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We discuss how to apply many-body methods to correlated nanoscopic systems, and provide general criteria
of validity for a treatment at the dynamical mean field theory (DMFT) approximation level, in which local
correlations are taken into account, while nonlocal ones are neglected. In this respect, we consider one of the
most difficult cases for DMFT, namely, for a quasi-one-dimensional molecule such as a benzene ring. The
comparison against a numerically exact solution shows that nonlocal spatial correlations are relevant only in
the limit of weak coupling between the molecule and the metallic leads and of low inter-atomic connectivity,
otherwise DMFT provides a quantitative description of the system. As an application we investigate the role of
correlations on electronic transport in quantum junctions, and we show that a local Mott-Hubbard crossover is a
robust phenomenon in sharp nanoscopic contacts.
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I. INTRODUCTION

Strong electronic correlations are a big challenge in
condensed matter theory. In the case of bulk materials,
dynamical mean field theory (DMFT)1 turned out to be a
big breakthrough, at least in three dimensions. The reason
for this is that local, time-dependent electronic correlations
are taken into account accurately. This local part is the major
contribution of electronic correlations at least for high enough
coordination or dimensions or at elevated temperatures. For
realistic materials calculations on the other hand, DMFT has
been merged with density functional theory in the local density
approximation (LDA).2 All these calculations are done in the
thermodynamic limit, i.e., for an infinitely extended crystal.

In nanoscopic systems, the confinement of electrons into
low-dimensional structures is expected to enhance correlation
effects compared to bulk materials. Since complex nanoscopic
systems are nowadays experimentally available, a microscopic
modeling of them together with a reliable solution method
taking electronic correlations into account is highly desirable.
In the context of transport through nanoscopic systems also the
detailed modeling of the reservoirs is required to accurately
describe the experimental data.

Very small nanoscopic systems and molecules consisting
only of a few atoms can still be calculated exactly, i.e., the
low-energy effective Hamiltonian for these can be solved,
or for even simpler di- or tri-atomic molecules numerically
exact solutions are possible, e.g., by quantum Monte Carlo
(QMC)3–5 or configuration interaction. However, as soon as
the nanoscopic or molecular systems become somewhat more
complex, this is not possible any longer and, hence, a reliable
approximation is needed. Recently, there have been efforts
to apply DMFT also to finite systems such as nanoscopic
structures and molecules connected to reservoirs.6,7 Since
nanoscopic systems are very different from the bulk, at this
early stage, we have first of all to learn how reliable DMFT for
describing electronic correlations in nanoscopic and molecular
systems is.

A general scheme for treating correlated nanoscopic
systems should also include nonlocal spatial correlations
beyond DMFT. In this respect, cluster8 and diagrammatic

extensions9–13 have been developed. Among the diagrammatic
extensions, the dynamical vertex approximation (D�A)9–12

represents a systematic improvement beyond DMFT, as it
allows to calculate the nonlocal part of the self-energy under
the assumption of locality for the two-particle fully irreducible
vertex. Recently, it has been shown that the fully irreducible
vertex is computationally accessible,14 e.g., via the numerical
solution of an Anderson impurity model (AIM). However, a
full calculation for nanostructures at the D�A approximation
level, including the solution of the parquet equations,9–12,16,17

is indeed computationally expensive.
In this paper we will focus on the DMFT approximation

level, that can be seen as a special case of a general scheme
that we call “nano-D�A,” as described in Ref. 6. In Sec. II,
we outline the method and discuss the connection with related
or alternative approaches. In Sec. III A, in order to understand
the reliability of DMFT for nanoscopic systems, we compare
it extensively to a numerically exact solution, in an interesting
case of a quasi-one-dimensional molecule (benzene ring), and
provide general criteria of validity for the approximation. In
Sec. III B, we show the potentiality of the method applying it
to single atom quantum junctions, namely, to quantum point
contact (QPC) of different sizes. Finally, Sec. IV provides a
summary and outlook.

II. METHOD

As pointed out in the introduction, we are interested in a
nanoscopic system consisting of sites (e.g., atoms) i with an
intersite hybridization (hopping) tij , a local Coulomb repulsion
Ui and (optionally) a coupling Viνk to some noninteracting
environment, describing metallic leads contacted to the nanos-
tructure. The Hamiltonian hence reads

H =
∑
ijσ

tij c
†
iσ cjσ +

∑
i

Uic
†
i↑ci↑c

†
i↓ci↓

+
∑
iνkσ

Viνkc
†
iσ lνkσ + H.c. +

∑
νkσ

ενkl
†
νkσ lνkσ , (1)

where c
†
iσ (ciσ ) and l

†
νkσ (lνkσ ) denote the creation (annihilation)

operators for an electron with spin σ on site i and in lead ν
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state k with energy ενk . For the purposes of the present paper,
the one-band Hamiltonian (1) is enough, because the main
goal is to validate our approach. The extension to multiorbital
problems is straightforward and below we will highlight the
corresponding modifications to the general scheme.

Let us just recall here that a numerically exact solution
of this problem suffers from a nonpolynomial growth of the
computational effort with the system size and is hence limited
by severe restrictions on the number of sites. Therefore, if one
aims at dealing with complex structures made of more than
a few coupled sites, some kind of approximation is needed.
A DMFT-like approach with a suitable approximation may be
able to deal with a large number of coupled correlated sites, but
in order to apply DMFT—and its extensions—to nanoscopic
systems, one needs to define a proper local impurity problem,
whose solution (usually numerical) represents the bottleneck
of the algorithm.

