

Thursday, April 4 th 2013			
Time	Talk	Lecturers	Details
10:00 - 10:15	Greetings	Georg Kresse	15 min.
10.15 11.00		Walter Keb	Guest Lecture
10.15 - 11.00	Probing a Liquia to Glass Transition in Equilibrium	waiter Kob	45 min.
11:00 - 11:30	Coffee Break (30 min	.)	
11.30 - 12.10	Self-assembly of heterogeneously charged particles	Emonuolo Dionshi	P11
11.50 - 12.10	under confinement	Emanuela Blanchi	40 min.
12.10 - 12.50	Efficient PDA calculations using Green functions	Morzuk Kaltak	P02
12.10 - 12.50	Egitient NEA culculations using Green junctions		40 min
12:50 - 13:50	Lunch (60 min.)		
13.50 - 14.30		Hans Cord Everta	P04
13.30 - 14.30	Bound states and Quantum Bowing	Halls Gera Evertz	40 min.
1/1.30 - 15.10	Cluster surgerier study of the Ni Dt allow sustant	Martin Leitner	P10
14.50 15.10	cluster expansion study of the NI-PT andy system		40 min.
15:10 - 15:40	Coffee Break (30 min.)		
15.40 - 16.10	Hybrid-DFT with an optimized mixing parameter	David Koller	P07
15.40 - 10.10			30 min.
16.10 - 16.40	Covalent magnetism and magnetic impurities	Christoph Gruber	P09
10.10 10.40			30 min.
	Spin-orbit coupling induced effects in practical	Sergeii	P09
16:40 - 17:10	antiferromagnets and new route in antiferromagnetic	Khmelevskyi	30 min.
17.10 10.10	spintronics.		
17:10 - 18:10	General Weeting (Vicow-Wembers Only, 6	o min.) seminarraum :	>
18:10 – 20:10	Dinner Buffet UniBräu Kellerstüb	<i>erl</i> (120 min.)	

Friday, April 5 th 2013				
Time	Talk	Details		
00.00 00.45	Optical and vibrational properties of 2D materials with	Ludger Minte	Guest Lecture	
09.00 - 09.43	ab-initio techniques	Luuger wiitz	45 min.	
09.45 - 10.25	Colordations of the 5 contex in Li5	Paul Tiwald	P05 & p07	
09.45 - 10.25	Culculations of the F-center in LiF	Ferenc Karsai	40 min.	
10:25 - 10:55	Coffee Break (30 min	.)		
10.55 - 11.40	Superconductivity, a Computational Approach	Lilia Roori	Guest Lecture	
10.55 - 11.40		Ellia Doerr	45 min.	
11.40 - 12.20	Relative entropy measures for correlations	Norbert Mauser	P06	
11.40 12.20			40min.	
12:20 - 14:00	Lunch at Culinarium Cooking	Lunch at <i>Culinarium Cooking</i> (100 min.)		
14:00 -14:40	Steady-State Nonequilibrium Dynamical Mean Field	Enrico Arrigoni	P03	
	Theory: an auxiliary Lindblad Master Equation approach	Linco Arigoni	40 min.	
14:40 - 15:20	Fact Convolution Mathed for non-uniform data	Lukas Exl	P12	
	Fast convolution method for non-uniform data		40 min.	
15:20 - 15:50	Coffee Break (30 min.)			
15:50 - 17:20	Discussion (90 min.)			
17:20 - 17:30	Farewell	Georg Kresse	10 min.	

Guest Lectures

Friday, April 5 th 2013 – 11:05 p.m.		
	Superconductivity, a Computational Approach	
Lilia Boeri	Superconductivity is one of the oldest and most fascinating problems in solid state physics. In the last ten years, the advancement of ab-initio techniques has	
	permitted to gain a deep insight into the material-dependent properties which	
Graz University of Technology	characterise real superconductors, and in some cases to anticipate trends in new materials.	
	In my talk, I will review a few recent examples, starting with the classical BCS example of intercalated graphites, and moving on to more controversial cases, such as iron-based superconductors and organic compounds.	

