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Self-consistent Green function equations and the hierarchy of approximations
for the four-point propagator
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The equation of motion for the Green function is combined with the Bethe-Salpeter equation for the scattering
amplitude yielding a concise and formally closed system of three equations that encapsulates the essence of Green
function theory. Two of the three equations formally resemble a Dyson-like relation. We prove that this formally
simple set is exactly equivalent to Hedin’s equations. Our derivation therefore constitutes an alternative to Hedin’s
derivation which is based on functional derivatives. Furthermore, we briefly discuss how approximations can be
introduced as a hierarchy of approximations to the four-point Green function.
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I. INTRODUCTION

Many-body Green function theory is a widespread method
in ab initio electronic structure theory. Conceptually, Green
function theory results from the application of quantum-field-
theoretical methods to the electronic many-body problem.1

The Green functions form an infinite hierarchy but already
the simplest Green function, the two-point Green function,
allows for the calculation of all expectation values of one-
particle operators, of the total ground-state energy, and of
the excitation spectrum.2 From a practical point of view, the
main problem with the Green function approach lies in the
impossibility of writing down a closed, tractable equation
allowing for the determination of the Green function. In
practice, Green function perturbation theory is a standard
approach.2,3 Even superior to simple perturbation theory are
self-consistent diagrammatic methods that are capable of
summing infinitely many subsets of Feynman diagrams. For
these, for the past 40 years or so, the universal starting point
has been Hedin’s set of equations.4,5 For Hedin’s equations a
number of approximation schemes have been developed as, for
example, the widespread GW approximation.6–8 The imple-
mentation of such approximations9–13 makes the Green func-
tion theory a well-established practice in electronic structure
theory.14

The main purpose of this paper is to derive a self-consistent
set of equations for the Green function starting directly
from the equation-of-motion (EOM) theory and combining
it with the Bethe-Salpeter equation (BSE). We begin with
a short review of the equation-of-motion theory and Green
function approach including its connection to the Hartree-Fock
approximation. We then shortly review Hedin’s equations and
the Bethe-Salpeter equation. The central results of the paper
are stated in Eqs. (32)–(34). As emphasized before, they are
derived directly from the EOM and the BSE, without further
approximations, and are in fact not much more than a recast
of those equations. As a matter of fact, these equations can
be derived also starting either from Hedin’s equations4,5 or
from Baym and Kadanoff’s work,15,16 but this rather clouds
their underlying physical principle. In fact, we found it
more convenient to rederive Hedin’s equations from the three
equations.

II. OVERVIEW

A. Green function theory

Ultimately, the goal of many-body physics is to extract
information about a system described by a Hamiltonian Ĥ =
Ĥ0 + V̂ acting on a many-body Hilbert space HN = ∧NH.
States in such a Hilbert space are antisymmetrized functions
of N (compound) variables, say (xσ ). This makes any direct
approach through the Schrödinger equation ih̄∂t� = Ĥ�

completely intractable for realistic N . Within the Green func-
tion approach, this problem is overcome by the introduction
of the two-point propagator

ih̄G(xt,x′t ′) = 〈�0|T ψ̂(xt)ψ̂†(x′t ′)|�0〉, (1)

where �0 denotes the N -particle ground state of Ĥ (supposed
to be nondegenerate). Explicit spin indices have been omitted.
The spin can always be reinstalled by reinterpreting x as a
compound variable consisting of position and spin. Although
G is a function (actually a distribution) of only two arguments,
no matter how big N is it suffices to evaluate all one-particle
operators, the total ground-state energy through the Galitskii-
Migdal formula, and the quasiparticle excitation spectrum
through the Lehmann representation. The drawback, however,
is that it is far from obvious how G can be calculated. Here,
two seemingly different Ansätze come into play: perturbation
theory and equation of motion theory.17 As the name suggests,
equation-of-motion theory starts from the time derivative with
respect to the time t of the Green function which by linearity
is pulled under the expectation value 〈�0||�0〉 where it acts on
the field operator ψ̂(xt). For the field operator one then uses
the Heisenberg equation of motion ih̄∂t ψ̂(xt) = [ψ̂(xt),Ĥ ].
For a standard Hamiltonian consisting of a kinetic term, an
external potential and the Coulomb interaction v(x − x′), the
Heisenberg equation of motion yields

ih̄∂t ψ̂(xt) = − h̄2

2m
�ψ̂(xt) + vext(x)ψ̂(xt)

+
∫

dx′ v(x′ − x)ψ̂†(x′t)ψ̂(x′t)ψ̂(xt).
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This leads to the equation of motion1,17 for the Green function
(

ih̄∂t + h̄2

2m
�x − vext(x)

)
G(xt,x′t ′)

= δ(t − t ′)δ(x − x′) + 1

ih̄
〈T [ψ̂(xt),V̂ ]ψ̂†(x′t ′)〉, (2)

where the last term can be rewritten as

−ih̄

∫
dx′′ v(x − x′′)G4(x′′t,xt,x′′t,x′t ′). (3)

