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The implementation of screened hybrid functionals into the WIEN2K code, which is based on the linearized
augmented plane wave (LAPW) basis set, is reported. The Hartree-Fock exchange energy and potential are
screened by means of the Yukawa potential as proposed by Bylander and Kleinman [D. M. Bylander and
L. Kleinman, Phys. Rev. B 41, 7868 (1990)] for the calculation of the electronic structure of solids with the
screened-exchange local density approximation. Details of the formalism, which is based on the method of
Massidda, Posternak, and Baldereschi [S. Massidda, M. Posternak, and A. Baldereschi, Phys. Rev. B 48, 5058
(1993)] for the unscreened Hartree-Fock exchange are given. The results for the transition-energy and structural
properties of several test cases are presented. The results of calculations of the Cu electric-field gradient in
Cu2O are also presented, and it is shown that the hybrid functionals are much more accurate than the standard
local-density or generalized gradient approximations.
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I. INTRODUCTION

Until now, most Kohn-Sham (KS) density functional theory
(DFT)1,2 calculations on solids have been done using either
the local density approximation (LDA) or the generalized
gradient approximation (GGA) for the exchange-correlation
energy. Calculations were done exclusively with LDA2 until
the early 1990s, when the GGA functional Perdew-Wang 91
(PW91)3 was proposed and then implemented in computer
codes for solid-state calculations. A few years later, a GGA
functional with a simpler analytical form than PW91, namely
Perdew-Burke-Ernzerhof (PBE),4 but giving nearly identical
results has been proposed and is nowadays the standard
functional. The successes of the semilocal LDA and GGA
approximations rely on the fact that the accuracy is usually
good enough to be useful, in particular for the calculation of
the geometrical parameters and other quantities like the bulk
modulus or the phonon spectrum. (See, e.g., Refs. 5 and 6 for
a compilation of lattice constants and bulk moduli calculated
with various GGA functionals.) However, it is known that
there are classes of systems (e.g., strongly correlated or van der
Waals systems) whose properties are not described properly
by semilocal functionals already at the qualitative level.

It is also well known that the KS band gap, defined as the
conduction band minimum (CBM) minus the valence band
maximum (VBM), obtained from a semilocal functional is
much smaller than the experimental band gap (defined as the
ionization potential I minus the electron affinity A). However,
it is important to note that this problem, known as the band
gap problem, is more general and has its roots in the KS-DFT
method itself, and actually the KS band gap calculated with
the exact multiplicative KS potential would differ from I–A

by the derivative discontinuity �xc of the exchange-correlation
potential (see Ref. 7 for a review). Since �xc can be of the same
order as the KS band gap, the exact KS band gap can differ
substantially from I–A.

There are several methods to obtain orbital energies which
lead to values for CBM–VBM comparable to I–A. If one wants
to stay inside the true KS framework (i.e., KS equations with a

multiplicative potential), exact exchange (EXX) calculations
(see, e.g., Refs. 8 and 9) or advanced semilocal potentials10 can
do a good job. Alternatively one can use a nonmultiplicative
potential, which means to use a method that lies outside the
KS framework, but belongs to the so-called generalized KS
framework.11 Most of these methods mix the DFT and Hartree-
Fock (HF) theories and the best known are the LDA + U

(Ref. 12), screened-exchange LDA (sX-LDA),13 and
hybrid14,15 methods. The GW method can yield very accurate
band structures, in particular if it is applied self-consistently,
but it is a very expensive method (see Ref. 16 for a review).

The LDA + U method (see Ref. 17 for a review) consists
of applying an approximate (but very cheap) form of HF only
to the electrons which are not well described by semilocal
functionals. Typical examples are the 3d or 4f electrons in
strongly correlated systems (e.g., transition-metal and rare-
earth oxides) that are very localized and hence lead to large
self-interaction error when a semilocal functional is used (this
results in too small band gaps and magnetic moments). In
the sX-LDA method, the short-range (SR) part of the LDA
exchange is replaced by the SR part of the HF exchange, where
the SR part is defined by replacing the bare Coulomb potential
by the screened Yukawa potential18 into the corresponding
expressions for the energy and potential. The sX-LDA method
has been implemented within the pseudopotential plane-
wave11,13,19,20 and linearized-augmented plane-wave21–23 basis
sets, and it has been shown that sX-LDA improves substan-
tially over LDA for the band gap of semiconductors and
insulators.

