞĉ 2ðzÞ þ ĉ y

2 ðzÞĉ 1ðzÞ�
�
: (1)

Here @J is the tunnel-coupling matrix element, T̂ ¼
�½@2=ð2mÞ�@2=@z2 � ~� with the chemical potential ~� ¼
gn1D � @J, and g ¼ 2@!?as is the atomic 1D interaction
strength in the limit n1Das � 1 [17].
We study this system based on the description of the

quasicondensate properties by a spectrum of Bogoliubov-
type modes [18], which are free-particle-like in the
short-wavelength limit and phononlike in the long-
wavelength limit [19]. We model the ‘‘experimental’’
realizations of the atomic quasicondensate fields by
implementing a numerical scheme for generating the
initial conditions in the truncated Wigner representation

[20,21] and represent their wave functions as c jðzÞ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1Dþ�njðzÞ

q
exp½i�jðzÞ�, j ¼ 1; 2, where �j and �nj

are the local phase and density fluctuations, respectively.
We decompose these fluctuations into waves correspond-
ing to elementary excitations of two coupled quasiconden-
sates by means of an extension of the approach by Mora
and Castin [18] as developed by Whitlock and Bouchoule
[16]. The amplitudes and node positions of these waves are
chosen randomly, assuming the Bose-Einstein statistics of
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the elementary excitations. In particular, the relative phase
�ðzÞ � �1ðzÞ ��2ðzÞ is modeled as

�ðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðn1DLmaxÞ

q X
k�0

½ð�k þ 2gn1DÞ=�k�1=4

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bkj ln�kj

q
sinðkzþ 2��0

kÞ; (2)

where �k and �0
k are random numbers (obtained by a

pseudorandom number generator) uniformly distributed
between 0 and 1, �k ¼ ð@kÞ2=ð2mÞ þ 2@J, and the sum-
mation is taken over the discrete spectrum of wave vectors
k equal to (both positive and negative) multiples of
2�=Lmax [19]. A similar expansion holds for the density
fluctuations. The explicit dependence of the wave ampli-
tude on the random numbers �k reflects the statistics of the
occupation numbers of the elementary-excitation modes.
To include both thermal and quantum fluctuations (zero-
point oscillations of the atomic field):

B k ¼ 2�1 coth½"k=ð2kBTÞ�; (3)

where "k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�kð�k þ 2gn1DÞ

p
is the energy of the elemen-

tary excitation. We refer to the use of Eq. (3) as the ‘‘full
Bogoliubov approach.’’ Alternatively, if we choose to ne-
glect the quantum fluctuations:

B k � kBT="k: (4)

We first analyze the full Bogoliubov approach and cal-
culate the full distribution function of the contrast follow-
ing Refs. [14,15]: The interference pattern integrated over
a sampling length L is characterized by the complex am-

plitude operator ÂðLÞ [22]. Each experimental run yields
probabilistically a complex value AðLÞ. The expectation

value hÂðLÞi is zero, but hÂðLÞyÂðLÞi � hjAðLÞj2i is not. It
is convenient to study the statistical distribution Wð�Þ,
where � � jAðLÞj2=hjAðLÞj2i is the square of the absolute
value of the integrated contrast scaled to its mean.

By using Eq. (3), we generated integrated contrast dis-
tributions for a wide range of parameters. In Fig. 1, we
displayWð�Þ as a function of the sampling length, both for
zero and for nonzero coupling. The calculations have been
done for Lmax ¼ 100 �m and 60 modes taken into account
(increasing the number of modes to 120 does not change
the results significantly).

In the special case of zero tunnel coupling between the
condensates (J ¼ 0), statistical independence of fluctua-
tions in each quasicondensate allows one to separate cor-
relations:

hjAðLÞj2i ¼
Z L

0
dz

Z L

0
dz0hĉ y

1 ðzÞĉ 1ðz0Þihĉ y
2 ðz0Þĉ 2ðzÞi;

and a general formula for the computation of all the mo-
ments of Wð�Þ can be found from the Luttinger-liquid
formalism [14,15]. The stochastic properties of Wð�Þ are
then determined by a single dimensionless parameter 	TL,
where 	T ¼ mkBT=ð@2n1DÞ is the inverse thermal coher-

ence length and m is the mass of the atom. For 87Rb, 	T �
1:815 �m�1ðT=100 nKÞð10 �m�1=n1DÞ. There is very
good agreement between the full Bogoliubov calculations
and the Luttinger-liquid formalism, and one observes
[Fig. 1(a) and 1(b)] the characteristic change between a
Gumbel-like distribution to an exponential distribution as
the ratio of the averaging length to the characteristic phase-
coherence length grows [9].
If J � 0 and is large enough (i.e., J � 2�� 1 Hz for the

