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We extend the recently introduced continuous matrix product state variational class to the setting of

(1þ 1)-dimensional relativistic quantum field theories. This allows one to overcome the difficulties

highlighted by Feynman concerning the application of the variational procedure to relativistic theories,

and provides a new way to regularize quantum field theories. A fermionic version of the continuous matrix

product state is introduced which is manifestly free of fermion doubling and sign problems. We illustrate

the power of the formalism by studying the momentum occupation for free massive Dirac fermions and

the chiral symmetry breaking in the Gross-Neveu model.
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The variational principle is the basis for a tremendous
number of highly successful calculational tools in many-
body physics. Examples range from density functional
theory [1] to Wilson’s numerical renormalization group
[2] and the density matrix renormalization group
(DMRG) in condensed matter physics [3]. However, in
relativistic quantum field theory (QFT) the variational
principle has not met with the same success as in other
areas of many-body physics. The core reasons for this were
identified by Feynman [4], who in one of his last lectures
summarized that (1) the variational principle is ‘‘too sen-
sitive’’ to high frequencies, and (2) only the Gaussian
ansatz combines extensivity with the ability to compute
observable quantities efficiently and to high accuracy.

Recently a new class of variational wave functionals for
(1þ 1)-dimensional QFTs has been introduced [5] based
on the matrix product state construction [6], which lies at
the heart of the success of the DMRG. Compelling evi-
dence that continuous matrix product states (cMPSs) pro-
vide a powerful description of the quantum fluctuations of
quantum fields has been presented in [5,7]. So far, cMPSs
have been restricted to the approximation of ground states
of nonrelativistic theories. An explicit specification of the
ground state is not a common approach to study relativistic
QFTs. Nevertheless, this formalism is well established (see
[8] and references therein).

The DMRG [3] is, with the benefit of hindsight, a varia-
tional method within the class of matrix product states.
Since its development, a better understanding of how
quantum entanglement behaves in local quantum systems
has led to an explosion in the development of variational
wave functions for strongly interacting quantum systems.
These wave functions, going well beyond Gaussian trial
states, allow the accurate and efficient calculation of ob-
servable quantities. Thus Feynman’s second objections can
already be regarded as having been addressed, in the case

where matrix product states are applied to quantum fields
in conjunction with a lattice regulator [9]. By taking
a continuum limit of the matrix product state class,
the need for a lattice regulator was removed, allowing the
definition of a variational class of non-Gaussian wave
functionals directly for quantum fields.
In his closing remarks, Feynman speculated how best to

overcome his second reservation and predicted that it
should be possible to describe a global field state using a
reduced set of local parameters, and he foresaw the role of
the density matrix in such a description. It turns out that the
density matrix in DMRG has precisely the properties en-
visaged by Feynman: it yields a local parametrization of
the global properties of a state which is living on the
boundary of the region of interest. The cMPSs inherit this
holographic property: they are parametrized by the (non-
equilibrium) dynamics of a boundary field theory of one
lower geometric dimension [5,10]. The state of this auxil-
iary theory constitutes a compact description of the prop-
erties of the quantum field state outside the given region.
It is, however, less clear how the cMPS class will be able

to escape Feynman’s first objection, which is intrinsic to the
variational principle and its attempt to find the ‘‘lowest’’
ground-state energy. This problem occurs in any theory with
a large range of interacting energy scales, but is truly
catastrophic in relativistic field theories. To lowest order,
the ground state of a relativistic quantum field consists of the
zero-point oscillations of all energy scales and is thus domi-
nated by the infinite availability of high frequencies. In
contrast, quantities of physical interest are related to the
low-frequency modes. The variational principle will exploit
all variational parameters to obtain the best description of
the UV degrees of freedom at the expense of the relatively
tiny energy penalty coming from the ill-described low fre-
quencies. Whenever the variational parameters affect both
the low and high frequencies, which is unavoidable in
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interacting theories but also true for free theories with a real
space approach, this can lead to the paradoxical situation
where the addition of variational parameters provides a
worse approximation to physical quantities.

In this Letter we show how cMPSs naturally address
Feynman’s remaining criticism of the variational principle
in relativistic QFT. In doing so we discover a new way to
regulate QFTs and develop a powerful new way to numeri-
cally solve them.

