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We analyze the low energy excitations of spin lattice systems in two dimensions at zero temperature
within the framework of projected entangled pair state models. Perturbations in the bulk give rise to
physical excitations located at the edge. We identify the corresponding degrees of freedom, give a
procedure to derive the edge Hamiltonian, and illustrate that it can exhibit a rich phase diagram.
For topological models, the edge Hamiltonian is constrained by the topological order in the bulk,
which gives rise to one-dimensional edge models with unconventional properties; for instance, a
topologically ordered bulk can protect a ferromagnetic Ising chain at the edge against spontaneous
symmetry breaking.
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The edge of strongly correlated quantum systems can
display very intriguing phenomena. For instance, in two-
dimensional (2D) quantum Hall systems the low energy
behavior can be described in terms of chiral modes which
live at the edge of the material [1–4], a behavior also
discovered later in topological insulators [5,6]. In contrast
to the gapped bulk, these edgemodes are gapless and cannot
be gapped out by any perturbation of the system, giving
rise to protected edge currents. Interestingly, this property
cannot be describedby a conventional one-dimensional (1D)
theory, and is dictated by the presence of the topologically
ordered bulk, exposing an intimate connection between the
seemingly different physics in the bulk and at the edge.
In this Letter, we study the low-energy physics for a class

of spin systems on 2D lattices. We show that the Hilbert
space of the effective low-energy theory can be identified
with the entanglement degrees of freedom which live at the
edge of the system. This allows us to construct 1D edge
Hamiltonians which describe the low-energy physics of the
system, and investigate how they change under perturba-
tions in the bulk. We find that bulk perturbations can induce
phase transitions at the boundary, and explicitly investigate
one particular example where we find a rich phase diagram
with gapped, gapless, and symmetry-broken phases at the
boundary. We also study the effect of topological order in
the bulk and find that it induces constraints on the edge
Hamiltonian which cannot occur in conventional 1D spin
systems, a direct consequence of the topological protection
[7,8]; for instance, we give a model based on the Toric code
(TC) [9] whose edge Hamiltonian is an Ising chain, but
which is protected against spontaneous symmetry breaking
by the topological properties of the bulk.

We restrict our attention to projected entangled pair state
(PEPS) models, and perturbations thereof. PEPS models
consist of a Hamiltonian H together with its ground space
which are both derived from a single tensor which describes
the entanglement structure of the system locally [10–13].
We focus on models where H ¼ P

h is translationally
invariant, i.e., a sum of identical local terms, and gapped
for periodic boundaries. Many paradigmatic models such
as the AKLT model [10], topologically ordered systems
[14–16], or resonating valence bond (RVB) states [14,17]
are PEPS models, and we will illustrate our results with
particular perturbations of these models.
We start by introducing PEPS models. For simplicity,

we restrict to square lattices and translationally invariant
systems. The central object is a five-index tensor Ai

μ1;μ2;μ3;μ4,
with physical index i ¼ 1;…; d and virtual indices
μk ¼ 1;…; D. For a given region R, these tensors are
arranged on a 2D grid as shown in Fig. 1(a). Adjacent
virtual indices μk in the bulk are contracted (i.e., identified
and summed over), while the “open” virtual indices at the
boundary are set to α≡ ðα1;…; αj∂RjÞ. One remains with a
tensor ci1;…;iN ðαÞ, which describes a physical state (a PEPS)jΦαi ¼

P
ci1;…;iN ðαÞji1;…; iNi. This defines a linear map

X∶ jαÞ↦X jαÞ≡ jΦαi between states jαÞ ∈ ðCDÞ⊗j∂Rj on
the boundary and the subspace S ≡ spanfjΦαig ⊂ ðCdÞ⊗jRj
of physical states. [We use j � � �Þ to denote states on the
virtual boundary.] Note that equivalently, one can construct
jΦαi by placing virtual bonds