Despite the fact that reports about the implementation of
the HF method in solid-state codes started to appear already in
the 1970s (see, e.g., Refs. 24–27), it is only in the early 2000s
that the first calculations on solids with hybrid methods were
reported,28–30 which is much later than for molecules.14,15 In
hybrid methods, a certain percentage (between 10% and 50%)
of semilocal exchange is replaced by HF exchange, while the
correlation remains purely semilocal. As for molecules, the
hybrid functionals have shown to lead to (much) better results
than semilocal functionals for various types of materials and

235118-11098-0121/2011/83(23)/235118(13) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.41.7868
http://dx.doi.org/10.1103/PhysRevB.48.5058
http://dx.doi.org/10.1103/PhysRevB.48.5058
http://dx.doi.org/10.1103/PhysRevB.83.235118


FABIEN TRAN AND PETER BLAHA PHYSICAL REVIEW B 83, 235118 (2011)

properties. In particular, they lead to band structures which are
usually in good agreement with the experiment as shown for
classical semiconductors and insulators (see, e.g., Refs. 28, 29
and 31) and strongly correlated materials (see, e.g., Refs. 28
and 30–34). The most common hybrid functionals are Becke,
three-parameter, Lee-Yang-Parr (B3LYP) (Refs. 15 and 35)
and PBE0 (Refs. 36 and 37) which contain 20% and 25% of the
HF exchange, respectively. However, for solids the long-range
(LR) nature of the HF exchange leads to technical difficulties.
For calculations done in real space, the results converge very
slowly with respect to the number of neighboring unit cells
that are taken into account for the calculation of the HF
exchange, while for calculations done in reciprocal space, the
slow convergence is with respect to the number of k points for
the integrations in the Brillouin zone.

To reduce this problem of slow convergence, Heyd et al.
(HSE)38–40 proposed to consider only the SR part of the HF
exchange (as done in sX-LDA), and therefore to keep 100%
of the semilocal LR exchange. This was done by splitting the
Coulomb operator into SR and LR components by using the
error function.41,42 Since then, it has been shown that the HSE
functional, which is based on PBE0, leads to very good results
for semiconductors and insulators43–47 including strongly
correlated systems,48 and several recent papers reporting the
implementation of HSE have appeared.44,49 We also mention
the onsite version of the HF exchange proposed by Novák
et al.,50 which leads to very cheap calculations, but can be
applied only to localized electrons. This method has been used
in the context of hybrid calculations.51,52

In the present work, we report the implementation of
screened hybrid functionals into the WIEN2K code,53 which is
based on the full-potential linearized augmented plane-wave
plus local orbitals method (abbreviated as LAPW in the
following)54–57 to solve the KS equations. As done for the
sX-LDA functional,13 the HF exchange is screened by means
of the Yukawa potential to eliminate the LR HF exchange.
The calculation of the screened HF exchange is based on the
pseudocharge method58 as proposed by Massidda et al. for the
unscreened HF exchange.27 In the papers of Asahi et al.21,22 it
is mentioned that this method was used for the implementation
of the sX-LDA functional, but only very few details are given.
At this point we also mention Refs. 59–62, in which alternative
ways of implementing the HF or EXX methods within the
LAPW basis set were presented.

The paper is organized as follows. In Sec. II, the details of
the formalism of the unscreened and screened HF exchange for
the LAPW basis set are given and in Sec. III, the implemented
screened hybrid functionals are presented. In Sec. IV, the
results for a few test cases and Cu2O are presented, and in
Sec. V the summary of the work is given.

II. SCREENED HARTREE-FOCK EXCHANGE

In this section, the formulas of the screened HF energy for
the LAPW basis set are given. The formulas are also valid (and
implemented) for the APW plus local orbitals basis set.56,57

For completeness and to allow comparison, the formulas for
the unscreened case are also given. For the Hamiltonian, only
the basic formulas are given. The LAPW method will not be
described here, but details can be found in Refs. 55–57.