Here G4(x′′t,xt,x′′t,x′t ′) is to be understood as the equal-time
limit

lim
t5→t−

lim
t3→t+

lim
t4→t+3

G4(x′′t3,xt5,x′′t4,x′t ′) (4)

of the four-point (= two-particle) Green function

(ih̄)2G4(x1t1,x2t2,x3t3,x4t4)

= 〈�0|T ψ̂(x1t1)ψ̂(x2t2)ψ̂†(x4t4)ψ̂†(x3t3)|�0〉.
This shows that the Green functions form an infinite hierarchy
(the time-dependent generalization to the Bogoliubov-Born-
Green-Kirkwood-Yvon hierarchy for the density matrices):
due to the Heisenberg equation of motion for the field operator,
every equation of motion for the Green function involves a
Green function of higher order.

In perturbation theory, one takes a different approach. The
famous Gellmann-Low theorem2 in combination with the
cancellation (or linked cluster) theorem expresses the Green
function ih̄G(xt,x′t ′) as a sum

∑∞
n=0(− i

h̄
)n λn

n! over integrals
∫ ∞

−∞
dt1 · · · dtn〈	0|T ĤI(t1) · · · ĤI(tn)ψ̂(xt)ψ̂†(x′t ′)|	0〉c

where 	0 is the noninteracting ground state and the time
dependence of the field operators is induced by the free
Hamiltonian. ĤI(t) is the two-particle perturbation (here the
Coulomb potential) in the interaction picture. By the Wick
theorem such an expectation value over field operators can
be decomposed into products of two-point Green functions.
The cancellation theorem restricts the respective contributions
to the so-called connected graphs. The upshot of this is that
we have a perturbative expansion of the Green function into
expressions of the free Green function G0 and the Coulomb
potential. If one defines the (reducible) self-energy 
 to be the
sum over all contributions with external free propagator lines
amputated, then trivially G = G0 + G0
G0. The irreducible
or proper self-energy 
̃ (sometimes self-energy tout court) is
defined as the subsum of 
 consisting of graphs which cannot
be put into two pieces by removing a single G0 line. One shows
easily that this implies2


 = 
̃ + 
̃G0
, (5)

G = G0 + G0
̃G. (6)

The last equation is the so-called Dyson equation. Identifying
G0 as the inverse of ih̄∂t − Ĥ0 and multiplying Eq. (6) from
the left with ih̄∂t − Ĥ0, one sees that the Dyson equation is
equivalent to an equation of motion for the Green function of
the form (ih̄∂t − Ĥ0)G = 1 + 
̃G [cf. Eq. (2)].

B. Hartree-Fock equations

It is now tempting to simply evaluate 
̃ order by order,
e.g., up to first order 
̃1[G0], and calculate G = G0 +
G0
̃1[G0]G. The first-order self-energy in terms of the Hartree
propagator is explicitly given by


1[G0] = ih̄v(1,3+)G0(1,3). (7)

We now shortly review how the replacement of the first-order
perturbation theory given by 
1[G0] with the self-consistent
self-energy 
1[G] leads to the well-known Hartree-Fock
approximation.2 On the one hand, one discovers through
iteration that the replacement of G = G0 + G0
̃1[G0]G with
the self-consistent equation

G = G0 + G0
̃1[G]G (8)

corresponds to an infinite summation of graphs of arbitrary
order which result from the first-order self-energy graphs by
all kinds of mutual insertions. On the other hand, by inserting a
complete set of (N ± 1)-particle eigenstates into the defining
equation one shows that the Green function has a so-called
Lehmann representation which reads in the frequency domain

G(x,x′; ω) =
∑

s;N±1

fs(x)f ∗
s (x′)

h̄ω − es + sg(es − μ)iη
, (9)

where the equation of motion (2) for G implies for the
Lehmann amplitudes the quasiparticle equation(

− h̄2

2m
� + vext(x)

)
f ±

s (x)

+
∫

dx′ 
̃(x,x′; es)f
±
s (x′) = esf

±
s (x),

with ε±
s = EN±1

s − EN
0 , f +

s (x) = 〈�N
0 |ψ̂(x)|�N+1

s 〉, f −
s (x) =

〈�N−1
s |ψ̂(x)|�N

0 〉, and es = ±ε±
s . The decisive point is that the

equation G = G0 + G0
̃1[G]G implies that the correspond-
ing Lehmann amplitudes fulfill the Hartree-Fock equations.2

This is a typical example for the generation of a certain
approximation by a self-consistent Green function approach.
It corresponds to a summation of a subset of infinitely many
diagrams.

C. Hedin’s equations

As shown by the Hartree-Fock example, self-consistent
Green function methods are superior to simple perturbation
theory because they imply the summation over infinite sub-
classes of Feynman graphs. It is therefore desirable to have a
self-consistent set of equations which starts from the Dyson
equation (6), is in principal exact (in the sense that in its
exact version it includes all graphs), and which through the
expansion of a certain quantity automatically generates all
relevant approximations. This problem has been solved by the
introduction of Hedin’s equations4,5

G(1,2) = G0(1,2) +
∫

d(3,4)G0(1,3)
̃xc(3,4)G(4,2), (10)


̃xc(1,2) = ih̄

∫
d(3,4)G(1,4)W (1,3)�̃(4,2; 3), (11)
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FIG. 1. Four-point formalism.