P
D
μ¼1 jμ; μÞ with bond

dimension D along the edges, the state jαÞ at the boundary,
and applying the linear map described by A at every
site [11].
Having defined the PEPS states jΦαi and the PEPS

subspace S ¼ spanfjΦαig, let us now turn towards
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Hamiltonians for PEPS models. A parent Hamiltonian is a
local Hamiltonian H ¼ P

h such that for any (sufficiently
large) region R (i) h ≥ 0, and HjΦαi ¼ 0∀jαÞ, i.e., H is
frustration free and all states in S are ground states of H,
and (ii) all ground states of H are of the form jΦαi,
ker H ¼ S; this is known as the intersection property
[10,12,13]. Given a PEPS, a parent Hamiltonian can be
constructed by choosing ker h ¼ S for some small region
(e.g., as a projector), where appropriate conditions on A
(which hold for generic tensors) ensure the intersection
property [12,13]; since rankS ≤ Dj∂Rj for large enough R,
such h always exist. The paradigmatic example of a PEPS
model is the AKLT model [10], which is constructed
by placing spin-1

2
singlet bonds along the edges and

subsequently projecting onto the maximal spin subspace
(S ¼ 2 on the square lattice); the parent Hamiltonian is
obtained by observing that for any two adjacent sites, the
total spin cannot be S ¼ 4, and choosing h ¼ ΠS¼4

(the projector onto the S ¼ 4 subspace).
We now start from a PEPS model, specified byH ¼ P

h
and a tensor A characterizing its ground space S, with a
gap Δ above the ground space, and consider an arbitrary
perturbation to this model, H0 ¼ H þ V ¼ Pðhþ vÞ,
where ∥V∥ ≪ ∥H∥. What is the low-energy physics of
the perturbed model H þ V? In leading order, it is given
by the effective Hamiltonian Heff ¼ ΠSVΠS, where ΠS
is the projector onto the ground space S of H; i.e., the
low-energy physics takes place in the subspace S. Since
S ¼ spanfjΦαig, this implies that the states which describe
the low-energy physics are in one-to-one correspondence
with states jαÞ on the virtual edge (via the inverse of the
mapX ), and thus, the low-energystatesexhibit a1Dstructure
which is associated to the edge.Evenmore, if the systemdoes
notbreak local symmetries (more technically, if it satisfies the
weakLTQOcondition[18,19]), thesestatesareexponentially
localized at the edge; i.e., different jΦαi do not differ in the
bulk. Together, this shows that the low-energy Hamiltonian
Heff can indeed be understood as a 1DHamiltonian acting on
degrees of freedom localized at the edge.
Let us now show how to determine the 1D model which

describes the effective low-energy physics. To this end,
we work in the 1D basis jαÞ which lives on the virtual

edge indices. There, the perturbation induces a term
ðα0jMjαÞ ¼ hΦα0 jVjΦαi; that is, M is obtained by sand-
wiching the Hamiltonian between a ket PEPS and
a bra PEPS, as shown in Fig. 1(b). However, the map
X∶ jαÞ↦jΦαi does not preserve orthogonality, and thus, in
order to obtain an edge HamiltonianHwhich is isomorphic
to Heff , we need to orthogonalize M, H ¼ P−1MP−1,
where P ¼ ffiffiffiffi

Q
p

, ðα0jQjαÞ ¼ hΦα0 jΦαi. Put more formally,
we can write X ¼ WP, with P a positive map acting on
the virtual indices and W an isometry from the virtual to
the physical system; then, the edge Hamiltonian is H ¼
W†VW ¼ P−1X†VXP−1 [where X†VX is the tensor
network in Fig. 1(b)], and thus indeed isomorphic to Heff .
An essential point to note about the structure of the

edge Hamiltonian is that it inherits all (on-site) symmetries
shared by the PEPS and the bulk perturbation: Any sym-
metry action on a PEPS can be moved from the physical
index to an action of the same symmetry on the virtual
indices [20], and thus ultimately any symmetry shared by V
shows up as a symmetry at the edge degrees of freedom
and thus inH; the argument generalizes to other symmetries
such as reflection or time reversal.
As an example, we have numerically studied the edge