A. Energy

The HF exchange energy per unit cell (of volume �) is
given by (all following equations are in Hartree atomic units)

EHF
x = EHF

x,vv + EHF
x,vc + EHF

x,cc, (1)

where

EHF
x,vv = −1

2

∑
σ

∑
n,k,n′,k′

wσ
nkw

σ
n′k′

∫
�

∫
crystal

ψσ∗
nk (r)ψσ

n′k′(r)

× v(|r − r′|)ψσ∗
n′k′(r′)ψσ

nk(r′)d3r ′d3r, (2)

EHF
x,vc = −

∑
σ

cell∑
α

∑
nc,�c,mc

∑
n,k

wσ
nk

∫
Sα

∫
Sα

ψσ∗
nk (r)ψασ

nc�cmc
(r)

× v(|r − r′|)ψασ∗
nc�cmc

(r′)ψσ
nk(r′)d3r ′d3r, (3)

EHF
x,cc = −1

2

∑
σ

cell∑
α

∑
nc,�c ,mc
n′
c ,�′c ,m′

c

∫
Sα

∫
Sα

ψασ∗
n′

c�
′
cm

′
c
(r)ψασ

nc�cmc
(r)

× v(|r − r′|)ψασ∗
nc�cmc

(r′)ψασ
n′

c�
′
cm

′
c
(r′)d3r ′d3r, (4)

are the valence-valence (vv), valence-core (vc), and core-core
(cc) terms, respectively. In Eqs. (2) and (3), wσ

nk is the product
of the k-point weight and the occupation number and ψσ

nk is
a spin-σ valence orbital of band index n and wave vector k,
whose LAPW basis set expansion in the interstitial (I ) and
atomic spheres (Sα) is given by (rα = r − τα , where τα is the
position of nucleus α)

ψσ
nk(r) =

∑
K

cσ
n,k+Kφσ

k+K(r), (5)

φσ
k+K(r)=

{ 1√
�
ei(k+K)·r, r ∈ I,∑

�,m

∑
f dασ�m

f,k+Kuασ
f � (rα)Y�m(r̂α), r ∈ Sα,

(6)

where cσ
n,k+K are the variational coefficients. In the interstitial,

the basis functions φσ
k+K are represented by plane waves, while

inside the atomic spheres, φσ
k+K are linear combinations of the

products of radial functions uασ
f � and spherical harmonics Y�m.

The coefficients dασ�m
f,k+K are determined such that the φσ

k+K’s
are continuous across the sphere boundaries. For f = 1 and
2, uασ

f � represents a radial function evaluated at a linearization
energy and its energy derivative evaluated at this same energy,
respectively. In order to describe accurately semicore states,
local orbitals (which are confined into the atomic spheres and
zero in the interstitial) are added to the basis set. A local orbital
is constructed by using an additional radial function (f = 3)
evaluated at the energy of the semicore state. In Eqs. (3) and
(4), ψασ

nc,�c,mc
is a core orbital that is confined inside the atomic

sphere Sα and where nc, �c, and mc are the principal, azimuthal,
and magnetic quantum numbers, respectively:

ψασ
nc�cmc

(r) = uασ
nc�c

(rα)Y�cmc
(r̂α). (7)

In Eqs. (2) through (4), v is either the unscreened potential
[r< = min(r,r ′) and r> = max(r,r ′)]

1

|r − r′| =
∞∑

�=0

�∑
m=−�

4π

2� + 1

r�
<

r�+1
>

Y ∗
�m(r̂)Y�m(r̂′), (8)
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or the Yukawa screened potential18

e−λ|r−r′ |

|r − r′| = 4πλ

∞∑
�=0

�∑
m=−�

i�(λr<)k�(λr>)

×Y ∗
�m(r̂)Y�m(r̂′), (9)

where λ is the screening parameter and i� and k� are spherical,
modified Bessel functions.63 Note that the spherical harmonics
expansion of the screened potential63 is simpler than in the case
of the error function.64