P̃ (1,2) = −ih̄

∫
d(5,6)G(1,6)G(5,1+)�̃(6,5; 2),

W (1,2) = v(1,2) +
∫

d(3,4)v(1,3)P̃ (3,4)W (4,2), (12)

�̃(1,3; 2) = δ(1,2)δ(2,3) + ih̄

∫
d(5,6,7,8)Ĩ (1,5,3,6)

×G(6,7)G(8,5)�̃(7,8; 2),

where 
̃xc is the nonlocal part of the self-energy (the local
part being the self-consistent Hartree-type potential) and G0 is
now the inverse of the Hartree operator ih̄∂t − Ĥ0 − vH, i.e.,

[ih̄∂t − Ĥ0(1) − vH(1)]G0(1,2) = δ(1,2), (13)

the density in vH being given by −ih̄G(1,1+) = n(1). Ĩ is the
irreducible scattering amplitude. This is the quantity whose
perturbative expansion Ĩ [G,V,W ] generates all approxima-
tions. The standard derivation of Hedin’s equations works
by complicated formal functional derivatives, the calculation
of which is based on the Gellmann-Low formula. Our main
purpose in the following is to give a direct rederivation of
Hedin’s equations from the equation of motion without the
use of functional derivatives. To this end, the Bethe-Salpeter
equation will be required as well.

D. Bethe-Salpeter equation

The Wick theorem for the free 2n-point Green functions
implies for the free four-point propagator

G4
0(1,2,3,4) = G0(1,3)G0(2,4) − G0(1,4)G0(2,3). (14)

For the full four-point propagator, one therefore makes the
Ansatz3

G4(1,2,3,4) = G(1,3)G(2,4) − G(1,4)G(2,3)

− ih̄

∫
d(5,6,7,8)G(1,5)G(2,6)

×�(5,6,7,8)G(7,3)G(8,4), (15)

where the so-called scattering amplitude � is implicitly defined
by this Ansatz. A Feynman graph analysis shows that the
scattering amplitude � is the sum over all amputated graphs
which can be put between two electron-hole pairs. If one
defines a subsum I which corresponds to all graphs which are
irreducible in the electron-hole channel, then one necessarily
has

� = I + (ih̄)IGGI + (ih̄)2IGGIGGI + · · ·
implying

�(1,2,3,4) = I (1,2,3,4) + ih̄

∫
d(5,6,7,8)I (1,5,3,6)

×G(6,7)G(8,5)�(7,2,8,4).

This is the well-known Bethe-Salpeter equation.3 We now want
to combine the Bethe-Salpeter equation with the equation-of-
motion theory into a self-consistent set of equations.

III. SELF-CONSISTENT SET OF EQUATIONS

First, we introduce a consistent notation. We define the
following matrix products of four-point quantities:

(AB)(1,2,3,4)
def=

∫
d(5,6)A(1,5,3,6)B(6,2,5,4), (16)

(A · B)(1,2)
def=

∫
d(3,4,5)A(1,4,5,3)B(3,5,4,2). (17)

Matrix products of two-point functions are defined in the
standard way:

(AB)(1,2)
def=

∫
d3A(1,3)B(3,2). (18)

The matrix multiplication rules can be easily represented
graphically (see Fig. 1).

Furthermore, we define a left and a right Dirac distribution
via

δ±[f ] =
∫

dt f (t)δ(t±) = lim
t→0±

f (t). (19)

We can think of δ± as acting on an extended space of test
functions that are continuous up to countably many jumps.
For two-point quantities we introduce the notation δ(1,2+) =
δ(1−,2) with δ(1,2+) = δ(x1 − x2)δ(t1 − t+2 ) indicating that
time limit 1 → 2 has to be performed such that t2 � t1 or
t2 → t+1 . So, a typical calculation is∫

d 3δ(1,3+)F (3,2) = lim
t3→t+1

F (x1t3,x2t2). (20)

We introduce a four-point Coulomb kernel by

V (1,2,3,4) = v(1,4+)δ(4,2+)δ(3,1+), (21)

with v(1,2+) = v(x1 − x2)δ(t1 − t+2 ). The advantage of this
definition of the four-point Coulomb potential is that it
automatically produces the right time order in all products
involving V . For example,∫

d(3,4,5)V (1,4,5,3)G4(3,5,4,2)

=
∫

d(3,4,5)v(1,3+)δ(3,4+)δ(5,1+)G4(3,5,4,2)

= lim
t5→t−1

lim
t3→t+1

lim
t4→t+3

∫
dx3 v(x1,x3)G4(x3t3,x1t5,x3t4,x2t2)

= −(ih̄)2
∫

dx3v(x1 − x3)〈T ψ̂†(x3t1)ψ̂(x3t1)ψ̂(x1t1)

× ψ̂†(x2t2)〉,
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where the left- and right-Dirac delta imply the limit to be
taken such that t5 � t1 � t3 � t4. Thus, using definition (21)
one does not have to fix the right equal-time limit ex post.

