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We prove an upper bound on the maximal rate at which a Hamiltonian interaction can generate

entanglement in a bipartite system. The scaling of this bound as a function of the subsystem dimension on

which the Hamiltonian acts nontrivially is optimal and is exponentially improved over previously known

bounds. As an application, we show that a gapped quantum many-body spin system on an arbitrary lattice

satisfies an area law for the entanglement entropy if and only if any other state with which it is

adiabatically connected (i.e., any state in the same phase) also satisfies an area law.
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Introduction.—Entanglement is one of the defining
trademarks of quantummechanics, appearing ubiquitously,
both at the theoretical and the experimental level. For many
of the applications, notably in quantum optics, nuclear
magnetic resonance, and condensed matter physics, it is
the optimal creation of entanglement that is important, and
much experimental effort has been devoted to this process.
A fundamental question then is, given some Hamiltonian
interaction between two subsystems A and B, what is the
maximal rate at which the Hamiltonian evolution can gen-
erate entanglement [1–3]? It is this dynamical question that
we study in this Letter, and we will provide a tight upper
bound for the maximal entanglement rate in the most
general setting. But as we will show in the second part of
the Letter, this issue also has important consequences for
the static entanglement properties of quantum many-body
systems.

Over the past decade it has been realized that looking at
entanglement properties provides a new window into
these systems, allowing an improved classification of
different quantum phases of matter [4–6]. In particular,
it was found that the entanglement distribution for gapped
systems always seems to have the same characteristic
behavior [7]: for two arbitrary connected subsystems,
the entanglement entropy scales like the boundary area
(with small logarithmic corrections for critical systems),
rather than the volume as one would expect for random
states. This so-called area law has important consequen-
ces for the efficient representability of quantum many-
body states. And as such it has served as a guiding
principle for the formulation of the different successful
numerical tensor network methods that have emerged in
recent years [8]. However, thus far the area law has only
been proven for gapped one-dimensional systems [9,10].
Our results provide a step in the direction of a general
proof for higher dimensions. Using the formalism of
quasiadiabatic continuation [11], our bound on the entan-
glement rate allows us to show that, within a gapped

quantum phase, a subsystem’s entropy is constant up to
a term that scales like its boundary area. This then implies
that an area law for one particular system automatically
carries through to all other systems in the same quantum
phase. A similar statement was made in the concluding
remarks of [12], but it turns out that the argument pre-
sented there was not strong enough as it only applied to
adiabatic evolution and not to quasiadiabatic as is needed
for proving area laws. Also, this stability of the area law
under adiabatic evolution was claimed by Michalakis in
[13], but he needed extra assumptions on the decrease of
the Schmidt coefficients and his results also contain an
extra prefactor which scales superlogarithmically with the
area [14].
Let us now first return to the problem of bounding the

maximal dynamical entanglement rate for bipartite sys-
tems. We consider a pure state j�i on a system aABb,
for which the time evolution is governed by the unitary

operator UðtÞ ¼ eiðHaAþHbBþHABÞt. The entanglement en-
tropy between subsystems aA and Bb can be quantified by
the von Neumann entropy, SaAðtÞ ¼ �Tr�aAðtÞ log�aAðtÞ,
with �aAðtÞ ¼ TrBbUðtÞj�ih�jUðtÞy. Accordingly, the
entanglement rate is then defined as

� ¼ dSaAðtÞ
dt

��������t¼0
: (1)

Notice that we are explicitly considering ancillas a and b
that do not directly interact with the other subsystem. But
althoughHaA andHbB do not contribute to the entanglement
rate (1), the ancillas can still influence this rate indirectly,
through their entanglement with the rest of the system. It is
precisely the influence of these ancillas that we address in
this Letter. Notice also thatwe are looking for a bound on the
entanglement rate at some particular (arbitrary) reference
time, as opposed to a bound on the average rate over some
period.
The problem of maximizing � was first considered in