What one can do is to reduce the N -impurity Anderson
problem (1) onto a set of independent auxiliary AIMs, one for
each of the Nineq �N inequivalent atoms in the nanostructure.
Each AIM is a local problem that can be numerically solved to
compute the Nineq correspondent (local) self-energies, the
knowledge of which allows to build a DMFT self-energy
for the nanosctructure. The process is embedded into a
self-consistency loop. This way the overall computational
effort is heavily reduced, depending only linearly on Nineq,
that in case of highly symmetric structures may be much
lower than N . This procedure has, however, the drawback
that nonlocal correlations within the nanostructure, which are
expected to be relevant in low dimensions, are neglected. The
treatment—when necessary—requires a more sophisticated
analysis beyond the DMFT level.

The starting point of the method is the Green’s function of
the whole nanostructure (including the leads) Ĝ(z), which is a
matrix in the site space, z being a (complex) variable indicating
the (Matsubara) frequency. The generic matrix element of its
inverse reads

{Ĝ−1}ij (z) = zδij − tij −
∑
νk

ViνkV
∗
jνk

z − ενk

− �ij (z), (2)

where �̂(z) is the self-energy matrix describing the interaction
between the impurity electrons. In the multiorbital case, the
matrices t̂ , V̂ , �̂, and Ĝ would also depend on orbital
indices. All information about the geometry of the nanoscopic
system is included in the hopping and in the hybridization
matrices. At the model level, it is therefore straightforward to
implement even extremely complex nanostructures. The input
may come as well from an ab intio calculation, e.g., a local
density approximation (LDA) projected to Wannier orbitals,15

allowing for realistic calculations of nanoscopic systems and
a quantitative comparison with experiments.

The general flowchart of the method is shown in Fig. 1 and
is described below in more detail. (i) The first step consists of
the definition of a local problem for each of the inequivalent
atoms of the nanostructure, by means of the relation

G−1
0i (z) = [{Ĝ}ii(z)]

−1 + �ii(z). (3)

The dynamic Weiss field G0i(z), i =1, . . . ,Nineq, is built
inverting the ith block of Ĝ and it contains the information

FIG. 1. (Color online) Flowchart of the DMFT self-consistency
schemes for nanoscopic systems. The approximation consists in
mapping the (nonlocal) problem of the whole nanostructure into a
set of independent AIMs. The solution of these local problems yields
a set of local self-energies, which can be used to define a DMFT
self-energy for the nanostructure.

of the environment of site i, i.e., the rest of the nanostructure.
In the multiorbital case, Eq. (3) becomes obviously a matrix
equation with orbital indices. (ii) The numerical solution of
each AIM yields a local (DMFT) self-energy �ii(z). All the
Nineq inequivalent self-energies are then collected and assigned
to the corresponding equivalent sites as well, in order to build
a self-energy matrix that is diagonal in the site index:

�̂(z) = diag[�11(z),�22(z), . . . ,�NN (z)]. (4)

The self-energy �̂(z) is then plugged into Eq. (2) in order to
compute the Green’s function of the whole nanostructure and
the process is iterated self-consistently till convergence.

The approximation involved in the present scheme is
already known in the literature, and similar schemes have been
applied to different kind of systems. An approach for quasi-
one-dimensional systems is the chain DMFT by Biermann
et al.,18 where a system of weakly coupled (equivalent)
chains is replaced by a single effective chain, coupled to a
self-consistent bath. More, in general, the idea is suitable to the
study of inhomogeneous systems and has been applied to, e.g.,
the study of bulk materials in the presence of two-dimensional
interfaces by Potthoff and Nolting19 as well as to the case of
LDA + DMFT calculations with locally-inequivalent atoms
within the unit cell (see, e.g., Ref. 20). Another noticeable
case is its application to ultracold atoms on optical lattices,
using the so-called real-space DMFT (R-DMFT), by Snoek
et al.,21 where the inhomogeneity comes from the external,
spatially dependent, trapping potential, applied to an otherwise
translationally invariant lattice. The present approach is similar
to the R-DMFT, the difference being that in our case, each
site is also coupled to a noninteracting bath, and a possible
inhomogeneity arises not due to an external potential but
from the geometry or even the chemical composition of the
nanostructure itself.

The application of DMFT to nanoscopic systems, on the
other hand, has been already attempted following alternative
ways. A nano-DMFT scheme has been already proposed by
Florens,22 relying however on a specific cayley-tree geometry.
Realistic calculations of strongly correlated transition metal
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nanoscopic devices and of correlated adatoms on surfaces have
been also recently carried out by Jacob et al.23 and by Surer
et al.,24 respectively.

III. RESULTS

In the following, we will apply the presented DMFT method
to various nanoscopic systems, in order to test the reliability
of the approximation and to explore its potentialities. In this
spirit, we extend the results presented in our previous work6

computing several physical quantities, such as the occupations,
local and nonlocal self energies, in the case of a benzene ring,
where we can compare DMFT to a numerically exact solution.
This allows us to show that our method is highly reliable
in a wide range of parameters, but also to shed light on the
physical role of the (missing) nonlocal correlations, which are
responsible for the breakdown of the approximation.