The decisive observation is now that although G4 does not
fulfill a Bethe-Salpeter equation,

L(1,2,3,4) = G4(1,2,3,4) − G(1,3)G(2,4) (22)

does. As in Hedin’s equation, G0 from now on denotes the
inverse Hartree operator

[ih̄∂t − Ĥ0(1) − vH(1)]G0(1,2) = δ(1,2).

With these definitions, one arrives at the system of equations

G = G0 − ih̄G0V · L, (23)

L = L0 + ih̄L0IL, (24)

with L0(1,2,3,4) = −G(1,4)G(2,3). The first equation fol-
lows from reexpressing the equations of motion (2) and (3) in
terms of L and multiplying with G0 = (ih̄∂t − Ĥ0 − vH)−1. In
fact, the equation of motion in terms of L simply reads(

ih̄∂t + h̄2

2m
�x − vext(x) − vH(x)

)
G(xt,x′t ′)

= δ(t − t ′)δ(x − x′) − ih̄

∫
dx ′′ v(x − x ′′)L(x ′′,x,x ′′,x ′),

where the equal-time limits in L are to be taken as in the
equation of motion in terms of G4. The GG term in G0V G4

produces the Hartree potential vH. Multiplying with the inverse
Hartree propagator and using the four-point kernel form of the
Coulomb potential then yields Eq. (23) in the form

G(1,2) = G0(1,2) − ih̄

∫
d(3,4,5,6)G0(1,6)V (6,4,5,3)

×L(3,5,4,2).

We again stress that the Hartree-type potential vH has to
be calculated in terms of the self-consistent density n(1) =
−ih̄G(1,1+), not in terms of G0. In particular, that means
that G0 = G0[G] is a functional of G and cannot simply
be replaced by the Hartree propagator. An excellent and
well-established approximation, however, seems to be the
replacement of the self-consistent density with a fixed density
stemming from a density functional theory calculation since
density functional theory is supposed to yield the exact
ground-state density.

Equation (24) follows from expressing L in terms of � as
[cf. Eq. (16)]

L(1,2,3,4) = −G(1,4)G(2,3)−ih̄

∫
d(5,6,7,8)

×G(1,5)G(2,6)�(5,6,7,8)G(7,3)G(8,4),

and iterating the Bethe-Salpeter equation for �. This equation
coincides with Eq. (43) in the seminal paper of Kadanoff
and Baym15 under the identification (45). In the context of
this paper, the equation has been derived by the method of
functional derivatives.

The set of equations (23) and (24) is already a self-
consistent set of equations which is as closed as Hedin’s
equations. For every desired level of accuracy one can choose
a graphical expansion of I = I [G,V ] turning Eqs. (23) and

(24) into a closed system. Recall in this context that I is the
electron-hole channel irreducible scattering amplitude and the
simplest contribution to I is simply V .

Inspired by Hedin’s work, we introduce the four-point
quantity W through

W
def= V + ih̄V LV, (25)

which is of course the well-known screened potential com-
monly used in Hedin’s equations. Next, we formulate an
irreducible counterpart to the above self-consistent system of
equations (23) and (24) via the introduction of

I
def= Ĩ + V, L̃

def= L0 + ih̄L0Ĩ L̃, �̃
def= Ĩ + ih̄ĨGG�̃.

Ĩ will later turn out to be the same quantity which appears
in Hedin’s fifth equation (12), the electron-hole channel
irreducible scattering amplitude with the simplest contribution
V being removed. With these definitions one finds

L = L̃ + ih̄L̃V L. (26)

This follows from rewriting Eq. (24) as

L−1
0 − L−1 = ih̄I (27)

and hence

L−1
0 − L̃−1 + L̃−1 − L−1 = ih̄Ĩ + ih̄V . (28)

In this argument, we implicitly assumed that L can be inverted.
From the definition of L, one reads off that L can certainly be
inverted if L0 can because in that case L−1

0 − ih̄I is the inverse
of L. L0(1,2,3,4) = −G(1,4)G(2,3) in turn can be inverted
if G can be inverted. Thus, the invertibility of the full Green
function is crucial. This, however, is a standard assumption
in any approach, although to the best of our knowledge it has
never been proven. Finally, by Eq. (25) one finds

L̃W = L̃V + ih̄L̃V LV = (L̃ + ih̄L̃V L)V = LV.

Using this and the symmetry properties

L(1,2,3,4) = L(2,1,4,3), (29)

L̃(1,2,3,4) = L̃(2,1,4,3), (30)

one can show (see Appendix A) that

V · L = W · L̃. (31)

On the other hand,

W = V + ih̄V LV = V + ih̄V L̃V + (ih̄)2V L̃V LV

= V + ih̄V L̃(V + ih̄V LV ) = V + ih̄V L̃W.