typical experimental range of n1D, T, and L), we observe a
different picture: The distribution Wð�Þ stabilizes at some
peaked shape and preserves this shape as L grows further
[Fig. 1(c) and 1(d)]. This is characteristic for the phase
locking between the two matter waves. Since the Luttinger-
liquid approach [14,15] is based on the assumption of
statistical independence of fluctuations in the two quasi-
condensates, it cannot easily be extended to the tunnel-
coupled systems described by Eq. (1).
We can now study the effect of quantum fluctuation by

using Eq. (4) instead of Eq. (3). For weakly interacting 1D
systems, the differences are small (Fig. 2).
This observation suggests a simple semiclassical de-

scription of the noise properties at distances longer than
the healing length 
h ¼ K=ð�n1DÞ [Luttinger parameter

K ¼ �@
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1D=ðmgÞp

], where density fluctuations are sup-
pressed and the main contribution to noise comes from
fluctuations of the relative phase �ðzÞ. For thermal excita-
tions, the fluctuations of �ðzÞ are Gaussian, and their
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FIG. 1 (color online). Interference contrast distribution Wð�Þ
of a 87Rb quasicondensate with n1D ¼ 59 �m�1 and !? ¼
2�� 3 kHz as a function of the sampling length L for
(a) T ¼ 31 nK, J ¼ 0, (b) T ¼ 60 nK, J ¼ 0, (c) T ¼ 60 nK,
J ¼ 2�� 1 Hz, and (d) T ¼ 60 nK, J ¼ 2�� 3 Hz. Lines
represent the results of the full Bogoliubov modeling for L ¼
10 (red), 24 (green), 37 (blue), and 51 �m (black). Symbols
(circles, squares, diamonds, and up triangles) of the respective
colors show the results of the Luttinger-liquid approach [9] for
the same values of L and J ¼ 0.
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autocorrelation function is [16]

h�ðzÞ�ðz0Þi ¼ 	TlJ expð�jz� z0j=lJÞ; (5)

with lJ ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=ðmJÞp

. For 87Rb, lJ � 5:367 �m
ffiffiffiffiffiffiffiffiffiffi
J1=J

p
,

where J1 � 2�� 1 Hz. Equation (5) is valid under the
following assumptions: (i) We can neglect atom shot noise
[23], (ii) the density fluctuations are suppressed, and
(iii) quantum fluctuations of the phase can be neglected,
and the mean occupation number for the given mode is
taken in the classical (Boltzmannian) limit Eq. (4). The
relative phase evolution along z can be described by an
Ornstein-Uhlenbeck stochastic process [24], where the
coordinate z plays the role of time:

d

dz
�ðzÞ ¼ � 1

lJ
�ðzÞ þ fðzÞ: (6)

Here fðzÞ is the random force with the properties hfðzÞi ¼
0, hfðz1Þfðz2Þi ¼ 2	T�ðz1 � z2Þ, and l�1

J plays the role of
the friction coefficient. The local variance of the relative
phase should not depend on z, and the initial value �ðz0Þ is
distributed according to a Gaussian with zero mean and
variance h�2ðz0Þi ¼ 	TlJ, i.e., the stationary distribution
following from Eq. (6).

This leads to a very simple and efficient way to calculate
the fluctuation properties. We propagate �ðzÞ from z ¼ 0 to
z ¼ L by using an exact updating formula for Eq. (6) [25]
and compute for each run the complex phase [26]. A
statistical analysis of the full distribution function of �
on the ensemble of runs shows a very good agreement
between the Bogoliubov simulations and the stochastic
process modeling (Fig. 2).

For which parameters and observables are the funda-
mental quantum fluctuations in 1D systems observable?

We first analyze the modification of the full distribution
function Wð�Þ. The contribution of quantum noise will
be detectable in Wð�Þ at very low temperatures kBT �
� and short length scales L � 10 �m (Fig. 3). It can be
quantified by the ratio Rs ¼ hð�� 1Þsith=hð�� 1Þsiq,

where the averages h. . .iq and h. . .ith are obtained by either

the full Bogoliubov approach including quantum fluctua-
tions [Eq. (3)] or considering only thermal fluctuations
[Eq. (4)], respectively [Fig. 3(b) and 3(c)]. If the quantum
noise is negligible, then Rs ¼ 1.
We can quantify the relative contribution of thermal and

