VIENNA COMPUTATIONAL MATERIALS LABORATORY

A SPECIAL RESEARCH AREA FUNDED BY THE AUSTRIAN SCIENCE FUND (FWF)

TECHNISCHE UNIVERSITÄT WIEN Vienna University of Technology

Fermi surface reconstruction and drop of Hall number due to spiral antiferromagnetism in high-Tc cuprates

A talk by Andreas Eberlein Harvard University, Department of Physics, Cambridge, USA

DATE / TIME: Monday, 10th of October 2016, 04:00 p.m.

LOCATION: **Seminar Room DB gelb 09**, Vienna University of Technology, "Freihaus"- building, 9th floor, "yellow" – Wiedner Hauptstraße 8-10

Andreas Eberlein | eberlein@physics.harvard.edu

We show that a Fermi surface reconstruction due to spiral antiferromagnetic order may explain the rapid change in the Hall number as recently observed near optimal doping in cuprate superconductors [Badoux et al., Nature 531, 210 (2016)]. The single-particle spectral function in the spiral state exhibits hole pockets which look like Fermi arcs due to a strong momentum dependence of the spectral weight. Adding charge-density wave order further reduces the Fermi surface to a single electron pocket. We propose quantum oscillation measurements to distinguish between commensurate and spiral antiferromagnetic order. Similar results apply to certain metals in which topological order replaces antiferromagnetic order.