Thereafter, the most natural step is to show the suitability of
the method for more complex nanosystems. We focus our at-
tention on quantum junctions in which electronic correlations
are expected to be of importance due to both the confinement
of electrons and the lack of a proper metallic screening at
the atomic size contact. Even though in the literature many
theoretical attempts to investigate transport at the mesoscopic
scale can be found, the electron-electron interaction is usually
either completely neglected or taken into account within
possibly too simple approximation schemes.25–28

All the results presented below, for both DMFT and the
exact solution, were obtained using Hirsch-Fye QMC3 as an
impurity solver for the AIM, unless otherwise stated. The use
of a Hirsch-Fye algorithm limits us to high temperatures (about
room temperature in the calculations presented here) but on
the other hand it allows a quantitative comparison between the
DMFT results and exact solution.

A. Benzene-like ring

A rather standard system in which the problem of un-
derstanding quantum transport phenomena is addressed is
a benzene molecule, contacted with metallic (e.g., Au or
Pt) electrodes. Therefore we study a nanostructure made
of six correlated sites in the geometry of a benzene-like
one-dimensional ring, given by Hamiltonian (1) with i,j =
1, . . . ,N =6 and periodic boundary conditions. We consider
here specifically a single orbital, which may not be a bad
approximation for the benzene pz orbital.29 Our primary
intention, however, is to systematically test our approximation
for a simple model rather than a realistic calculation. Each site
i has a hybridization channel Viνk to a metallic lead (labeled
ν). In a typical experiment, two sites of the benzene molecule
might be contacted by metallic wires. However, for the sake
of simplicity and to deal with a system where all sites are
fully equivalent, we consider each site to be contacted in an
equivalent way to its own lead, i.e., Vıνk =V δiν . The latter
is not the only possibility to achieve the equivalence of all
sites, but it represents a suitable configuration where one
can study quantum electronic transport through a correlated
nanostructure. A scheme of the nanostructure considered here
is shown in Fig. 2.

FIG. 2. (Color online) Scheme of the benzene ring. Empty circles
represent correlated sites, with an on-site Hubbard repulsion U ,
connected between them via nearest neighbor (t) and longer range
(t ′, t ′′) tunneling channels, and to metallic leads via hybridization
channels (V ).

In the calculations, two topologies of the hopping parame-
ters are considered: (i) nearest-neighbor hopping t only (NN t)
and (ii) for studying the effect of a higher connectivity (number
of neighbors), equivalent hopping amplitude to all sites, i.e.,
nearest, next-nearest, and next-next-nearest neighbor hopping
t = t ′ = t ′′ (all t). Of course, the latter is a rather unrealistic
configuration since the hopping amplitude in a real molecule
will decrease with distance, but it provides interesting insight
into the validity of the approximation without introducing too
many different hopping parameters.

We performed our DMFT calculations at fixed chemical
potential, i.e., without considering the dependence on an
applied gate voltage, assuming for the leads a flat density
of states ρ =1/2D, where the half bandwidth D=2t . We
compute site-dependent densities, double occupations, and the
on-site spectral function

A(0) =
∫

dωA(ω) cosh−1 (ω/2T ) = −βG(β/2), (5)

which can be extracted directly by the QMC.
In the inset of Fig. 3, we show noninteracting density of

states A0(ω) for the isolated molecule (V/t =0). In the NN t
case, the benzene ring is half filled and insulating, the spectral
function is symmetric with respect to the Fermi level, and the
gap given by the bonding and antibonding combination of the
kinetic term in the Hamiltonian. The all t case is also insulating
but is not particle-hole symmetric. The results for A(0) as a
function of the ratio between the hybridization strength V and
the absolute value of the hopping amplitude t are shown in
the main panel of Fig. 3. Looking at the NN t topology, we
observe that the agreement between the exact solution and
DMFT is very good when the hybridization V is large. In the
limit V →∞, each atom forms a bound state with its own lead,
hence the intersite (nonlocal) correlations become essentially
negligible and DMFT works well. The opposite molecular
limit V/t ≡0.0 is clearly the most difficult for DMFT. Indeed,
the spectrum A(0) in Fig. 3 differs from the exact solution,
which is gapped, while DMFT shows a small finite spectral
weight.
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FIG. 3. (Color online) On-site spectral function A(0) as a function
of V/t , comparing DMFT (lines) with the exact QMC solution
(symbols) for both hopping to two nearest neighbors only (NN t)
and to all neighbors (all t) configurations, at U =5t and T =0.05t ,
taken from Ref. 6. Data for V/t =0.0 in the all t configuration
are obtained by an exact diagonalization of the Hamiltonian. Inset:
noninteracting density of states A0(ω)=−(1/π )ImG0(ω+ı0+) for
the isolated benzene molecule and both hopping configurations.

One expects that, upon increasing the connectivity, the
DMFT description improves. In order to check this, we
consider the all t topology as well. Indeed, we see in Fig. 3
that as the number of neighbors per atom is increased, no
substantial difference to the exact solution can be found even
in the intermediate region V ∼ t where deviations from the
exact solution in the NN t case are already visible. Note that
below V =0.8t , the exact QMC solution is not available any
longer due to the fermionic sign problem, therefore, we cannot
check the molecular limit for the all t topology at this value
of U with such an impurity solver. The Hamiltonian of the
isolated molecule can nevertheless still be diagonalized exactly
also in the interacting case. The diagonalization predicts an
insulating state also for the all t configuration, meaning that
the approximation, even in the high connectivity case, will
break down at low enough hybridization.

