VIENNA COMPUTATIONAL MATERIALS LABORATORY

A SPECIAL RESEARCH AREA FUNDED BY THE AUSTRIAN SCIENCE FUND (FWF)

TECHNISCHE UNIVERSITÄT WIEN Vienna University of Technology

Cluster Glasses of Semiflexible Ring Polymers

Angel Moreno Centro de Fisica de Materiales (CSIC-University of the Basque Country), San Sebastian, Spain

DATE / TIME: Monday, December 1st 2014, 04:00 p.m. LOCATION: Seminar Room 138C, Vienna University of Technology, "Freihaus"- building, 9th floor, "yellow" – Wiedner Hauptstraße 8-10

Angel Moreno | wabmosea@ehu.es

We present computer simulations of concentrated solutions of unknotted nonconcatenated semiflexible ring polymers. Unlike in their flexible counterparts, shrinking involves a strong energetic penalty, favoring interpenetration and clustering of the rings. We investigate the slow dynamics of the centers-of-mass of the rings in the amorphous cluster phase, consisting of disordered columns of oblate rings penetrated by bundles of prolate ones. Scattering functions reveal a striking decoupling of self- and collective motions. Correlations between centers-of-mass exhibit slow relaxation, as expected for an incipient glass transition, indicating the dynamic arrest of the cluster positions. However, self-correlations decay at much shorter time scales. This feature is a manifestation of the fast, continuous exchange and diffusion of the individual rings over the matrix of clusters. Our results reveal a novel scenario of glass formation in a simple monodisperse system, characterized by self-collective decoupling, soft caging, and mild dynamic heterogeneity.