Combining Eqs, (23), (31), and (26), one arrives at the system
of equations

G = G0 − ih̄G0W · L̃, (32)

L̃ = L0 + ih̄L0Ĩ L̃, (33)

W = V + ih̄V L̃W, (34)

where G0 is given by Eq. (13). In fact, this set of equations—
which is the central result of this paper— encapsulates the
whole Green function theory and is equivalent to Hedin’s
equations as shown below.
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IV. HEDIN’S EQUATIONS RECONSIDERED

Finally, we come to the question of how the above set of
equations is related to Hedin’s equations. In order to derive
Hedin’s equations, one needs to introduce an auxiliary vertex
function �̃ through

�̃(1,2,3,4) = δ(1,4)δ(2,3) + ih̄

∫
d(5,6)�̃(1,5,3,6)

×G(6,4)G(2,5), (35)

where �̃ is defined by the Bethe-Salpeter equation �̃ = Ĩ +
ih̄ĨGG�̃. With this definition, one shows easily that the aux-
iliary vertex function obeys a Bethe-Salpeter equation of the
form

�̃(1,2,3,4) = δ(1,4)δ(2,3) + ih̄

∫
d(5,6,7,8)Ĩ (1,5,3,6)

×G(6,7)G(8,5)�̃(7,2,8,4). (36)

Furthermore, the exchange-correlation self-energy operator
needs to be defined through

(ih̄)−1
̃xc(1,2)

def=
∫

d(3,4,5,6)G(5,6)W (1,4,5,3)�̃(6,3,2,4).

A straightforward but lengthy calculation (see Appendix B)
then shows that

−W · L̃ = (ih̄)−1
̃xcG. (37)

One can now rewrite the self-consistent set of equations as

G(1,2) = G0(1,2) +
∫

d(3,4)G0(1,3)
̃xc(3,4)G(4,2), (38)


̃xc(1,2) = ih̄

∫
d(3,4,5,6)G(5,6)W (1,4,5,3)�̃(3,6,4,2),

(39)

L̃(1,2,3,4) = −
∫

d(5,6)G(1,6)G(5,3)�̃(6,2,5,4), (40)

W (1,2,3,4) = V (1,2,3,4)

+ ih̄

∫
d(5,6,7,8)V (1,7,3,5)L̃(5,6,7,8)

×W (8,2,6,4), (41)

�̃(1,2,3,4) = δ(1,4)δ(2,3) + ih̄

∫
d(5,6,7,8)Ĩ (1,5,3,6)

×G(6,7)G(8,5)�̃(7,2,8,4). (42)

Here, Eq. (38) follows from inserting Eq. (37) into Eq. (32).
Equation (39) is the defining equation for 
̃xc. Equation (40)
follows from multiplying Eq. (35) with GG and comparing
with Eqs. (15) and (22). Equation (41) is the defining equation
for W and Eq. (42) equals Eq. (36).

In fact, we have derived Hedin’s equations if not in their
standard form but in their unitarily covariant form. That
means that the above equations automatically carry over to an
arbitrary orthonormal basis in the one-particle Hilbert space
through a simple reinterpretation of the spatial arguments as,
e.g., orbital indices. In such a basis, a generic quantity such
as L̃ is given by a time-dependent matrix L̃

ij

kl(t1,t2,t3,t4),
where the first arguments were written as upper and the

last arguments as lower indices. This indicates the different
transformation behavior. Under a change of basis U : H → H
in the one-particle Hilbert space, the lower indices transform
with Ui

j , whereas the upper indices transform with the complex
conjugate matrix. This is analogous to the relativistic quantum
field theory, where with the fundamental representation of
the Lorentz group (or rather the special linear group in two
dimensions), one has a complex conjugate representation
which transforms with the complex conjugate matrix. (In this
field, the respective indices are dotted.) As long as the indices
refer to spatial points, we do not have to differentiate between
upper and lower indices because a coordinate transformation
in real space in the sense of a renumbering of the spatial
lattice is implemented by a real valued matrix. Note that in
principle, also the time variables group into “covariant” and
“contravariant” variables in that under a Fourier transform,
they behave as

L(ω1, . . . ,ω4)

=
∫

dt1 . . . dt4ei(ω1t1+ω2t2)L(t1,t2,t3,t4)e−i(ω3t3+ω4t4)

Finally, it should be borne in mind that the above form
of Hedin’s equations is not invariant under arbitrary basis
changes, i.e., they change their form if one goes to a
nonorthonormal basis. This is not due to a failure of this
formalism but to the definition of the matrix elements of
the respective quantities in terms of the scalar product. For
example, for the Coulomb potential

V
ij

kl =
∫

dx dx′ ϕ∗
i (x)ϕ∗

j (x′)v(x,x′)ϕk(x)ϕl(x′)

or

V
ij

kl = 〈ϕiϕj |V̂ |ϕkϕl〉. (43)

This corresponds to a definition of the dual basis as ϕi =
〈ϕi |·〉 implying that for arbitrary (i.e., nonunitary) trans-
formations, we do not have ϕi(ϕj ) = δi

j . In order to have
general form invariance of matrix products in a vector
space, one has to introduce a dual basis by ei(ej ) = δi

j

implying that dual vectors transform with the contragredient
matrix. This definition of the dual basis and the “quantum
mechanical” definition coincide as long as the respective
transformation leaves the standard scalar product invariant.
Per definitionem, this holds true for unitrary transformations.
For these, the complex conjugate matrix is the contragredient
matrix.