Similar agreement between DMFT and the exact solution
is found for the site occupation, as shown in the inset of
Fig. 4. In the NN t topology, the effect of the interaction
and of the hybridization on the spectrum is to redistribute
the spectral weight, with respect to the noninteracting case, in
such a way that the system stays half filled. However, when the
band structure is changed, and other hopping channels beyond
the NN one are included, the density becomes t , U , and V

dependent and the system may move away from half-filling.
On the other side, concerning the double occupancy shown in
the main panel, we can see that, for high connectivity and high
values of V/t , corrections beyond DMFT are not important,
while approaching the molecular limit the system is more
spatially correlated than what DMFT suggests, overestimating
double occupations.

A very clear explanation of the overall agreement shown
above, between DMFT and the exact solution, is provided by
the comparison of the respective self-energies for both hopping
topologies, shown in Figs. 5 and 6. As usual, let us begin

 0
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FIG. 4. (Color online) Double occupancies 〈d〉=〈n↑n↓〉 as a
function of V/t at U =5t and T =0.05t , comparing DMFT (lines)
and the exact solution QMC (symbols) for both hopping configura-
tions. Data for V/t =0.0 in the all t configuration are obtained by
an exact diagonalization of the Hamiltonian. Inset: corresponding
densities 〈n〉=〈n↑+n↓〉.

discussing the NN t case first, referring to Fig. 5, where we plot
the corresponding self-energy in Matsubara representation. In
Figs. 5(a)–5(c), the imaginary part of the local self-energy for
different values of V/t is shown (the real part is zero due to the
half-filling condition). One can see that the nanoapproximation
nicely captures the local physics, accurately reproducing the
exact self-energy at low frequencies, and thus providing a
reliable estimate for the quasi-particle residue:

Z=
(

1 − ∂Im�(ωn)

∂ωn

∣∣∣∣
ωn→0

)−1

. (6)

Moreover, the amplitude of the local self-energy slightly
decreases as V is increased, the system becoming less
correlated and the agreement even improving.

However, the slope of the local self-energy at ω=0 in some
cases is clearly not enough to capture the full picture, and
we have to take the nonlocal self-energy into account. This
becomes evident analyzing the molecular limit V/t =0. In this
limit and at finite U , the exact solution evidently predicts an
insulating solution, as one can see from the absence of spectral
weight at the Fermi level in the main panel of Fig. 3. The gap
is controlled by U and is due to large nonlocal contributions
of the self-energy, as shown in Figs. 5(d)–5(f). At the same
time, in the noninteracting limit U =0, the isolated, half-filled,
benzene molecule is a trivial band insulator. In this case, the
Hamiltonian is made only of the kinetic term and the gap 

is given by the energy difference between the bonding and
antibonding eigenstates, ∼2t . One can show, on the basis of
simple arguments, that, in presence of nonlocal correlations,
a suppression of the spectral weight at the chemical potential
can be achieved by a large Re�i �=j even in the case of a linearly
vanishing Im�ii(ωn →0) as in Fig. 5(a).30 Another interesting
point concerning the results of Fig. 5 is that, upon increasing V ,
deviations from the exact results due to nonlocal correlations
are quickly suppressed, while the local ones remain sizable.
Approaching the limit V ∼U , of course, also local correlations
are gradually suppressed.
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FIG. 5. (Color online) Self-energy in Matsubara representation for the benzene ring in the NN t topology at U =5t and T =0.05t . In
(a)–(c), we show the evolution with V/t of the imaginary part of the local self-energy, comparing DMFT (dashed lines) with the exact solution
(symbols). Note that the real part is always identically zero due to the particle-hole symmetry at half-filling. In (d)–(f) we show the nonlocal
self-energy of the exact solution for nearest-neighbors (i, i + 1), next-nearest neighbors (i, i + 2), and next-next-nearest neighbors (i, i + 3),
respectively. All other nonlocal contributions are either identical to the ones shown here (since all sites are equivalent) or zero by symmetry.
Note that �i �=j is identically zero in DMFT.

These results can be summarized as follows. When the
molecule is weakly connected to the contacts, one needs to go
beyond DMFT, i.e., taking nonlocal correlations into account,
in order to provide a good description of the system. On
the other hand, in the region of intermediate hybridization
coupling the most important role is played by the local physics,
in a situation where the molecule is still strongly correlated.
In many actual cases, this is the interesting region from the
experimental point of view. This suggests that our method pro-
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FIG. 6. (Color online) Local self-energy in Matsubara represen-
tation for the benzene ring in the all t topology at U =5.0t and
T =0.05t . Upper panels: comparison between DMFT (lines) and
exact solution (symbols) at V/t =1.0. Nonlocal contributions to the
self-energy are negligible with respect to the local ones (almost two
orders of magnitude smaller) in contrast to the NN t case at the same
value of V , and are therefore not shown. Lower panels: evolution of
the DMFT self-energy, comparing the curves of the upper panel to
the ones obtained for lower values of V/t , in a region where no exact
QMC solution is available.

vides an accurate tool for describing the physics of correlated
nanostructures, already at the DMFT approximation level.
When nonlocal spatial correlations become non-negligible,
one needs instead to go beyond DMFT.