Thursday, April 4 th 2013 – 10:15 a.m.		
	Probing a Liquid to Glass Transition in Equilibrium	
	A glass is an amorphous solid formed by cooling a glass-forming liquid below the experimental glass temperature. Although certain theoretical approaches predict	
Walter Kob	that this dynamical arrest is related to a thermodynamic transition, such a	
	singularity must occur in a temperature regime where it is impossible to do	
Université	experiments under equilibrium conditions.	
Montpellier 2	Recently a new method has been proposed that should make it possible to probe	
	the equilibrium properties of a glass-former even at its Kauzmann temperature. In	
	this talk I will present this method and discuss first results of computer simulations	
	that give evidence that at the Kauzmann point the system undergoes a first order	
	phase transition from a liquid to an ideal glass state.	

Thursday, April 5 th 2013 – 09:00 a.m.		
	Optical and vibrational properties of 2D materials with ab-initio techniques	
Ludger Wirtz University of Luxembourg	Besides graphene, other (quasi)2D materials such as hexagonal boron nitride (hBN) and molybdenum disulfide (MoS2) are receiving increased attention recently. Many groups are performing optical and vibrational spectroscopy on these materials. Since the layer is usually in contact with a substrate, the chemical/physical interaction with the substrate and/or the dielectric screening by the substrate can substantially alter the properties. I will give a few examples how ab-initio methods (GW, Bethe-Salpeter, density-functional perturbation theory) help to understand the subtle changes in the optical and vibrational properties of 2D layered materials due to the influence of the environment.	

Project Parts Presentations

Thursday, April 4 th 2013 – 12:10 p.m.		
	Efficient RPA calculations using Green functions	
Merzuk Kaltak	The computationally most expensive step in GW and RPA implementations is the	
	calculation of the independent particle polarizability χ . We present an RPA code	
P02 - Towards Exact	that calculates χ using the Green function G in real space and imaginary time. The	
Correlation in Extended	systematic construction of optimized time and frequency grids for G is obtained by	
Systems	means of solving a fitting problem. Furthermore a non-uniform discrete Fourier	
	transform between the two grids is introduced, which converges exponentially.	
PI/Project Leader:	We show that the usage of the Green function approach in combination with the	
Georg Kresse	optimized grids can be used for the calculation of the RPAcorrelation energy for	
	very large systems. In addition aspects of a corresponding real-space-imaginary-	
	time GW implementation are discussed.	

Friday, April 5 th 2013 – 02:00 p.m.		
Enrico Arrigoni	Steady-State Nonequilibrium Dynamical Mean Field Theory: an auxiliary Lindblad Master Equation approach	
P03 - Dynamical Mean Field Theory & Beyond	We present a method to compute electronic steady state properties of strongly correlated quantum systems out of equilibrium within dynamical mean-field theory (DMFT). The DMFT solver is based on the exact solution of an auxiliary	
PI/Project Leader: Karsten Held Research/National Partner: Enrico Arrigoni	system consisting of a small number of bath sites coupled to the interacting impurity and to two Markovian reservoirs. The steady state Green's function of the auxiliary system is solved by exact diagonalisation of the corresponding many-body Lindblad equation. The approach can be regarded as the non-equilibrium extension of the exact-diagonalization based DMET	

Thursday, April 4 th 2013 – 12:50 p.m.		
	Bound states and "Quantum Bowling"	
P04 - Quantum Impurity Solvers PI/Project Leader: Frank Verstraete Research/National Partner: Gerd Evertz	Bound states in strongly correlated systems like the Heisenberg spin chain have been difficult to detect experimentally. We discuss a nonequilibrium setup in which these states become prominent during the time evolution after a local quantum quench, which we calculate by time dependent DMRG. They persist even when integrability breaking perturbations are included. The setup is realizable in cold atom experiments. The second part of the talk will introduce "Quantum Bowling", the scattering of propagating soliton-like particles from a wall of bound particles, in the XXZ model and the 1d Bose and Fermi Hubbard models. We show that there is a simple but very surprising pattern of scattering, very different from classical behavior. Potential applications will be discussed, including a fermionic Quantum Newton's cradle.	