Hamiltonian H of the square lattice AKLT model on an
infinitely long cylinder of circumference Nv; since the
transfer operator of the AKLT model has a unique fixed
point, the two boundaries decouple and we can restrict
our study to a single boundary (see Supplemental Material
for a description of the numerical method [21]). We have
considered the class of Uð1Þ invariant perturbations

V ¼
X
hiji

½JSi · Sj þ gSziS
z
j� þ h

X
i

Szi ; (1)

i.e., an anisotropic Heisenberg Hamiltonian with a
magnetic field. Since H is linear in V, we can write
H ¼ JHJ þ gHg þ hHh; asD ¼ 2, theH• (• ¼ J; g; h) are
spin-1

2
Hamiltonians with translational and Uð1Þ symmetry

[SUð2Þ for HJ]. Note that due to symmetry, HJ is
completely determined by Hg.
First, let us see whether the H• are sums of local terms.

To this end, we decompose H• in a Pauli basis, and denote
by dr the total weight of all terms which span r contiguous
sites (see [22,23]). Figure 2 shows the result forHJ andHg:
In both cases dr decays exponentially with r, indicating
that the edge Hamiltonian is approximately local. Let us
now have a closer look at the individual terms. For HJ,
symmetries restrict the possible two- and three-body terms
to Heisenberg couplings, which following Fig. 2 are the
dominating terms. More generally, we find

HJ ≈
X
l≥1

ηl
X
i

Si · Siþl (2)

where η1 ≈ 2.298 and η2 ≈ −2.394, longer range ηl decay
exponentially, and many-body terms are strongly

(a) (b)

FIG. 1 (color online). (a) Construction of a PEPS by contracting
local tensors. PEPS give a map from the boundary indices
ðα1; α2;…Þ to the bulk indices ði1; i2;…Þ. (b) Using this map,
any bulk Hamiltonian v naturally induces a Hamiltonian on the
boundary by sandwiching v in between the PEPS. Note that the
boundary degrees of freedom still need to be orthogonalized.
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suppressed. Remarkably, the nearest neighbor (NN) and
next-nearest neighbor (NNN) Heisenberg terms inHJ have
essentially the same strength, but opposite sign (this stagger-
ing repeats in the longer-range ηl and arises from the
alternatingparityof singlets connecting thebulkperturbation
to the boundary). Adding an SziS

z
j anisotropy in the bulk

leads to an anisotropy at the edge with a similarly staggered
structure and a renormalized Heisenberg term,

Hg ≈
X
l≥1

�
γl
X
i

Szi S
z
iþl þ

ηl − γl
3

X
i

Si · Siþl

�
(3)

but with suppressed NNN amplitudes γ1 ≈ 9.137,
γ2 ≈ −4.493. (The dependence between the coefficients is
due to symmetries.) Finally, a local magnetic field induces
exactly a field of identical strength at the boundary,
Hh ¼

P
Szi , as can be shown analytically based on sym-

metries of the state [24].
We have studied the phase diagram of the edge for J > 0

using exact diagonalization supplemented by DMRG and
analytical arguments, see Fig. 3. We find that the model
exhibits three phases—a fully polarized ferromagnetic
phase, an antiferromagnetic phase, and an XY Luttinger
liquid phase. By choosing the appropriate bulk perturbation
V, we can thus achieve either gapped, gapless, or symmetry
broken phases at the edge, and induce phase transitions
between them. Note that the phase diagram at the edge only
depends on the relative strength of the terms in V, and thus
all phases can be realized within the perturbative regime;
generally, the perturbative treatment will be valid as long as
V is sufficiently smaller than the bulk gap.
A natural question is whether we can achieve any edge