In addition to this, encouraging results come also from
the analysis of the self-energy in the all t configuration,
shown in Fig. 6. In Figs. 6(a) and 6(b), respectively, we
show the comparison for the imaginary and the real part
of the local self-energy at V/t =1, i.e., very close to the
lowest value of V/t accessible to the QMC exact solution.
The agreement between the curves is substantially perfect as
expected on the basis of the previous analysis. Moreover, in
this case, where the connectivity is higher with respect to
the NN t hopping topology, any nonlocal contribution to the
self-energy is already negligible with respect to the local ones,
namely, almost two order of magnitude smaller (not shown).
This means that the region where only the local physics
is important extends to lower values of the hybridization
when the connectivity is higher. Below this threshold, as
discussed before, we can study the evolution of the self-energy
toward the molecular limit only with DMFT. The results, in
Figs. 6(c) and 6(d), show that the system is becoming more
correlated upon decreasing V , i.e., the imaginary part of the
local self-energy is increasing, and most likely also nonlocal
correlations arise. Concerning the real part of the self-energy,
it displays the formation of a peak-structure at low energy,
while the large-frequency tail, determining the filling, tends
toward zero as the system gets close to half-filling (compare
also with the inset of Fig. 4).

In order to have a better picture of the behavior of the
system, not limited to the Fermi level, we present in Fig. 7
the evolution with V/t , for both NN t and all t hopping
configuration, of the spectral function A(ω), obtained via
analytic continuation on the real axis of the DMFT(QMC)
data using a Maximum Entropy method.31 Already in the case
of the isolated molecule, i.e., V/t =0, the spectral function of
the interacting system shows substantial differences from the
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FIG. 7. (Color online) Evolution of the DMFT one-particle
spectral function A(ω) with V/t , at U =5t and T =0.05t , for both
NN t and all t hopping configurations, according to the labels in the
plots.

noninteracting one shown in the inset of Fig. 3. In the NN t
topology, A(ω) retains two low energy peaks, symmetric with
respect of the Fermi energy, corresponding to the bonding and
antibonding peaks of the noninteracting spectrum, and some
of the spectral weight is shifted to higher energies, forming a
lower and an upper Hubbard band. Only some spectral weight
fills the band gap, which is consistent with the previous finding
of A(0) (main panel of Fig. 3) and with a linearly vanishing
DMFT self-energy at ω = 0, as shown in Fig. 5(a). The redis-
tribution of the spectral weight due to the interaction is instead
more drastic in the all t topology. The fivefold degenerate peak
of the noninteracting spectrum disappears, as its degeneracy is
lifted, and the resulting spectrum is metallic. This difference
becomes even more important when the system is coupled to
the leads. The hybridization to the metallic leads, on one hand,
provides an additional broadening of the many-body states,
via the so-called lead self-energy (or hybridization function),
while on the other, it favors the emergence of a Kondo-like
resonance at the Fermi energy in the single particle spectral
function of each of the benzene sites. Therefore, in the all t
topology, one can observe the formation of a narrow resonant
peak at the Fermi energy in the spectral function, while in
absence of electronic correlation the structure exhibits a fairly
large gap at the Fermi level in both hopping configurations,
and no resonant peak would exist. Upon increasing V , the
resonance exhibits a maximum and is then suppressed. In the

limit V  t , the hybridization becomes the dominating energy
scale, the spectral weight is shifted to the Hubbard bands,
and the spectral functions, in both hopping configurations,
loose almost all low-energy features becoming similar to each
other.

A very interesting issue deals with the study of elec-
tronic transport in correlated nanostructures. The conductance
through the benzene ring G(ω)= (e2/h)T (ω) can indeed be
computed along the lines of Refs. 32–36, using the Meir-
Wingreen generalization of the Landauer formula. Here, e2/h

is the conductance quantum, e and h being the electron’s charge
and Planck’s constant, respectively. The transmission function
T (ω) is given by

T (ω) = Tr[�Gr(ω)�Ga(ω)], (7)

where Gr,a are the retarded and the advanced Green’s function,
respectively, and the leads scattering amplitude is given by
� = 2πρV 2. Note that Eq. (7) for the conductance neglects
vertex corrections. It would nevertheless be exact if all sites of
the benzene molecule are coupled symmetrically to the leads
between which the conductance is computed.34,35 However, in
our case, Eq. (7) without vertex correction is an approximation.
In the case of the benzene ring, if we restrict ourselves to
the Fermi level, we can compute the transmission function
between site i and j from the nonlocal interacting Green’s
function we obtain from the QMC as

T = Tij (ω = 0) = 2�i |Gij (ıωn → 0)|2�j , (8)

where the factor 2 stems from spin degeneracy.
In the literature,36 the conductance is usually calculated in

the configuration where the molecule bridges two leads only.
Depending whether the leads are connected to the nearest,
next-nearest, or next-next-nearest (i.e., opposite) neighboring-
sites of the benzene ring, those configurations are labeled as
ortho-, meta-, and para-positions, respectively. For symmetry
reasons, we have instead each site of the benzene ring
equivalently coupled to its own lead. However, with this
caveat, in the following, we keep the literature nomenclature
and we refer to the transmission function of Eq. (8) in the
channel j = i + 1, j = i + 2, and j = i + 3, as the ortho-,
meta-, and para-position transmission through the benzene
ring, respectively, as shown in the upper panel of Fig. 8.
The results for the zero-bias conductance as a function of
the hybridization strength are shown in the lower panels of
Fig. 8.