[1], for the case where A and B are qubits (dA ¼ dB ¼ 2).
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It was shown that, in the absence of ancillas, �max �
max�� � �kHk, with kHk the operator norm of the inter-
acting Hamiltonian HAB and � � 1:9123. Furthermore,
Dür et al. observed that ancillas can generically increase
the maximal entanglement rate. The general case with no
ancillas was solved by Bravyi in [2], who obtained �max �
cðdÞkHk logd. Here d ¼ minðdA; dBÞ, the smallest dimen-
sion of the interacting subsystems. The constant cðdÞ
decreases with d, with cð2Þ ¼ � and cðdÞ ! 1 for large
d. (See also [15] for an alternative proof that c � 4 in the
absence of ancillas.) Note that these bounds are optimal;
one can always find a particular HAB for which they are
saturated [1,2].

In [2] the small incremental entangling (SIE) conjecture,
attributed to Kitaev, was put forward for the case of ancilla-
assisted entanglement rates:

�max � ckHk logd; d ¼ minðdA; dBÞ; (2)

where c is an order one constant independent of d. Bennett
et al. had already shown in [3] that the ancilla-assisted
entanglement rate is indeed bounded by a quantity that is
independent of the ancilla dimensions, obtaining �max �
ckHkd4. The results in [2] imply a stronger bound �max �
2kHkd2, and very recently this bound was further
improved by Lieb and Vershynina [16], obtaining �max �
ð4= ln2ÞkHkd. But for large systems, this last bound is still
exponentially weaker than the conjectured bound (2). To
prove our result on the adiabatic evolution of the entangle-
ment entropy within a many-body quantum phase, one
needs the stronger bound (2), which will be proven now.

Proof of the SIE conjecture.—Without loss of generality
we will work with a normalized interaction Hamiltonian
HAB with norm kHk ¼ 1. To prove SIE we will start by
following the strategy that was set out in [2]. If we consider
the case where dA � dB, the bound (2) that we want to
prove reads: � � c logdB. As the right-hand side of this
bound is independent of a and A, we can simply consider
the case da ¼ 1; indeed, we can always extend A to A � a.
The entanglement rate then reads:

� ¼ �iTrðHAB½�AB; log�A � IB�Þ; (3)

which we can formally recast as

� ¼ 1

p
�ðpÞ � 1

p
ð�iTrðH½X; logY�ÞÞ; (4)

identifying H ¼ HAB, X ¼ �AB=d
2
B, Y ¼ �A � IB=dB, and

p ¼ 1=d2B � 1=2, and using that the commutator remains
unchanged upon inclusion of the constant factor 1=dB in
the log. The idea now is to bound �ðpÞ [17] for general H,
X, Y, under the conditions:

kHk¼1; TrX¼p; TrY¼1; 0�X�Y: (5)

These conditions indeed follow from the identification
above; in particular, the last inequality follows from �AB �
dB�A � IB, as one can easily show (see [2]). It is clear then,

that if we prove that for any matrix dimension �ðpÞ �
�c0p logp, we will have proven the SIE conjecture (2)
with c ¼ 2c0. We will obtain c ¼ 18.
Let us first do the optimization overH, which can be cast

into a variational problem over all possible projectors
0 � P � I:

max
kHk¼1

j�ðpÞj ¼ 2max
P

jTrðP½X; logY�Þj: (6)

Working in the eigenbasis of Y, the quantity j�ðpÞj we
want to bound then reads:

2

��������
X
i<j

log
yi
yj
ðXijPji � XjiPijÞ

��������; (7)

with P some projector and the nonzero eigenvalues yi of Y
in decreasing order: y1 � y2 � � � � � yN > 0.
It is now useful to group these N eigenvalues in a finite

number of successive intervals:

1> yi1 � p 1 � i1 � n1

p > yi2 � p2 n1 < i2 � n2

. . .

pk�1 > yik � pk nk�1 < ik � nk

. . .

pk	�1 > yik	 � pk	 nk	�1 < ik	 � N:

(8)