The standard form of Hedin’s equations is recovered
from the unitarily covariant form by introducing P̃ (1,2) =
ih̄L̃(1,2,1+,2+),�̃(1,2; 3) = �̃(1,3,2,3). Note that the stan-
dard form is valid only in the space-time domain. (One cannot
represent P̃ and �̃ in an orbital basis.) A comparison with
the derivation of Hedin’s equations from the self-consistent
equations with the standard derivation shows, in particular, that

ih̄Ĩ (1,2,3,4) = δ
̃xc(1,3)

δG(2,4)
, (44)

ih̄I (1,2,3,4) = δ
̃(1,3)

δG(2,4)
. (45)
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V. STANDARD APPROXIMATIONS

The standard approximations can be formulated very
economically within the framework of the self-consistent set
of equations. In fact, we see that the standard approximations
fit into a hierarchy of approximations for the four-point
propagator with ever-increasing accuracy. (Apparently, this
has been noticed and discussed for the first time by Baym
and Kadanoff.15,16) In this hierarchy the accuracy grows along
two different directions: inclusions of further graphs by an
improved description of Ĩ and self-consistency. Therefore,
every approximation comes in two different guises: in a
self-consistent and in a non-self-consistent version. The self-
consistent version of first-order perturbation theory (in terms
of the Hartree propagator) is the Hartree-Fock approximation,
the self-consistent version of the random-phase approximation
(RPA) is the GW approximation, and the self-consistent
version of the ladder approximation is the W approximation.
The W approximation has already been written down by Hedin
(Ref. 4, Appendix, p. 822). In particular, the Hartree-Fock (HF)
and GW approximations are, respectively, given by

L(1,2,3,4) = −G(1,4)G(2,3), (46)

L̃(1,2,3,4) = −G(1,4)G(2,3). (47)

The proof is almost trivial and follows simply from plugging
in these Ansätze in the equation of motion for G in terms
of L or L̃, respectively. For example, for the Hartree-Fock
approximation one finds∫

d(3,4,5)V (1,4,5,3)L(3,5,4,2)

= −
∫

d(3,4,5)V (1,4,5,3)G(3,2)G(5,4)

= −
∫

d(3,4,5)v(1,3+)δ(1,5)δ(4,3)G(3,2)G(5,4)

= −
∫

d 3v(1,3+)G(1,3)G(3,2)

and hence


̃HF
xc (1,2) ≡ 
̃x(1,2) = ih̄v(1,2+)G(1,2). (48)

Finally, we calculate the corresponding expression in the
frequency domain. The Fourier transform (FG)(ω) =: G(ω)
is as usually defined as

G(ω) =
∫

dτ eiωτG(τ ), G(τ ) =
∫

dω

2π
e−iωτG(ω).

In standard treatments, one gets the ill-defined expression∫
dω G(ω) which is then cured by the ad hoc insertion of a

convergence factor eiωδ . We will see that this is automatically
produced in our approach through the left- and right-Dirac
deltas. Introducing the time-difference variable τ = t1 − t2 we
have


̃x(x1,x2; τ ) = v(x1,x2)δ−(τ )ih̄G(x1,x2; τ ) (49)

and hence


̃x(x1,x2; ω)

= v(x1,x2)
∫

dω′

2π
(Fδ−)(ω′)ih̄G(x1,x2; ω − ω′).

In Appendix C, we show that

(Fδ±)(ω) = lim
t→0±

eiωt =: e±iωδ, (50)

where δ is a positive infinitesimal. From this it can be
concluded that


̃x(x1,x2; ω) = v(x1,x2)
∫

dω′

2π
eiω′δih̄G(x1,x2; ω′),

i.e., 
̃x(x1,x2; ω) := 
̃x(x1,x2) is effectively independent of
ω. In order to perform the frequency integral, we use the
residue theorem (the applicability of which is guaranteed by
the factor eiω′δ stemming from the Fourier transform of the
instantaneous Coulomb potential) and close the contour in
the upper half-plane. This leads to the inclusion of the poles
corresponding to the occupied states. Similarly, one argues for
the GW approximation. By the equations −ih̄WL̃ = 
̃xcG

and V L = W · L, we see that L̃(1,2,3,4) = −G(1,4)G(2,3)
implies indeed 
̃xc = −ih̄WG. Table I summarizes how all
standard approximations fit into a hierarchy of approximations
for the four-point propagator of ever-increasing accuracy.20

VI. SUMMARY AND CONCLUSIONS

We have shown that the equation-of-motion theory for the
Green functions can be combined with the Bethe-Salpeter
equation to the self-consistent set of equations (32)–(34),