As a general remark, valid for all connections, we can see
that G increases like V 4 at low values of the hybridization,
as it could be expected from Eq. (8), treating the scattering
amplitudes perturbatively. As V increases, G exhibits a
maximum due to the formation of a Kondo resonance between
each site and its own lead, which is then smeared out as 1/V 2

as a consequence of the broadening of the resonance itself. In
the all t topology, G is the same in all three contact positions,
i.e., all positions are equivalent due to the particular hopping
structure. The comparison between DMFT and the exact
solution shows that nonlocal correlations are not important
both in the limit in which the molecule is strongly coupled to
the leads and when the connectivity is high, which, in the light
of the results presented before, may not be surprising since
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FIG. 8. (Color online) Conductance through the benzene ring as a
function of the hybridization V to the leads, for NN t (upper panel) and
all t (lower panel) hopping configurations at U =5t and T =0.05t . In
the all t case, due to the symmetry of the problem, all connections are
equivalent. The ortho, meta, and para labels refer to the conductance
computed between two of the metallic leads, as shown schematically
above the plots.

the conductance is computed out of the one-particle Green’s
functions, according to Eq. (8).

It is interesting to notice that, in the NN t topology, our
calculation reproduces the reduction of the conductance in
the meta-position, with respect to the ortho- and the para-
position.36 This effect is believed to be a generic characteristic
of single molecule junctions, and it has been explained in
terms of quantum interference in the transmission function,
arising only from the molecule’s topology and not directly
related to the presence of electronic correlations.37 On the other
hand, many-body effects have been recently reported38 to be
responsible of the formation of transmission minima (so-called
“Mott nodes”) in molecules with open shell configurations. It is
therefore interesting to analyze the influence of U on the profile
of the zero-bias conductance. In Fig. 9, we report the results
of our calculations at different values of U/t in the whole
hybridization range. Note that in the noninteracting limit also
DMFT is obviously exact. The main effect of U is to suppress
the conductance peak, while the low- and high- hybridization
regimes are not much affected. We compare the percentage-
wise reduction (U ) of the conductance maximum at U �=0
with respect to its noninteracting value (at the same value of V )
in order to get information on the effect of correlations on top
of the topological reduction. We find out that the suppression
increases with the distance between the sites through which
the conductance is computed, i.e., ortho < meta < para ,
as the Hubbard repulsion tends to localize the electrons
in the molecule. We summarize the corresponding values
in Table I.
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FIG. 9. (Color online) Conductance G in the three contact
positions as a function of V/t for different values of U at T = 0.05t

in the NN t hopping configuration.

B. Quantum junctions

In the current state-of-the-art of nanoscopic electronic
transport, quantum junctions play a fundamental role. They can
be experimentally realized by a mechanically controlled break
(MCB) process of a metallic wire made, e.g., of Au, resulting
in atomically sharp contacts with an adjustable tunneling gap.
Strong evidences from conductance quantization have been
reported, both at low39 and at room temperature,40 as a proof
of the experimental realization of single atomic junctions.
Moreover, molecules can be adsorbed into the gap, forming
stable tunneling contacts, and allowing for the observation of
electronic transport through molecular systems.41

One can expect electronic correlations to become relevant
in the contact region, where electrons are spatially confined in
narrow structures, as well as in the bridging molecule itself.
In Ref. 6, we carried out a calculation on a model for a
quantum junction made out of more than hundred correlated
sites, showing that our method is able to handle even very
complex nanostructures.

Before discussing the physical results we obtained, it is
useful to recall the characteristic of the model junction. The
system is made of two identical structures of correlated atoms
with a simple body-centered cubic (bcc) lattice symmetry,

TABLE I. Percentage-wise reduction of the maximal conductance
(U ) for ortho, meta, and para connections.

(U )

ortho- meta- para-positions

U =5t ∼7% ∼9% ∼22%
U =3t ∼2% ∼3% ∼7%
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FIG. 10. (Color online) Scheme of the (three-dimensional)
quantum junctions with five (upper panel) and two (lower panel)
layers. Empty atoms have an on-site Hubbard repulsion U and
are connected via hopping t , t ′, and hybridization V channels as
schematically shown.

narrowed in a double-cone-like junction. For the sake of
simplicity, we assume a single-band model, which may be
suitable for cuprate or cobaltate junctions, though orbital
selective tunneling processes will probably also play a role in,
e.g., gold or aluminum devices. Hopping processes are allowed
to nearest neighbor sites, both intralayer and interlayer, with
amplitudes t and t ′, respectively, while the hopping between
the tips is defined by the parameter tQPC. The outermost layer
of each structure is connected via hybridization channels V to
noninteracting leads, describing, e.g., the bulklike atoms of the
wire. A scheme of junctions of different sizes we will discuss
below is shown in Fig. 10.