Of course some intervals can be empty; in this case, we
have nk�1 ¼ nk. We can now rearrange the sum in (7) as
follows (with ik, jk 2�nk�1; nk�):X
i<j

¼
� X
i1<j1

þ X
i1;i2

þ X
i2<j2

�
þ

� X
i2<j2

þ X
i2;i3

þ X
i3<j3

�

þ � � � þ
� X
ik	�1<jk	�1

þ X
ik	�1;i

	
k

þ X
i	
k
<j	

k

�

�
� X
i2<j2

�
�

� X
i3<j3

�
� � � � �

� X
ik	�1<jk	�1

�

þ
� X
i1;ik>2

þ X
i2;ik>3

þ � � � þ X
ik	�2;ik	

�
: (9)

Our bound then follows from separately bounding the
absolute values of all individual bracketed terms in this
sum. This of course leads to a bound on the absolute value
of the full sum in (7).
The logic behind the particular rearrangement (9) is

twofold. First of all, the sum on the last line now only
runs over pairs (i, j) that are separated by at least one

interval in (8). For any pair in this restricted sum ~P we
therefore have yj < pyi, which allows for a useful bound in

the following way. Wewrite X as X ¼ Y1=2ZY1=2, with 0 �
Z � I, as follows from (5). The contribution to the bound
of (7) then reads:

2

�������� ~X
i<j

log
yi
yj
y1=2i y1=2j ðZijPji � ZjiPijÞ

��������; (10)
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which from the Cauchy-Schwarz relation can be
bounded by

4

�
~X
i<j

log
yi
yj
y1=2i y1=2j ZijZji

�1
2

�
~X
i<j

log
yi
yj
y1=2i y1=2j PijPji

�1
2

� 4p1=2 logð1=pÞ
�
~X
i<j

yiZijZji

�1
2

�
~X
i<j

yiPijPji

�1
2

� 4p1=2 logð1=pÞ
� XN
i;j¼1

yiZijZji

�1
2

� XN
i;j¼1

yiPijPji

�1
2

� 4p1=2 logð1=pÞ
�XN
i¼1

yiZii

�1
2

�XN
i¼1

yiPii

�1
2

� 4p logð1=pÞ: (11)

On the second line we use x1=2 logð1=xÞ � p1=2 logð1=pÞ,
if x � p � 1=e2, with x ¼ yj=yi. On the third line we

simply add positive terms in the summation, while on the
fourth line we use Z, P � I. Finally, on the fifth line we use
p ¼ TrðXÞ ¼ TrðYZÞ and TrY ¼ 1.

The other terms on the first three lines in (9) are grouped
such that any bracketed term can be rewritten again as a
matrix expression, now on a subspace corresponding to
two subsequent intervals in (8) (line one and two) or to a
single interval (line three). This then also allows for a
useful bound. For the first term on line one, for instance,
we have

2

��������
Xn2
i¼1

Xn2
j¼iþ1

log
yi
yj
ðXijPji � XjiPijÞ

��������
¼ 2jTr ~P½ ~X; log ~Y�j � k½ ~X; log ~Y�k1
¼ k½ ~X; logð ~Y=~yminÞ�k1 � k logð ~Y=~yminÞkk ~Xk1
¼ log

~ymax

~ymin

Tr ~X � 2ðp1 þ p2Þ logð1=pÞ: (12)

Here, on the second line ~Y denotes the part of Y acting on
the subspace spanned by the eigenvectors 1 to n2, while
~P � I and ~X are two semipositive definite operators on this
subspace. For the inequality we use that the maximum will
be reached for ~P a projector, yielding the trace-norm of the
commutator. On line three we add a constant factor 1=~ymin

in the log, leaving the commutator unchanged. With ~ymin

defined as the minimal eigenvalue of ~Y, the right argument
of the commutator is now also semipositive. This allows us
to use the commutator inequality by Kittaneh [19]. Finally,
on the last line we use that p2 < yi=yj < 1=p2 for yi, yj
elements of two neighboring intervals (8), and we also
write Tr ~X ¼ Pn2

i¼1 Xii � p1 þ p2. Defining the full
decomposition of p ¼ TrX as

p ¼ X
k

X
ik

Xikik �
X
k

pk; (13)

we then find the contribution of the full first and second
line in (9) to the bound of (7):