Friday, April th 2013 – 09:45 a.m.			
Paul Tiwald		Calculations of the F-center in LiF	
P05 - Embedded Cluster Approach	Ferenc Karsai	We present a joint study of the project parts #5 and #7 on the F-type color-center in LiF. This is an old prototype problem where an electron	
& Non-Adiabatic Processes in Physics & Chemistry	P07 - Electronic Structure of Solids, Surfaces &	is trapped at a vacant anion site. In an intuitive picture the defect electron can be approximately described as a particle in the box. We present a comparison of the physicist's approach (periodic supercell- approach with various DFT-functionals, GW and Bethe-Salpeter	
PI/Project Leader: Joachim Burgdörfer Research/National Partner: Hans Lischka	Nanostructures PI/Project Leader: Peter Blaha	methods) and the quantum-chemist's approach (embedded-cluster approach with wave-function methods such as CASPT2). In both cases, we observe strong excitonic effects due to the strong localization of the defect in agreement with the simple particle in box picture. We discuss the advantages and limitations of both methods and compare their performance on a quantitative level	
Halls LISCIIKd		their performance on a quantitative level.	

Frieday, April 5 th 2013 – 11:55 a.m.		
Norbert Mauser		
P06 - Dynamical Correlated Systems	Relative entropy measures for correlations	
PI/Project Leader:		
Norbert Mauser Research/National Partner:		
Armin Scrinzi		

Thursday, April 4 th 2013 – 03:10 p.m.		
David Koller	Hybrid-DFT with an optimized mixing parameter	
P07 - Electronic Structure of Solids, Surfaces & Nanostructures	Usually in (screened) hybrid functionals the fraction alpha of Hartree-Fock exchange is kept fixed in a certain parametrization. However there is no single (universal) value for alpha which systematically leads to a satisfying accuracy for very different systems like semiconductors or large band gap insulators. We use the static dielectric constant to determine alpha for a specific system in a self-	
PI/Project Leader: Peter Blaha	consistent procedure and present results for the band gap and lattice constant of various semiconductors and insulators.	

Thursday, April 4 th 2013 – 04:10 p.m.		
	Covalent magnetism and magnetic impurities	
Christoph Gruber P09 - <i>Complex</i> <i>Magnetic Structures</i>	We use the model of covalent magnetism and its application to magnetic insulators applied to the case of insulating carbon doped $BaTiO_3$. Since the usual Stoner mechanism is not applicable we study the possibility of the formation of magnetic order based on a mechanism favoring singly occupied orbitals. On the	
PI/Project Leader: Peter Mohn Research Partner/ National Partner: Josef Redinger	basis of our model parameters we formulate a criterion similar to the Stoner criterion but also valid for insulators. We describe the model of covalent magnetism using a molecular orbital picture and determine the occupation numbers for spin-up and spin-down states. Our model allows to simulate the results of our <i>ab-initio</i> calculations for $E(\mathcal{M})$ which are found to be in very good agreement	

Thursday, April 4 th 2013 – 04:40 p.m.		
	Spin-orbit coupling induced effects in practical antiferromagnets and new route in antiferromagnetic spintronics.	
Sergeii Khmelevskyi P09 - Complex Magnetic Structures PI/Project Leader: Peter Mohn Research Partner/ National Partner: Josef Redinger	The magnetic anisotropy energy (MAE) and element-specific contributions to the MAE have been studied for Mn-based antiferromagnetic alloys with layered $L1_0$ structure within the framework of the local spin-density approximation and the fully relativistic torque method. It is found that the contribution to the total MAE from nonmagnetic $3d$ and $4d$ elements in MnIr, MnNi and MnPd ordered alloy is determined not only by Mn contribution but also by strong spin-orbit coupling on non-magnetic transition metal atom. In addition we observe a strong dependence of the MAE on the state of magnetic order [1]. This effect appears to be due to competition between in-plane and uniaxial atomic specific contributions from Mn and transition metal atoms to the MAE. The switching of the magnetization in considering AFM materials may lead to the giant change in the magnetoresistance and thus it may proposed a new route in antiferromagnetic spintronics The idea is to control the magnetization reversal in antiferromagnets via the changing the c/a ratio in antiferromagnetic thing films [2]. We illustrate this idea by calculating the respective anisotropic changes in the relativistic Density of State of in novel high temperature Mn ₂ Au antiferromagnetic compound [3] and MnIr alloy.	