In the previous paper,6 we addressed the problem of
what is happening at the junction in the MCB process,
and we simulated the breaking of the junction by changing
the distance dQPC between the two structures thought the
control parameter tQPC, i.e., the overlap of the electrons’
atomic-like wave functions of the tip atoms. According to
Ref. 42, tQPC ∼ (1/dl+l′+1

QPC )exp(−dQPC), where l and l′ are
the angular momentum quantum numbers associated to the
orbitals involved in the tunneling process. In the following, we
calculate the distance dQPC according to the above formula,
where we suppose l= l′ =2, i.e., a d-like orbital character
for the correlated atom bands, however, the general physical
argument discussed in the following does not depend on the
precise dependence of dQPC on tQCP.

We calculate the total transmission function through the
junction summing over all possible transmission channels:

T =
∑
ij

Tij = 2
e2

h

∑
i∈L

∑
j∈R

�i |Gij (ıωn → 0)|2�j , (9)

where L (left) and R (right) correspond to the correlated
atoms sitting in the outermost layers of the junction. As
dQPC is increased DMFT reveals strong deviations from an

exponential behavior of G, expected in the case of a tunneling
process through a barrier. Such a result is associated to a local
Mott-Hubbard crossover, occurring at the tip atom(s). It can
be explained considering that the MCB process effectively
removes a neighbor from the already poorly connected tip
atoms. This further reduces the metallic screening of the
local Coulomb interaction expected in the bulk, causing the
tip to become more insulating-like. If correlations can so
strongly influence the electronic structure of the contacts, this
phenomenon could have a huge impact on the interpretation
of experimental results, and it is therefore worth being
investigated extensively.

The fundamental question to answer is whether the
crossover is a generic characteristic of quantum junctions.
Following Ref. 6, we performed calculations of the five-layer
QPC (shown in the upper panel of Fig. 10) but for a slightly
different set of parameters, more realistic for the bcc geometry
considered here, where the intra- and interlayer hopping
amplitudes t and t ′ are the same, and we choose t = 0.40 eV.
The results for such a structure are shown in Fig. 11. In the
left panel, we show the conductance G through the five-layer
QPC, as a function of tQPC, while we reproduce the same
data as a function of the intertip distance dQPC comparing
to the noninteracting case on a logarithmic scale, so that the
fingerprint of the Mott-Hubbard crossover, and its effect on
electronic transport is highlighted: G shows a more-than-
exponential suppression as a function of dQPC for a value
of dQPC corresponding to tQPC ∼ t , and recovers instead an
exponential behavior at larger distances. In order to show that
the relevant physics concerns the tip atoms, one can consider
atom-resolved local quantities, i.e., the occupations and the
local low-energy spectrum. We find that, due to the strong
electronic correlations (provided that U/t is large enough, as
it will be clarified in the following), the occupation 〈n〉 of all
the atoms of the QPC stays at half-filling in the whole range
of tQPC. Moreover, also the double occupations 〈d〉 and the
low-energy spectrum A(0) of all layer atoms (i.e., all atoms
except for the tip ones) are almost constant in the whole tQPC

range, their values naturally depending on the position of the
atoms in the junction.

We find that a completely different behavior characterizes
the tip atoms instead. In the right panels of Fig. 11, we
restrict ourselves, for convenience, to the comparison of local
quantities of just two representative atoms in the QPC, namely,
the tip atom and one of the atoms sitting in the layer directly
connected to the tip (denoted as layer atom in the following).
Below tQPC =0.60 eV, both 〈d〉 and A(0) are continuously
and monotonically suppressed as tQPC decreases, confirming
that the tip atoms undergo a local Mott crossover. One may
further notice that the tips’ A(0) reaches a maximum around
tQPC =0.60 eV and decreases again for values of tQPC above
this threshold. This phenomenon is not correlation driven, as
the double occupations always increase with increasing tQPC,
but is caused by the recombination of the tip-atom states into
a bonding and antibonding structure.

In order to better understand the physics behind this
phenomenon, we significantly reduce the complexity of the
problem. We consider a junction made of two layers (shown in
the lower panel of Fig. 10) so that the tip atom is not connected
directly to a bath of free electrons, but to a layer of correlated
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FIG. 11. (Color online) (Left) Conductance G through the five-layer QPC as a function of tQPC. The parameters are shown in the plot.
(Inset) G as a function of an estimate of the intertip distance dQMC, as explained in the text. The data of the main panel (circles) are compared
to the noninteracting case (triangles) on a logarithmic scale in order to highlight the effect of electronic correlations. (Right) Atom-resolved
low-energy spectrum A(0) and double occupations 〈d〉. In (a) and (c), the dependence on tQPC for the low-energy spectrum and the double
occupations is shown for the tip-atom and an atom sitting in the layer closest to the tip. In (b), we show the low-energy spectrum for each
inequivalent atom of the structure for two values of tQPC, namely, tQPC =0.60 eV (diamonds) and tQPC =0.05 eV (dotted circles). The change of
tQPC only affects the tip atoms. The region labeled with “center” and highlighted in the plot corresponds to the atoms analyzed in (a) and (c).

atoms. Therefore, there are by symmetry only two inequivalent
atoms left, tip and layer atoms. This makes the system much
simpler, but still allows us to observe a dichotomy between the
two kinds of correlated atoms. Nevertheless it is important to
stress that even this minimal model for the quantum junction
cannot be solved exactly with QMC due to a severe fermionic
sign problem.

From the evolution of the conductance through the junction
for different values of U , it is clear that some critical value
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FIG. 12. (Color online) (Top) Conductance G through the two-
layer QPC vs dQPC for different values of U/t . (Bottom) Correspond-
ing density of the two inequivalent atoms according to the labels in
the plot.