1. Valence-valence term

Following the idea of Massidda et al.27 the valence-valence
term [Eq. (2)] is cast into the following form

EHF
x,vv = −1

2

∑
σ

∑
n,k,n′,k′

wσ
nkw

σ
n′k′

∫
�

ρσ
nkn′k′(r)vσ∗

nkn′k′(r)d3r,

(10)

where

ρσ
nkn′k′(r) = ψσ∗

nk (r)ψσ
n′k′(r), (11)

and

vσ
nkn′k′(r) =

∫
crystal

ρσ
nkn′k′(r′)v(|r − r′|)d3r ′. (12)

In the interstitial and spheres, ρσ
nkn′k′ and vσ

nkn′k′ are expanded
in Fourier and spherical harmonics series, respectively (from
now on, the index α of the position rα from the nucleus α is
suppressed and we define q = k′ − k + G):

ρσ
nkn′k′(r) =

{∑
G ρσG

nkn′k′e
iq·r, r ∈ I,∑

�,m ρασ�m
nkn′k′(r)Y�m(r̂), r ∈ Sα,

(13)

vσ
nkn′k′(r) =

{∑
G v

σq
nkn′k′e

iq·r, r ∈ I,∑
�,m vασ�m

nkn′k′(r)Y�m(r̂), r ∈ Sα.
(14)

In Eq. (13), ρσG
nkn′k′ are the Fourier coefficients of the periodic

part of ρσ
nkn′k′ and ρασ�m

nkn′k′ is given by

ρασ�m
nkn′k′(r) =

∑
�1,�2

∑
f1,f2

T
f1f2�1�2�m

ασnkn′k′ uασ
f1�1

(r)uασ
f2�2

(r), (15)

where

T
f1f2�1�2�m

ασnkn′k′ =
�1∑

m1=−�1

�2∑
m2=−�2

C
�2m2
�1m1�m

(
D

ασnkf1
�1m1

)∗
D

ασn′k′f2
�2m2

,

(16)

with C
�2m2
�1m1�m

being Gaunt coefficients

C
�2m2
�1m1�m

=
∫ 2π

0

∫ π

0
Y ∗

�2m2
(r̂)Y�1m1 (r̂)Y�m(r̂) sin θdθdφ, (17)

and D
ασnkf

�m = ∑
K cσ

n,k+Kdασ�m
f,k+K.

vσ
nkn′k′ is calculated by using Weinert’s method for solving

the Poisson equation.58 (In Appendix A 1, a brief summary of
Weinert’s method for the unscreened and screened potentials is
given.) For the unscreened and screened potentials, the Fourier
coefficients v

σq
nkn′k′ are given by

v
σq
nkn′k′ = 4π

ρ̃
σq
nkn′k′

|q|2 , (18)

and

v
σq
nkn′k′ = 4π

ρ̃
σq
nkn′k′

|q|2 + λ2
, (19)

respectively, where ρ̃
σq
nkn′k′ are the Fourier coefficients of the

pseudocharge density [see Eqs. (A9)–(A13) of Appendix A 2].
Note that for the unscreened potential, the term corresponding
to q = 0 (i.e., k = k′ and G = 0) leads to a singularity which
has to be considered carefully (details are given at the end of
this section).

The radial function vασ�m
nkn′k′ is given by (Rα is the radius of

the atomic sphere)

vασ�m
nkn′k′(r) =

∫ Rα

0
ρασ�m

nkn′k′(r ′)Gα
� (r,r ′)r ′2dr ′ + vασ�m

nkn′k′(Rα)P�(r),

(20)

where Gα
� is Eq. (A7) and P� = r�/R�

α for the unscreened
potential or Gα

� is Eq. (A8) and P� = i�(λr)/i�(λRα) for the
screened potential. In Eq. (20),

vασ�m
nkn′k′(Rα) = 4πi�

∑
G

v
σq
nkn′k′e

iq·ταY ∗
�m( q̂ )j�(|q|Rα),

(21)

which is obtained by using the Rayleigh formula63

eiq·r = 4π

∞∑
�=0

�∑
m=−�

i�j�(|q|r)Y ∗
�m(q̂)Y�m(r̂), (22)

in the Fourier expansion of vσ
nkn′k′ [Eq. (14)], where j� is a

spherical Bessel function.63

EHF
x,vv is decomposed into its interstitial and atomic sphere

parts:

EHF
x,vv = EHF,I

x,vv +
cell∑
α

EHF,Sα

x,vv , (23)

where

EHF,I
x,vv = −1

2

∑
σ

∑
n,k,n′,k′

wσ
nkw

σ
n′k′

×
∫

�

ρσ
nkn′k′(r)vσ∗

nkn′k′(r)�(r)d3r

= −�

2

∑
σ

∑
n,k,n′,k′

wσ
nkw

σ
n′k′

×
∑

G

(
ρσ

nkn′k′v
σ∗
nkn′k′

)
G �−G, (24)
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with �(r) = 1 if r ∈ I and 0 if r ∈ Sα , whose Fourier
transform �G is given by

�G =
{

− 4π
�

∑cell
α e−iG·ταR3

α
j1(|G|Rα )

|G|Rα
, G �= 0,

1 − 4π
3�

∑cell
α R3

α, G = 0,
(25)

and

EHF,Sα

x,vv = −1

2

∑
σ

∑
n,k,n′,k′

wσ
nkw

σ
n′k′

∫
Sα

ρσ
nkn′k′(r)vσ∗

nkn′k′(r)d3r

= −1

2

∑
σ

∑
n,k,n′,k′

wσ
nkw

σ
n′k′

∑
�,m

⎡⎢⎣∑
�1 ,�2
�3 ,�4

∑
f1 ,f2
f3 ,f4

T
f1f2�1�2�m

ασnkn′k′

× (
T

f3f4�3�4�m

ασnkn′k′
)∗

∫ Rα

0

∫ Rα

0
uασ

f1�1
(r)uασ

f2�2
(r)Gα

� (r,r ′)

× uασ
f3�3

(r ′)uασ
f4�4

(r ′)r2r ′2dr ′dr

+ Q�q
ασnkn′k′
�m vασ�m∗

nkn′k′ (Rα)

⎤⎥⎦ , (26)

where Q� = 1/R�
α and qασnkn′k′

�m is Eq. (A15) for the un-
screened potential or Q� = [1/i�(λRα)]λ�/(2� + 1)!! and
qασnkn′k′

�m is Eq. (A17) for the screened potential.
As already mentioned above, the singularity which arises

when q = 0 [see Eq. (18)] needs to be considered properly.
Several methods to deal with this integrable singularity
when integrating into the Brillouin zone are available in
the literature27,60,65–69 and have been used in very recent
studies.61,70–75 We adopted the simple scheme proposed by
Spencer and Alavi69 which consists of multiplying Eq. (18) by
1 − cos(|q|Rc), where Rc = [3/(4π )Nk�]1/3 with Nk being
the number of k points in the full Brillouin zone. In the real
space this corresponds to multiplying Eq. (8) by the step
function θ (Rc − |r − r′|) (Ref. 69). By doing this, the term
q = 0 tends to a finite value

lim
|q|→0

4π

|q|2 [1 − cos(|q|Rc)] = 2πR2
c , (27)

which leads to a much faster convergence (with respect to Nk)
of the integrations into the Brillouin zone.

The screened potential has no singularity at q = 0 [see
Eq. (19)], nevertheless it is still useful to apply the same tech-
nique to accelerate further the convergence of the integrations
into the Brillouin zone. Multiplying Eq. (9) by the step function
θ (Rc − |r − r′|) means that in the reciprocal space Eq. (19)
should be multiplied by

1 − e−λRc

(
λ

|q| sin(|q|Rc) + cos(|q|Rc)

)
, (28)

which becomes 1 − e−λRc (λRc + 1) at q = 0.