2

�
p1 þ pk	 þ 2

Xk	�1

k¼2

pk

�
log

1

p
� 4

Xk	
k¼1

pk log
1

p
¼ 4p log

1

p
:

(14)

In a similar fashion we can bound the contribution of the
third line byp logð1=pÞ. Taking the contributions of the four
lines in (9) together,wefinally find the bound (forp � 1=e2)

�ðpÞ � 9p logð1=pÞ; (15)

which concludes our proof of the SIE conjecture (2), with

c ¼ 18 (and for d ¼ ffiffiffiffiffiffiffiffiffi
1=p

p � 3). j
This is an improvement of the bound in [16] only

for d > 10. But we now indeed recover the optimal
logd scaling of the SIE conjecture (2). Our prefactor
c ¼ 18 itself is probably not optimal. Bravyi put forward
the small incremental mixing (SIM) conjecture, �ðpÞ �
c00½�p logp� ð1� pÞ logð1� pÞ� [2], and found c00 ¼ 1
on numerical examples. We also seem to find this numeri-
cally for matrix dimensions up to 1000. For large d this
would lead to �max & 2kHk logd.
Area law for quasiadiabatic continuation.—Two gapped

systems are defined to be in the same phase if and only if
they can be connected by a smooth path of gapped local
Hamiltonians [20]. More explicitly, if we parametrize this
path with s 2 ½0; 1�, all ground states j�ðsÞi of the con-
tinuous family of gapped local Hamiltonians HðsÞ then
belong to the same phase as j�ð0Þi. We can now employ
the bound (2) to put a bound on the variation of some
subsystem’s entanglement entropy, along the path traced
out by s. The formalism of quasiadiabatic continuation,
first introduced in [11], permits us to write a Schrödinger
equation for the exact evolution along this path:

d

ds
j�ðsÞi ¼ iKðsÞj�ðsÞi: (16)

The power of this formalism lies in the fact that for local
gapped Hamiltonians HðsÞ, one can show that the effective
Hamiltonian KðsÞ will in fact be quasilocal [21,22]. To be
specific (and from now on we largely follow the notation of
[21]), let us write the Hamiltonian as a sum of local near
(est) neighbor interactions, HðsÞ ¼ P

i2�hiðsÞ, on a
D-dimensional lattice �. For simplicity we will consider
a translation invariant system, with khiðsÞjj ¼ kh0ðsÞjj.
The corresponding effective Hamiltonian then reads [21]:
KðsÞ ¼ P

i2�kiðsÞ. Here, each term ki now has support on
the full lattice, but the interaction strength decays for large
distances. That is, we can write this term as

kiðsÞ ¼
X
r¼0

kiðs; rÞ; (17)

where kiðs; rÞ has support on a ball with radius r, centered
at the point i, and its magnitude kkiðs; rÞk ¼ kk0ðs; rÞk
decays subexponentially with r, either polynomial or
superpolynomial, depending on the specific choice for
the filter function in KðsÞ.
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If we now take a bipartition of the full system into L and
R, and for the sake of clarity we consider a straight cut
(see Fig. 1), we can bound the entanglement rate along s as
follows (working in lattice units a ¼ 1, and dropping order
one prefactors):

dSLðsÞ
ds

¼ iTrðKðsÞ½j�ðsÞih�ðsÞj; log�L � IR�Þ

¼ iTr

�X
i;r

kiðs; rÞ½j�ðsÞih�ðsÞj; log�L � IR�
�

&
X

ðiP;iOÞ

X
r�iO

logdlr
DkkiP;iOðs; rÞk

& logdlA

�X
r

rDþ1kk0ðs; rÞk
�
: (18)