U ∗ exists above which G exhibits the more-than-exponential
behavior associated with the Mott-Hubbard crossover, as
shown in Fig. 12. The noninteracting QPC shows no peculiar
feature, it evolves smoothly from the contact (small dQPC)
to the tunneling (large dQPC) regime. As the value of U is
increased, the conductance is globally suppressed, and above
some threshold, it develops a much faster transition between
the contact and tunneling regimes. In all cases, G does not
reach the limit G0 =e2/h in the contact regime because
of the absence of a completely open transmission channel.
Similar observation on MCB junctions43 or on the tunneling
spectra of Co impurities adsorbed on a Cu(100) surface44

supports the hypothesis that such effects, which we show to be
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FIG. 13. (Color online) (Left) Atom-resolved double occupations
〈d〉 and low-energy spectrum A(0) as a function of tQPC at U =10t >

U ∗ and T =0.125t . (Right) A(0) for each of the structure inequivalent
atoms for two values of tQPC, namely, tQPC =0.60 eV (diamonds) and
tQPC =0.05 eV (dotted circles). The region labeled with “center” and
highlighted in the plot corresponds to the atoms analyzed in (a) and
(c). Light shaded data are the corresponding values of the spectrum
of the five-layer QPC, for comparison.
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FIG. 14. (Color online) Layer-resolved DMFT local self-energy
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two-layer QPC for U =10t >U ∗ and T =0.125t for different values
of tQPC. While the tip atom is strongly affected by tQPC, the layer atom
exhibits no significant dependence.

driven by correlations, can be of importance in experiments.
In order to relate the behavior of G with a Mott-Hubbard
transition, we also look at the layer-resolved A(0), in analogy
to the five-layer QPC. One has anyway to be careful here,
because below a critical U , the spectral weight is affected by
strong tQPC-dependent density fluctuations. On the other hand,
approaching U ∗ all atoms occupations tend toward half-filling
(see Fig. 12 lower panels) and the analysis of the spectral
weight for this purpose is safe.

In Fig. 13, we show the results for the low-energy spectrum
A(0) and the double occupations 〈d〉 at a value of U above
the critical one (U > U ∗), analogously to the case of the
five-layer QPC. We can observe that below the threshold
value tQCP =0.60 eV both 〈d〉 and A(0) for the tip atoms
decrease continuously with tQPC as the tip atom becomes more
insulating-like. The overall behavior for the tip atom of the
different size QPCs is qualitatively very similar, suggesting
the existence of a (size-independent) energy scale associated
with this phenomenon. One can notice that in the two-layer
QPC the layer atoms’ local quantities show some dependence
on tQPC, and the values of the double occupations and of the
low-energy spectrum of the layer atoms are slightly reduced
compared to the corresponding one of the five-layer QPC.
This indicates correlation effects to be further enhanced upon
decreasing the system size.

One can indeed check that, considering junctions of
intermediate size with respect to the ones shown here, i.e.,
adding one layer after the other to the two-layer QPC, helps
the stabilization of both the local quantities of the layer atoms,
which loose almost any dependence on tQPC, while the tip
atoms still display a local Mott-Hubbard transition.

Another clear evidence of the enhancement of electronic
correlations in the MCB process is also provided by the

evolution with tQPC of the DMFT self-energy. In Fig. 14, we
show the imaginary and real part of the local self-energy for
both inequivalent atoms of the two-layer QPC at U =10t (U >

U ∗). As already mentioned, the MCB process confines the tip
atom(s) at the edge of the structure, and drastically suppressing
the hopping channel in one direction further reduces the
screening of the Coulomb repulsion. Consequently, electronic
correlations in the tip atom are strongly enhanced determining
a local Mott-Hubbard crossover in the tip, while the layer-atom
self-energy does not show significant dependence on tQPC.
Below the critical U instead, one finds a dependence on tQPC

only in Re�ii(ıω), i.e., in the renormalization of the chemical
potential, responsible for the change in the occupancy (not
shown). The above analysis shows once more that the change
in the conductance in the MCB process can be traced back
to the strong electronic correlations arising from the spatial
confinement of electrons in sharp contact devices.

IV. CONCLUSIONS AND OUTLOOK

We have studied electronic correlations in nanoscopic
systems within a many-body approach suitable to deal with
complex correlated structures. We show that including local
electronic correlations we can reasonably describe nanoscopic
systems with many neighbors, long-range hopping, or a
sufficiently strong hybridization to noninteracting leads. These
conditions are fulfilled in many cases of interest, but there are
regimes in which nonlocal self-energies are observed and it
becomes necessary to also include spatial correlations beyond
DMFT. We therefore plan to generalize the present method
within the framework of D�A, in order to include spatial
correlations at all length scales. This way we expect to be able
to recover a reliable description of the nanoscopic system on
an even larger parameter range. The present approach can be
viewed as the n=1 particle level of a more general nanoscopic
D�A scheme. It could be an important tool for investigating
electronic transport in correlated structures at the nanoscale.
In this respect, we also studied, as a potential application,
the transport through a MCB junction. Going beyond Ref. 6,
we investigated the phenomenon of a local Mott-Hubbard
crossover in quantum junctions of different sizes, showing
that it is a general feature of sharp nanostructures and that it
may be of importance for the interpretation of experiments.
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