2. Valence-core and core-core terms

By supposing that the core shells are closed (see Refs. 24
and 27) the Legendre polynomial addition theorem63 can be
used to simplify the calculation of the valence-core and core-
core terms of the HF exchange energy [Eqs. (3) and (4)]. The

final expressions are given by

EHF
x,vc = −

∑
σ

cell∑
α

∑
nc,�c

∑
n,k

∑
�,�′,m′

∑
f1,f2

wσ
nk

(
D

ασnkf1
�′m′

)∗
D

ασnkf2
�′m′

×C�′0
�0�c0

√
(2�c + 1) (2� + 1)

4π (2�′ + 1)

∫ Rα

0

∫ Rα

0
uασ

f1�′(r)

× uασ
nc�c

(r)H�(r,r ′)uασ
nc�c

(r ′)uασ
f2�′(r ′)r2r ′2dr ′dr, (29)

EHF
x,cc = −1

2

∑
σ

cell∑
α

∑
nc,�c
n′
c ,�′c

∑
�

C�0
�c0�′

c0

×
√

(2�c + 1)
(
2�′

c + 1
)

(2� + 1)

4π

∫ Rα

0

∫ Rα

0
uασ

n′
c�

′
c
(r)

× uασ
nc�c

(r)H�(r,r ′)uασ
nc�c

(r ′)uασ
n′

c�
′
c
(r ′)r2r ′2dr ′dr, (30)

where H�(r,r ′) = [4π/(2� + 1)]r�
</r�+1

> for the unscreened
potential or H�(r,r ′) = 4πλi�(λr<)k�(λr>) for the screened
potential. C

�3m3
�1m1�2m2

are Gaunt coefficients [Eq. (17)]

and D
ασnkf

�m were defined in Sec. II A. Note that in Eqs. (29)
and (30), all integrations are inside the atomic spheres only,
thus the cost for the calculation of these two terms is negligible
compared to the valence-valence term.

B. Hamiltonian

The HF exchange operator for the valence orbitals is the
sum of the valence-valence and valence-core terms: v̂HF

xσ =
v̂HF

xσ,vv + v̂HF
xσ,vc. For the present work we chose to implement

the HF (and hybrid, see Sec. III) operator using a second
variational procedure, which consists of using the semilocal
(SL), LDA or GGA, orbitals as basis functions for the
calculation of the matrix elements of the perturbation operator
〈ψσSL

nk |v̂HF
xσ − vSL

xσ |ψσSL
n′k 〉. The HF part is given by〈

ψσSL
nk

∣∣v̂HF
xσ,vv

∣∣ψσSL
n′k

〉
= −

∑
n′′,k′′

wσ
n′′k′′

∫
�

∫
crystal

ψσSL∗
nk (r)ψσ

n′′k′′(r)

× v(|r − r′|)ψσ∗
n′′k′′(r′)ψσSL

n′k (r′)d3r ′d3r, (31)〈
ψσSL

nk

∣∣v̂HF
xσ,vc

∣∣ψσSL
n′k

〉
= −

cell∑
α

∑
nc,�c,mc

∫
Sα

∫
Sα

ψσSL∗
nk (r)ψασ

nc�cmc
(r)

× v(|r − r′|)ψασ∗
nc�cmc

(r′)ψσSL
n′k (r′)d3r ′d3r, (32)

which are calculated using the same procedure as for the HF
exchange energy, but with ρσ

nkn′′k′′ = ψσSL∗
nk ψσ

n′′k′′ for Eq. (31).
The second variational procedure, which was also adopted
for the HF implementations in other LAPW codes21,22,27,61

leads to cheaper calculations since, in practice, the number
of orbitals ψσSL

nk which are used for the construction of the
HF Hamiltonian matrix is much smaller than the number of
LAPW basis functions. In the present implementation, the
core electrons experience the semilocal potential, similarly as
to what is done in the FLEUR code, where the core electrons are
taken from a previous semilocal calculation and kept frozen
during the calculation with the hybrid functional.61
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III. SCREENED HYBRID FUNCTIONALS

In screened hybrid functionals, the SR part of a fraction
αx of the semilocal exchange is replaced by the SR HF
exchange:38

Exc = ESL
xc + αx

(
ESR-HF

x − ESR-SL
x

)
, (33)

where ESR-HF
x and ESR-SL

x are obtained by replacing the full
(i.e., unscreened) Coulomb operator by the screened (i.e., SR)
operator into the corresponding expressions. For the HSE
functional,38 the Coulomb operator was split into SR and
LR components by using the error function, however, for the
present work we chose to split the Coulomb operator by using
the exponential function