Hamiltonian H we want. Since for a trivial bulk phase
the mapping X from the edge to the bulk is injective, the
answer there is indeed yes. Even more, any local H can be
obtained from an approximately local bulk perturbation:
At the RG fixed point where A is the identity, this is clear.
Now for any model connected to it via a gapped path, we

can obtain its ground space via a quasiadiabatic evolution
[25] of the original ground space; the correspondingly
evolved bulk perturbation is then quasilocal and yields the
desired H. Thus, we find that for a trivial bulk phase, the
edge is never protected [26].
We now turn towards topologically ordered systems, and

investigate whether the bulk order can protect the physics
at the edge. In these systems, the PEPS tensor is invariant
under a symmetry action on the virtual indices which can be
identified with particle types (charges) p of the topological
model. Therefore, on the cylinder the transfer operator E of
a column (cf. Supplemental Material [21]) is degenerate,
with its maximal eigenvectors ρpfp being supported on the
sector with total topological charge p [23]. In particular, the
fixed point E∞ is of the form E∞ ¼ P

pjρpfp;Lihρp
�

fp;Rj, with
p� the antiparticle of p.
Let us now for a moment fix p in the sum: Then, we

are essentially back in the scenario which we had for
nondegenerate E, in that any perturbation induces an
effective edge Hamiltonian on the two edges independently.
However, there is an important difference: ρpfp;L does not
have full rank, but is supported on the sectorwith topological
charge p. Thus, only boundary conditions jαÞ in this sector

M̂

FIG. 2 (color online). Edge Hamiltonian for the perturbed
AKLT model: Exponential decay of the interaction strength of
range-r terms, dr, with distance, for different Nv, for HJ (solid
lines) and Hg (dotted lines). Inset: Finite size scaling of η1 (red
circles) and γ1 (blue squares) vs 1=Nv.

FIG. 3 (color online). Edge Hamiltonian for the perturbed
AKLT model, Eq. (1). (a) Phase diagram as a function of
anisotropy g=J and field h=J, for J > 0. Three phases are
observed: a fully polarized ferromagnetic (FM) phase (with
magnetization mz ¼ 1

2
), an antiferromagnetic (AFM) phase

(mz ¼ 0), and an XY Luttinger liquid phase. The shading shows
mz for the ground state of the full edge Hamiltonian H for
Nv ¼ 14; the solid lines give phase boundaries determined
analytically using fully polarized and mean-field AFM Ansätze,
both for H and Hamiltonians Hk where the sum in (2) and (3) is
restricted to l < k. (b) Correlation functions CxxðlÞ ¼ hSxi Sxiþli
and CzzðlÞ ¼ hSzi Sziþli for the three phases, computed at the
points marked × in (a). DMRG calculations for Hk show that in
the XY phase, Cxx decays algebraically.
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will correspond to a nonzero physical state jΦαi and thus to
admissible gapless excitations. At the same time, the label p
is also preserved by EV (since it emerges from a symmetry
acting solely on the virtual indices of the PEPS tensor [13]),
and thus, Mp

L is also supported only in that sector. Thus,
we can still orthogonalize it using the pseudoinverse of
ðρpfp;LÞ1=2, and obtain an effective edge HamiltonianHp

L for
the sector with charge p (and analogously Hp�

R for the
right edge).
The full edge Hamiltonian is now obtained by putting

both edges together and summing over p; it is of the form

H ¼ Π0ðHL ⊗ 1R þ 1L ⊗ HRÞΠ0;

where HL;R ¼ P
pH

p
L;R, and Π0 is the projector onto the

sector with total charge p ¼ 0 for both boundaries together.
This implies that the edge Hamiltonian for a single edge
must conserve the topological charge; this edge symmetry
is protected by the topological order in the bulk and can
stabilize nontrivial properties of the edge Hamiltonian [7].
Let us illustrate this for the Toric code [9], where the spin-1