While Feynman’s argument is valid both for bosonic and
fermionic theories, we focus on fermionic theories where
the Dirac sea picture can be exploited. We now define the
fermionic cMPS class as

j�i ¼ Traux½P e

Rþ1
�1 dxQ�1þP

�

R��ĉ y
�ðxÞ�j�i; (1)

where ĉ y
�ðxÞ are field operators creating fermions of type

� at position x with anticommutation relations

fc y
�ðxÞ; c y

�ðyÞg ¼ 0 and fc y
�ðxÞ; c �ðyÞg ¼ ��;��ðx� yÞ,

Q and R� are D�D matrices acting on the auxiliary
system, Traux denotes a partial trace over the auxiliary
system, and Pe denotes the path ordered exponential.
While Q and R� can be position dependent, we focus on
a translational-invariant setting where they are not. Both
the calculational rules, as well as the physical interpreta-
tion for bosonic cMPSs can be found in [5,10] and only
differences resulting from the anticommutation relations
will be highlighted. In the relativistic scenario, the two

field operators ĉ y
� (� ¼ 1, 2) in Eq. (1) represent the two

components of the Dirac spinor. The state j�iwill approxi-
mate the ground state of a relativistic QFT by acting with
the field creation operators on the state j�i, for which all

levels are empty (ĉ �j�i ¼ 0).
Let us now describe physical properties of this varia-

tional class. It is a non-Gaussian class that is both extensive
and allows the exact evaluation of the expectation values of
local operators; e.g., we obtain (we henceforth use the
summation convention on repeated indices)

Im h�jĉ y
��

y
��

dĉ �

dx
j�i ¼ Im½�y

��hlj½Q;R��� � �R�jri�;
for the kinetic energy density, where, in order to obtain real
coefficients, we have chosen the convention �x ¼ �y and
� ¼ �z for the Dirac matrices. The D2 component vectors
hlj and jri are, respectively, the left and right eigenvectors
of the transfer matrix T ¼ Q � 1þ 1 � �Qþ R� � �R�,
corresponding to eigenvalue zero [5,10]. We focus on the
kinetic energy density as it is the dominant term in the UV
region, which is the region responsible for divergences and
for Feynman’s criticism. As long as the D�D matrices Q
and R� have finite entries, this expression will be finite and
is thus regularized.

A better understanding of this regularization is gained
by looking at the momentum occupation in a cMPS:

h�jĉ y
�ðkÞĉ �ðk0Þj�i ¼ �ðk� k0Þn�;�ðkÞ [11]. The momen-

tum occupation number n�;�ðkÞ is the Fourier transform of

C��ðxÞ, where

C�;�ðxÞ ¼
� hljð1 � �R�Þex ~TðR� � 1Þjri; x < 0

hljðR� � 1Þex ~Tð1 � �R�Þjri; x > 0;

and ~T ¼ Q � 1þ 1 � �Q� R� � �R�, where the last minus
sign originates from the Fermi statistics of the particles.
There will not be any disconnected contribution, as we

require h�jĉ �j�i ¼ 0. The behavior of n�;�ðkÞ for large k
is determined by the continuity and differentiability of
C�;�, in particular, around x ¼ 0, which is the only point

where differentiability is not trivially guaranteed. Since
C�;�ðxÞ is a continuous function its Fourier transform

decays as n��ðkÞ � Oðk�2Þ for jkj ! 1. Continuity of

the derivative of C�;�ðxÞ at x ¼ 0 requires

hljfR�; R�g � f �R�; �R�gjr ¼ 0; 8 �;�; (2)

which satisfied by choosing all matrices R� nilpotent and
anticommuting. The second derivative of C�;�ðxÞ at x ¼ 0

is then automatically continuous, from which one can
conclude that n�;�ðkÞ � Oðk�4Þ for jkj ! 1. While a

faster decrease of the momentum occupation number im-
poses additional constraints on the matrices Q and R� the
current behavior already ensures a finite kinetic energy.
The region in momentum space where the k�4 decay
behavior sets in defines a soft momentum cutoff �.
Let us now illustrate how Feynman’s first objection

manifests itself for the cMPS ansatz. The problem is situ-
ated in a cMPS’s ability to describe a change of scale x �
cx, c > 0, by an equivalent transformation Q0 ¼ cQ and
R0
� ¼ ffiffiffi