Thursday, April 4 th 2013 – 11:30 a.m.		
Emanuela Bianchi	Self-assembly of heterogeneously charged particles under confinement	
P11 - Nucleation & Self- Assembly in Soft Matter Systems: From the Molecular to the Mesoscopic	We consider axially symmetric quadripolar colloids in a confined planar geometry and study the role of both the overall particle charge and the patch extension as well as the effect of a neutral or possibly charged substrate. A general tendency to form quasi two-dimensional aggregates where particles align their symmetry axes within the plane is found; a clear distinction between the formation of microcrystalline gels branched networks consisting of purely crystalline domains	
PI/Project Leader: Christoph Dellago Research/National Partner: Gerhard Kahl	as opposed to disordered aggregates can be observed based on the specific features of the particle-particle interaction. Additionally, the possible competition of interparticle and particle-substrate interactions affects the size and the internal structure of the aggregates and can possibly inhibit the aggregation process.	

Friday, April 4 th 2013 – 02:40 p.m.		
Lukas Exl	Fast Convolution Method for non-uniform data	
P12 - Multi-Scale Simulations of Magnetic Nanostructures	Directly computed convolution for arbitrary located <i>M</i> sources and <i>N</i> targets scales $\mathcal{O}(MN)$. We present a fast method based on non-uniform discrete Fourier transform (NUDFT) that scales $\mathcal{O}(n^d \log(n) + M + N)$, where <i>n</i> is the mesh size of an auxiliary tensor grid and <i>d</i> the space dimension. The method is extended to handle	
PI/Project Leader: Dieter Suess Research/National Partner: Thomas Schrefl	a large class of singular kernel functions, e.g. Green functions from potential theory. In addition we present a new methodology that further reduces the costs by structured tensor approximation.	

Basic Information

Venue

All lectures take place at "Christian-Doppler-Hörsaal" at Strudlhofgasse, 3rd floor, 1090 Vienna. For instructions on how to get there visit <u>http://physik.univie.ac.at/lageplan-kontakt/lageplan/</u>. The lecture hall is well equipped (1 video-projector, 1 overhead-projector, 2 screens, 1 blackboard, 1~2 multiple sockets as temporary charging stations for laptop batteries, WLAN access via *eduroam* (you can also ask Katharina Simma for a temporary ID).

ote: If you want to work with your laptop during the workshop, please make sure that the batteries are charged before you enter the lecture hall – Due to a security advice regarding the capacity of the busbars in the lecture hall, we must not use more than 1^{2} multiple sockets coevally in the lecture hall. Thank you for your understanding.

ID Badge

When you arrive at the location, please pick up your ID badge and sign in before entering the lecture hall. Keep your ID badge clearly visible at all times (especially during the coffee-breaks and during the meals). Finally, please do not forget to return your ID badge before you leave. Thank you in advance.

Coffee Breaks & Thursday Lunch

The coffee breaks and Thursday lunch will take place in the anteroom of the lecture hall. Food and drinks are for free, but for registered attendees only. Please keep your ID badge clearly visible at all times. Thank you in advance.

Dinner

The dinner on Thursday will take place in the *Universitätsbräuhaus*. Food and drinks are free, but for registered attendees only. Please keep your ID badge clearly visible at all times.

Universitätsbräuhaus

Campus of the University of Vienna (Hof 1)

Alserstraße 4

A-1090 (9th District)

For information on how to get there visit: <u>http://www.unibrau.at/</u>.

Friday Lunch

The lunch on Friday will take place in the *Culinarium Cooking Restaurant*. Food and drinks are free, but for registered attendees only. Please keep your ID badge clearly visible at all times. *Culinarium Cooking Restaurant* Währinger Straße 21, A-1090 Vienna.