2
edge Hamiltonian is constrained by a quasifermionic Z2

parity superselection rule. Since the TC is an RG fixed
point, there is a one-to-one local unitary correspondence
between virtual and physical degrees of freedom at the edge
up to the parity constraint [13], allowing us to engineer
any parity-preserving edge Hamiltonian. In particular, V ¼
−PhijiSxi S

x
j yields Ising models HL ¼ HR ¼ −P

Sxi S
x
iþ1

at the edges, whose even and odd parity ground states are
the GHZ states j þ…þi � j −…−i. Thus, each of the
edges is an Ising model in a GHZ state—a macroscopic
superposition—which is protected against spontaneous
symmetry breaking by arbitrary local perturbations, some-
thing that is impossible in a conventional 1D spin system;
this is in close analogy to the protection of a fermionic
Majorana chain [27].
We have computed the edge Hamiltonian for the topo-

logical RVB state on the kagome lattice, which is a D ¼ 3
PEPS [14,17], for a bulk perturbation V ¼ P

hi;jiSi · Sj.
We find that HL and HR are again approximately local,
while the per-sector HamiltoniansHp

L=R are not; the latter is
due to the fact that Hp

L=R contain a projector onto a super-
selection sector, in direct analogy to what has been found
for the Hamiltonians reproducing the entanglement spec-
trum in the case of topological models [23]. The symmetry
of the RVB PEPS strongly restricts the possible local terms,
implying that the structure of the edge is that of a spinful
particle or a hole, similar to a t-J model [28]; explicitly, we
find that the leading terms of the edge Hamiltonian for
Nv ¼ 8 are (using the notation of [28])

H≈
X
i

�
t1
X
s

ða†s;ias;iþ1 þH:c:Þ þ J1Si · Siþ1

þ 3c2ffiffiffi
2

p
�
ni − 2

3

�
þΔ1ða↓;ia↑;iþ1 − a↑;ia↓;iþ1 þH:c:Þ

�

where the as;i denote hardcore bosons, and with
t1≈−0.158, J1≈0.233, c2≈0.177, and Δ1 ≈ −0.086.
We have also considered a chiral perturbation
V ¼ P

Si · ðSj × SkÞ, where the sum runs over all trian-
gles, and found that the dominant term at the edge is given
by a chiral current of particles, HL ≈

P
ia†s;kas;kþ1 þ H:c:,

carrying 64.5% of the total weight in HL. Note, however,
that such a term by itself does not give rise to a protected
chiral edge mode. [A similar chiral perturbation to the
AKLT model gives, in leading order, rise to a chiral spin
current H ≈

P
Sk · ðSkþ1 × Skþ2Þ; note that this is the

simplest SUð2Þ invariant chiral spin-1
2
Hamiltonian.]

InthisLetter,wehavestudiededgetheories intheframework
of PEPS models. We have demonstrated that the effective
low-energy theory lives on the virtual degrees of freedom
at the boundary, which allows us to explicitly obtain the edge
Hamiltonian in thevicinityof thesemodels. In the trivial phase,
this allows us to engineer arbitrary edge Hamiltonians, while
topological bulk phases carry symmetries at their boundary
which can protect the physics at the edge. Thus, protected
physicsat theedgeisasignatureof topologicalorder inthebulk,
and we expect that one can characterize the type of bulk
topologicalorder fromtheprotectedpropertiesof theedge[29].
All results equally apply to fermionic systems [30]. While we
focused on a perturbative regime around PEPS models, we
expect our findings to apply more generally: First, PEPS
approximate ground states of local Hamiltonians well [31]
and any (generic) PEPS has a parent Hamiltonian associated
with it [12,13], suggesting that many systems have a PEPS
modelcloseby;andsecond, the identificationof the low-energy
physicswith thevirtual degrees of freedomat the edge extends
to any systemconnected to aPEPSmodel by agappedpath, by
quasiadiabatic evolution of the ground space [25].
One question left open is the possible correspondence

between entanglement spectrum and edge physics [32–35]
beyond that emerging from their joint symmetries. For
example, for the RVB model the Heisenberg term in H is
much enhanced as compared to the Hamiltonian derived
from the entanglement spectrum [22,28], which can be seen
as a trace of the Heisenberg bulk perturbation. To study this
further, one can apply our framework to frustrated PEPS
models (e.g., variationally minimized iPEPS) which exhibit
edge dynamics without perturbations.
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