c
p

R�. This transformation does not change hlj and
jri. Thus the kinetic energy per unit length will simply be
multiplied by a factor c2. However, in contrast to the non-
relativistic case, the relativistic kinetic energy is not a
positive definite operator and can acquire a negative ex-
pectation value. If j�i is a cMPS for which this is the case,
the kinetic energy can be lowered bymaking a scale change
with c > 1. Any variational approach will then try to push
c ! 1, in order to approximate the divergent kinetic en-
ergy of the exact solution. Correspondingly, the momentum
occupation changes to n0�;�ðkÞ ¼ n�;�ðk=cÞ and the intrin-

sic cutoff determined by n0 is given by �0 ¼ c�.
This change of scale will be accompanied by a worse

description of the low-frequency region, as predicted by
Feynman. The reason is that a cMPS can only accurately
describe states with a finite amount of entanglement. The
maximal entanglement entropy in a 1D system with energy
gap � and energy cutoff � will roughly be given by S�
logð�=�Þ, and a cMPS with D proportional to Oð expðSÞÞ
should suffice to provide a good description [12]. If D is
too low, compromises will be made in that part of the
frequency spectrum which contributes least to the
ground-state energy, i.e., the low-frequency region. In non-
relativistic systems, the cutoff is related to the particle
density. In a relativistic field theory there is no physical
cutoff, only the intrinsic momentum cutoff� of the cMPS.
Given some cMPS which already fills negative-energy
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levels up to �, the variational procedure will lower the
energy, not by improving the filling, but by shifting the
cutoff to�0 ¼ c�with c ! 1. For every finiteD, all low-
energy modes will eventually fall into the region that is
poorly described. This is schematically illustrated in Fig. 1.
If the cMPS actually succeeds in letting c run to infinity,
the description at any observable energy will be completely
off.

However, a solution is now straightforward as we can
prevent c from running to infinity by imposing a constraint
on the matrices Q and R�: Eq. (1) indicates that Q has the
dimension of momentum, while R� has the dimension of
the square root of a momentum, constraining the norm ofQ
and R� prevents c from running and regularizes the result-
ing theory by introducing a scale, i.e., a dimensionful
parameter, into the system, similar to what happens in
analytical regularization techniques or lattice regulariza-
tion. In the following, we will constrain the norm of the
commutator ½Q;R�� by fixing the expectation value of

(dĉ y=dx) (dĉ =dx) [13]. Hereto, we add this term to the
Hamiltonian with a Lagrange multiplier 1=�, i.e.,

Ĥcutoff ¼ ��1
R
dxðdĉ y=dxÞðdĉ =dxÞ. This apparently ar-

bitrary choice is motivated by the requirement that the
constraint needs to penalize high values of the momentum
k, to which ½Q;R�� is related by the calculational rules of
cMPS. Hcutoff will give a k2 contribution in momentum
space, which is low enough to ensure a finite result in
combination with a momentum occupation that decays
as k�4. It is, however, strong enough to penalize
high-frequency modes, even the ones that give a
contribution �jkj to the (kinetic) energy. It also respects
the chiral symmetry of the kinetic energy term. It does of
course break relativistic invariance, which is inevitable
when introducing a momentum cutoff in a Hamiltonian
framework. Wewould like to stress that our approach is not
specific to this term. We expect that any norm constraint
respecting the symmetries of the system should also be
sufficient.

We now illustrate our arguments by applying them to
relativistic fermionic QFTs. Note that we have given a
central role to the kinetic energy term, which dominates

the UV regime, and that the approach is insensitive to the
nature of the additional terms in the Hamiltonian, whether
they are quadratic or interacting. However, we would first
like to test our approach with an exactly solvable model
and consider free massive Dirac fermions with
Hamiltonian density

ĥ D ¼ � i

2
ĉ yðxÞ�y dĉ

dx
ðxÞ þ H:c:þmĉ yðxÞ�z ĉ ðxÞ;

with Dirac matrices chosen as described above, and m
the fermion mass. Because the cutoff term acts trivially
on the spinor components, it will not mix the particle and

antiparticle levels of the Dirac Hamiltonian. Adding Ĥcutoff

to ĤD will only introduce a sharp cutoff for the negative
(antiparticle) energy levels at kcutoff ¼ �ð1þOðm2=�2ÞÞ.
The cMPS ansatz will not be able to reproduce this sharp
cutoff because it decays as k�4. To test the accuracy of the
description of low-frequency region, we have calculated
the momentum occupation of the exact positive (particle)

and negative (antiparticle) levels. With ĉ�ðkÞ annihilating
a particle from the exact negative (positive) energy level at
momentum k [14], we define

hĉ y
þðkÞĉþðk0Þi � nþþðkÞ; hĉ y�ðkÞĉ�ðk0Þi � n��ðkÞ;