G = G0 − ih̄G0W ·L̃, L̃ = L0 + ih̄L0Ĩ L̃,

W = V + ih̄V L̃W,

which, as a matter of fact, turns out to be fully equivalent
to Hedin’s equations thereby providing an alternative proof
for them. The first of these equations is somewhere in the
middle between the equation of motion for G and the Dyson
equation. Multiplying with G−1

0 = ih̄∂t − Ĥ0 would give us
back the equation of motion with a Hartree term absorbed in
the free Hamiltonian. Factoring out a G from the right in L̃

would give us back the Dyson equation if the factors between
G0 and G are lumped into a new quantity, namely, 
̃xc. The
second equation is essentially the Bethe-Salpeter equation
but pulled back on the level of the propagators (instead of
scattering amplitudes). It corresponds to Eq. (43) in Ref. 15
but reformulated for the corresponding irreducible quantity L̃

(instead of L). The third equation is the usual equation for
the screened potential rewritten as an equation for four-point
quantities. This allows for the usage of L̃ as the integral kernel
(instead of P̃ ) which gives the set of equations its compactness.

Other important aspects of this work are a concise four-
point notation, and the introduction of a time-ordered Coulomb
kernel. The four-point notation allows one to represent all
quantities in either a spatial basis, a plane-wave basis, or an
orbital basis. Changing the basis only involves unitary transfor-
mations between the basis sets. The Green function is then sim-
ply a rank two “tensor,” whereas L̃ and W are tensors of rank
4 (neglecting the additional time dependencies). This makes
implementation in standard quantum chemistry codes, which
commonly rely on four-point representations of the Coulomb
integrals, fairly easy and concise. Similar approaches are
commonly used when the Bethe-Salpeter equation is
solved.19 They have been also applied in the context of
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TABLE I. Hierarchy of approximations.

Approximation L L̃ L0 I Ĩ

Hartree approximation 0 0 0 0 0
First-order perturbation theory L̃ L0 −G0G0 0 0
Hartree-Fock approximation L̃ L0 −GG 0 0
Random-phase approximation L̃ + ih̄L̃V L L0 −G0G0 V 0
GW approximation L̃ + ih̄L̃V L L0 −GG V 0
Ladder approximation L̃ + ih̄L̃V L L0 + ih̄L0Ĩ L̃ −G0G0 V + Ĩ −V̄

W approximation L̃ + ih̄L̃V L L0 + ih̄L0Ĩ L̃ −GG V + Ĩ −W̄

Beyond L̃ + ih̄L̃V L L0 + ih̄L0Ĩ L̃ −GG V + Ĩ Ĩ [G,V,W ]

GW calculations,18 but never quite on that fundamental
level. A final important contribution of the present work
is the introduction of a time-ordered Coulomb interac-
tion. This automatically yields the correct time order in
all equations. Furthermore, it leads to a formulation of
the fundamental equations which is completely indepen-
dent of the concrete form of the electron-electron inter-
action. For example, a general interaction could be of
the form V̂ = ∫

d(1,2,3,4)v(1,2,3,4)ψ̂†(1)ψ̂†(2)ψ̂(4)ψ̂(3),
where v(1,2,3,4) does not partially diagonalize. This interac-
tion would lead to the same fundamental set of self-consistent
propagator equations (32)–(34), whereas Hedin’s equations for
this kind of interaction would not be so obvious.
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APPENDIX A: DOT PRODUCT OF FOUR-POINT
QUANTITIES

In this Appendix, we prove that V · L = W · L̃, that
W · L̃ = −(ih̄)−1
̃xcG and we explicitly calculate the Fourier
transform of the left- and right-Dirac delta as well as the
Hartree-Fock approximation in the frequency domain.

We define

V ′(1,2,3,4) = v(2,3+)δ(3,1+)δ(4,2+),

W ′(1,2,3,4) = w(2,3)δ(3,1+)δ(4,2+).

Consequently,

V (1,2,3,4) = V ′(2,1,4,3), (A1)

W (1,2,3,4) = W ′(2,1,4,3), (A2)

i.e., V t = V ′ and Wt = W ′ with the transpose four-point
quantity At (1,2,3,4) = A(2,1,4,3). From

∫
d(5,6,7,8)V (1,5,3,6)L(6,7,5,8)V (8,2,7,4)

=
∫

d(5,6,7,8)v(1,6+)δ(6,5+)δ(3,1+)

×L(6,7,5,8)v(8,4+)δ(4,2+)δ(7,8+)

= δ(3,1+)δ(4,2+)
∫

d(6,8)v(1,6)L(6,8,6+,8+)v(8,4)

(the time order in v is irrelevant under the integral) and the
general symmetry property

L(1,2,3,4) = L(2,1,4,3),

we read off that

W ′ = V ′ + ih̄V ′LV ′ (A3)

and therefore,

L̃W = LV (A4)

implies

L̃W ′ = LV ′. (A5)

Now consider∫
d(3,4,5)V (1,4,5,3)L(3,5,4,2). (A6)

This can be written as∫
d 5

∫
d(3,4)V (1,4,5,3)L(3,5,4,2) =

∫
d 5(V L)(1,5,5,2)

=
∫

d(5,6)δ(5,6)(V L)(1,5,6,2).