On line three we decompose i ¼ ðiP; iOÞ in the directions
parallel and the direction orthogonal to the boundary and
we apply the bound (2) for each term kiðs; rÞ separately.
We overestimate d in (2) by equating it to the full dimen-
sion of the subsystem where kiðs; rÞ is working on logd �
logdlr

D, with dl the local dimension (and dropping the
geometric volume prefactor). The restriction on the sum
over r follows from the fact that only the terms that have
overlap in both subsystems L and R can generate entangle-
ment. Finally, on the last line, the sum over the parallel
indices gives us the boundary area A and we have summed
the iO index. It is clear then that we find an area law for the
entanglement rate along quasiadiabatic continuation, as
long as kk0ðs; rÞk decays faster than 1=rDþ2. Specifically,
with a little effort one can read off the following bounds
from [21] (up to order one prefactors) for the case of a
polynomially decaying filter function:

kk0ðr; sÞjj & kh0k
�

;

kk0ðr; sÞk & rD�1 khkkh0k�
�3

e�rv=2 þ jjh0k
�

�
�

r

�
n
; (19)

with khk ¼ kh0ðsÞk and kh0k ¼ jjdh0ðsÞ=dsk. �ðsÞ is the
mass gap, � and v are two constants that appear in the
Lieb-Robinson bound [23], from which the Lieb-Robinson
velocity reads vLR ¼ �=v, and � ¼ vLR=� is the correla-
tion length that follows for gapped systems [24]. In the case
of nearest-neighbor interactions, one can choose the Lieb-
Robinson constants as � � khk and v ¼ 1. Furthermore,
as we mentioned before, the power of decay n depends on
the specific form of KðsÞ and can be chosen freely. For
n > Dþ 2, we can then bound the sum in the entangle-
ment rate (18) by using the first bound for r � � and the
second bound for r > �. For the physically interesting case
� � khk, or equivalently � � 1, the second term of this
second bound will dominate, and we find

X
r

rDþ1kk0ðs; rÞk &
kh0jj
�

�Dþ2; (20)

resulting in the area law

dSLðsÞ
ds

& A
kh0ðsÞk
�ðsÞ �ðsÞDþ2 logdl; (21)

for the variation of the subsystem entanglement entropy
along an adiabatic path. Upon integration of (21) we can
then conclude �SL ¼ SLðsÞ � SLð0Þ � A~cðsÞ logdl, for
the subsystem entropy difference for two states belonging
to the same gapped quantum phase. As ~c is independent of
the system size or boundary area A, we have indeed shown
for the first time that an entropy area law for one gapped
system implies an area law for all systems within the same
quantum phase.
Note that the formalism of quasiadiabatic evolution also

works in the case of topological quantum phases [25]; from
(21) we can then indeed conclude that an area law for the
ground states is protected under adiabatic evolution within
a gapped topological quantum phase.
In conclusion, we have proven an upper bound on the

entanglement that can be generated by any Hamiltonian
which acts on a subsystem of a large bipartite system,
originally conjectured by Bravyi and Kitaev. The corre-
sponding bound is optimal to within a constant, and
its scaling with respect to the dimension of the subsystem
on which it acts nontrivially is logarithmic. Our motivation
for proving this bound was to understand the scaling of the
entanglement entropy in ground states of quantum many-
body systems within the same phase. By combining this
small incremental entangling theorem with Lieb-Robinson
techniques, we were able to prove that a ground state of a
quantum spin system obeys an area law if and only if all
other ground states in the same phase obey an area law, and
this result is valid in any dimension and on any lattice. We
hope that this might present a first step in proving the
existence of an area law in any gapped system in higher
dimensions.

FIG. 1. The balls of support (for the Manhattan metric) cen-
tered at two points i and j, for two terms kiðs; 4Þ and kjðs; 2Þ in
the Hamiltonian KðsÞ. Only the term kiðs; 4Þ can generate
entanglement across the cut.
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Note added.—Recently, Audenaert constructed an alter-
native proof of the SIM conjecture (implying the SIE
conjecture) [18].
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