quantum noise by examining the phase correlation function
C�ðz� z0Þ ¼ hexpfi½�ðzÞ � �ðz0Þ�gi � exp½�Aðjz� z0jÞ�.
The functionA that governs the decay of correlations can
be represented as a sum of the quantum (q) and thermal (th)
parts: A ¼ Aq þAth. In the case of uncoupled quasi-

condensates (J ¼ 0), both have the same dependence on
the Luttinger parameter; they are proportional to K�1.
Consequently, KAq and KAth are universal functions,
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FIG. 2 (color online). Interference contrast distribution Wð�Þ
for (a) kTlJ ! 1 and (b) kTlJ ¼ 1:0. Solid lines display the
results of the Ornstein-Uhlenbeck stochastic process modeling
for kTL ¼ 1:85 (red) and 4.43 (black). Results of the full
Bogoliubov [Eq. (3)] simulations and Bogoliubov simulations
without quantum noise [Eq. (4)] are shown by triangles and
circles, respectively.
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FIG. 3 (color online). (a) Interference contrast distribution
Wð�Þ for 87Rb atoms, n1D ¼ 60 �m�1, J ¼ 0, and L ¼
10 �m calculated for both thermal and quantum fluctuations
(solid line) and thermal fluctuations only (dashed line) for two
different parameter sets: T ¼ 10 nK, !? ¼ 2�� 3 kHz (I, red)
and T ¼ 40 nK, !? ¼ 2�� 60 kHz (II, blue). The inset shows
the temperature dependence of jCj2 � hjAðLÞj2i=L2 (the average
square of the dimensionless coherence factor) for the respective
cases. (b) Ratio of the centered sth order momenta Rs for s ¼ 2
(solid line), s ¼ 3 (dashed line; hardly distinguishable from s ¼
2 in case I), and s ¼ 4 (dot-dashed line) as a function of
temperature for two parameter sets at L ¼ 10 �m. Quantum
fluctuations manifest themselves in Rs < 1. (c) The same as in
(b) but for L ¼ 20 �m. The effects of atomic shot noise on
hjAðLÞj2i and Wð�Þ are not taken into account.
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depending on kBT=ðgn1DÞ and jz� z0j=
h only. In Fig. 4,
we plot these functions.

Analyzing both contributions Ath;q to C� we find: At

small distances, @Ath=@jz� z0j ! 0; for distances
jz� z0j * 
hgn1D=ðkBTÞ, we recover the linear asymp-
totics Ath � 	Tjz� z0j. In contrast, Aq is linear in

jz� z0j up to the healing length 
h; for larger distances
we obtain the asymptotics Aq � 1

K ln½8jz� z0j=ð�
hÞ�,
i.e., C� / jz� z0j�1=K.

Consequently, thermal fluctuations become dominant at
jz� z0j * 
hgn1D=ðkBTÞ ¼ �=ð	TKÞ. These estimations
of the relative contribution of the quantum noise are also
valid for coupled systems with lJ � �=ð	TKÞ.

In conclusion, we have studied the fluctuation properties
in samples of interacting quantum degenerate 1D bosons.
In contrast to previous work [9,14,15], our approach allows
us also to investigate also tunnel-coupled, phase-locked 1D
systems and provides a clear distinction between contribu-
tions of fundamental quantum noise and thermal excita-
tions. In addition, we show that on length scales
jzj * �=ð	TKÞ, where the fluctuations are dominated by
thermal excitations, these systems can be described to a
very good approximation by a simple semiclassical model
based on the spatial evolution of the relative phase accord-
ing to an Ornstein-Uhlenbeck stochastic process with
Gaussian phase fluctuations. We expect that one can find
similar semiclassical models for many other quantum de-
generate systems at finite temperature, such as 1D spinor
systems [27].

This work was supported by the Austrian Ministry of
Science via its grant for the WPI, by the WWTF (Viennese
Science Fund, Project No. MA-45), and by the FWF
(Projects No. Z118-N16 and No. M1016-N16).

[1] E. Altman, E. Demler, and M.D. Lukin, Phys. Rev. A 70,
013603 (2004).
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[22] ÂðLÞ, assuming ballistic expansion, can be expressed via

the original atom-field annihilation operators ĉ j in the
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ÂðLÞ ¼ R

L
0 dzĉ
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FIG. 4 (color online). The universal (dimensionless) functions
KAth and KAq as a function of distance (in units of healing

length) for uncoupled quasicondensates. Thin solid line:
Contribution of the quantum noise; dashed line: its logarithmic
asymptotics. Thick lines: Contributions of the thermal noise; the
curves are labeled by the respective values of kBT=ðgn1DÞ ¼ 1,
0.3, 0.1, and 0.05.
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