hĉ y
þðkÞĉ�ðk0Þi � nþ�ðkÞ; hĉ y�ðkÞĉþðk0Þi � n�þðkÞ;

where the proportionality factor �ðk� k0Þ has been omitted
for brevity. The exact solution has n��ðkÞ ¼ 1 all the way
up to kcutoff , after which n��ðkÞ ¼ 0 for jkj> kcutoff , and
nþþðkÞ ¼ nþ�ðkÞ ¼ 0, 8 k. Results are shown in Fig. 2
and were obtained using the cMPS ansatz where Q and R�

act on an auxiliary Hilbert space C2 � C2 � CD. The first
two two-dimensional Hilbert spaces accommodate auxil-
iary fermions which are used to impose the anticommuta-
tion relations Eq. (2) on R�. The optimal matrices were
determined using an evolution in imaginary time. It is clear
from these results that the low-energy behavior is approxi-
mated very well for the massive Dirac theory, and the
accuracy greatly increases by increasingD. As anticipated,
the cutoff behavior is approximated less well.

FIG. 1. Hypothetical momentum distribution of an optimal
cMPS for a free fermionic theory: high-frequency degrees of
freedom are well approximated up to a cutoff �, after which the
momentum occupation decays as k�4. Also shown is the effect of
a scale transformation.

FIG. 2. Momentum occupation of the antiparticle levels
n��ðkÞ, the particle levels nþþðkÞ and the mixing jnþ�ðkÞj in
a cMPS approximation of the Dirac field with mass m=� ¼
1=10. The auxiliary space of the cMPS is C2 � C2 � CD. The
vertical line indicates the position of the exact cutoff.
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As a final proof of principle, we study a theory with
interactions. One of the most important models for
one-dimensional relativistic fermions is the Gross-Neveu
model, as it shares many features with QCD [15], including
asymptotic freedom and spontaneous breaking of chiral
symmetry. The Hamiltonian density for the N-flavor
Gross-Neveu model is given by

ĥ GN ¼ � i

2
ĉ y

a�
y dĉ a

dx
þ H:c:� g2

2
: ðĉ y

a�
z ĉ aÞ2:;

where the x dependence of the field operators has been
omitted for brevity and there is an implied summation over
the flavor index a ¼ 1; 2; . . . ; N. One must not forget to
apply normal ordering when deriving an interacting
Hamiltonian from the coherent-state path integral of a

relativistic fermionic QFT. Since we add Ĥcutoff , in which
� is our regularization parameter, we know that the cou-
pling constant gwill have to depend on� in order to have a
consistent theory. The theory is completely determined by
specifying the parameters N and �ð�Þ ¼ gð�Þ2ðN � 1Þ. In
the N ! 1 limit, we can solve this problem exactly, and

we obtain the well-known result for � ¼ h�jĉ y�z ĉ j�i
�

�
¼

Z kcutoff

0

dkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2�2 þ k2

p (3)

where kcutoff � �ð1þOðj��j2=�2ÞÞ. This indicates that

the cutoff fixing term Ĥcutoff has no effect other than what it
is meant to be doing, i.e., introducing a cutoff.

As a variational ansatz we employ a product state of
cMPSs across the different fermion flavors, which can also
be optimized over with the imaginary time evolution algo-
rithm. Because the exact ground state has SN flavor sym-
metry [and actually Oð2NÞ symmetry], we can thus use the
same cMPS for every flavor. This amounts to a Hartree-
Fock approximation of the theory, where the self interac-
tion of the flavor is treated exactly, and the self-consistent
mean-field approach is only applied to the interactions
between different flavors.

Numerical results for � as function of � for N ¼ 1 are
illustrated in Fig. 3. The discrepancies between the exact
solution and the cMPS approximation are clearly finite-D

effects. They become more pronounced as ��=� gets
smaller, since �� is precisely the mass gap in the N ¼ 1
limit. By fitting an exponential, we obtain absolute scaling
of the data, where we reproduce the coefficient in the
exponential, which is related to the first coefficient in the
� function of the coupling constant, with a relative accu-
racy of about 1%. A detailed analysis of the result both for
N ¼ 1 and finite N will be presented elsewhere.
In this Letter we have argued that cMPSs offer a newway

to regularize quantum field theories and are, as a variational
class, not susceptible to Feynman’s objections. Our
approach is free of fermion doubling and sign problems.
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