Using V ′t = V and Lt = L, we find

(V L)(1,2,3,4) =
∫

d(5,6)V (1,5,3,6)L(6,2,5,4)

=
∫

d(5,6)V ′t (1,5,3,6)Lt (6,2,5,4)

=
∫

d(5,6)V ′(5,1,6,3)L(2,6,4,5)

=
∫

d(5,6)L(2,6,4,5)V ′(5,1,6,3)

= (LV ′)(2,1,4,3),

whence,∫
d(5,6)δ(5,6)(V L)(1,5,6,2)

=
∫

d(5,6)δ(5,6)(LV ′)(5,1,2,6)

=
∫

d(5,6)δ(5,6)(L̃W ′)(5,1,2,6)

=
∫

d(5,6)δ(5,6)
∫

d(3,4)L̃(5,3,2,4)W ′(4,1,3,6)
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=
∫

d(5,6)δ(5,6)
∫

d(3,4)L̃(3,5,4,2)W (1,4,6,3)

=
∫

d(5,6)δ(5,6)
∫

d(3,4)W (1,4,6,3)L̃(3,5,4,2)

=
∫

d(5,6)δ(5,6)(WL̃)(1,5,6,2),

i.e., V · L = W · L̃.

APPENDIX B: SELF-ENERGY

We now show that −W · L̃ = (ih̄)−1
̃xcG. We start with

(W · L̃)(1,2) =
∫

d(3,4,5)W (1,4,5,3)L̃(3,5,4,2)

= −
∫

d(3,4,5)W (1,4,5,3)

[
G(3,2)G(5,4)

+ ih̄

∫
d(9,6,7,8)

×G(3,9)G(5,6)�̃(9,6,7,8)G(7,4)G(8,2)

]

= −
∫

d(3,8,4,5)W (1,4,5,3)

[
δ(8,3)G(8,2)G(5,4)

+ ih̄

∫
d(9,6,7)G(3,9)G(5,6)�̃(9,6,7,8)G(7,4)G(8,2)

]
,

where we used Eqs. (15), (22), (26) to go from the first to the
second line. Introducing now the exchange-correlation self-
energy 
̃xc by

(ih̄)−1
̃xc(1,8) =
∫

d(3,4,5)W (1,4,5,3)

[
G(5,4)δ(8,3)

+ ih̄

∫
d(9,6,7)G(3,9)G(5,6)

× �̃(9,6,7,8)G(7,4)

]

=
∫

d(3,4,5)W (1,4,5,3)

[
G(5,4)δ(8,3)

+ ih̄

∫
d 6G(5,6)

∫
d(9,7)�̃(6,9,8,7)

×G(3,9)G(7,4)

]

=
∫

d(5,6)G(5,6)
∫

d(3,4)W (1,4,5,3)

×
[
δ(6,4)δ(8,3) + ih̄

∫
d(9,7)�̃(6,9,8,7)

×G(3,9)G(7,4)

]

=
∫

d(5,6)G(5,6)
∫

d(3,4)

×W (1,4,5,3)�̃(6,3,8,4)

def=
∫

d(3,4,5,6)G(5,6)W (1,4,5,3)�̃(6,3,8,4),

we get

−(W ·L̃)(1,2) = (ih̄)−1
∫

d 3
̃xc(1,3)G(3,2). (B1)

APPENDIX C: FOURIER TRANSFORM OF LEFT
AND RIGHT DELTA

Finally, in order to calculate the Fourier transform of δ±,
we apply it to a test function and find

(F−1δ±)[f̃ ]
def= δ±[F−1f̃ ] = δ±

(∫
dω

2π
e−iωt f̃ (ω)

)

= lim
t→0±

∫
dω

2π
e−iωt f̃ (ω)

!=
∫

dω

2π
(Fδ±)(−ω)f̃ (ω).

From this, we read off that

(Fδ±)(ω) = lim
t→0±

eiωt =: e±iωδ,

where δ is a positive infinitesimal in the distributional sense
(i.e., integrate first and then perform the limit δ → 0). This
implies


̃x(x1,x2; ω) = ih̄

2π
v(x1,x2)

∫
dω′ e−iω′δG(x1,x2; ω − ω′)

= ih̄

2π
v(x1,x2)

∫
dω′ e−i(ω−ω′)δG(x1,x2; ω′)

= ih̄

2π
v(x1,x2)

∫
dω′ eiω′δG(x1,x2; ω′).

where it has been used that the convolution is commutative:
f ∗ g = g ∗ f . The resulting prefactor eiωδ does not feel
the integration and becomes unity after performing the limit
δ → 0.
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GW Approximation Computational Nanoscience NIC Series
Vol. 31 (John von Neumann Institute for Computing, Jülich,
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