1

|r − r′| = e−λ|r−r′ |

|r − r′|︸ ︷︷ ︸
SR

+ 1 − e−λ|r−r′ |

|r − r′|︸ ︷︷ ︸
LR

. (34)

Figure 1 shows the SR and LR parts [Eq. (34)] of the Coulomb
potential 1/x = 1/|r − r′|, and for comparison, the same is
shown when the error function is used to split 1/x [erfc(μx) =
1 − erf(μx) is the complementary error function]. In both
cases, the screening parameter is set to λ = μ = 1. At x = 0,
the values of the LR parts (1 − e−λx)/x and [1 − erfc(μx)]/x
are λ and 2μ/

√
π , respectively, thus these two ways of splitting

the Coulomb operator lead to LR components that are not
zero at x = 0. Sharper splitting schemes which lead to a
LR component that is zero at x = 0 consist of using, for
example, the erfgau function76 or simply the step function.69

We mention that for technical convenience, Shimazaki and
Asai replaced e−λx by erfc[(2/3)λx] in their proposed screened
HF potential.77–79 Indeed, from Fig. 2 we can see that if
λ = (3/2)μ, the two splitting procedures lead to very similar
SR and LR parts. In this example, μ = 0.11 bohr−1, which is
the value used for the Heyd-Scuseria-Ernzerhof 06 (HSE06)
functional.45
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FIG. 1. (Color online) Plots of the SR and LR parts of the
Coulomb operator 1/x, when split using the exponential (in blue)
or error (in red) functions.
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FIG. 2. (Color online) Plots of the SR and LR parts of the
Coulomb operator 1/x, when split using the error (with μ =
0.11 bohr−1) or the exponential [with λ = (3/2)μ = 0.165 bohr−1]
functions.

In Eq. (33), ESR-HF
x is given by Eqs. (1)–(4) with the Yukawa

potential [Eq. (9)] for v and ESR-SL
x is given by

ESR-SL
x = −3

4

(
6

π

)1/3 ∑
σ

∫
�

ρ4/3
σ (r)Fx[sσ (r)]J [aσ (r)]d3r,

(35)

where Fx(sσ ) [where sσ = |∇ρσ |/(2ρσ kσ
F ) with kσ

F =
(6π2ρσ )1/3] is the enhancement factor of the semilocal
exchange functional and J (aσ ) [where aσ = λ

√
Fx(sσ )/(2kσ

F )]
is a function whose analytical form depends on the way the
Coulomb operator is screened [J (aσ ) = 1 for the unscreened
operator]. In our case [SR part of Eq. (34)], J (aσ ) is given by80

J (aσ ) = 1 − 2

3
a2

σ − 8

3
aσ arctan

1

aσ

+2

3
a2

σ

(
a2

σ + 3
)

ln

(
1 + 1

a2
σ

)
. (36)

Equation (35) is an approximation which was originally
proposed by Iikura et al.,81 but with the function J (aσ ) for the
error function. Recently, Akinaga and Ten-no82 used Eq. (35)
in conjunction with the Yukawa potential as in the present
work. (However, we note that in Refs. 81 and 82, this is the
LR part of the semilocal exchange which was replaced by
LR HF.) A more elegant way of calculating ESR-SL

x would
be to use its expression in terms of the exchange hole (as
done for HSE39,83), and for practical convenience, to find
a mathematical form for the exchange hole such that an
analytical integration with the Yukawa potential is possible,
as done in Ref. 84 for the error function. This method has
been used in Ref. 85 for the HSEsol functional, which is based
on the PBEsol GGA functional.86 We did not consider this
possibility for the present work.

For the semilocal terms in Eq. (33) we have chosen PBE,4

which is of the GGA form. In the following, this functional will
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be called YS-PBE0 (where YS stands for Yukawa screened). In
the literature, the unscreened version of this hybrid functional
(recovered when λ → 0) is called PBE0 (Refs. 36 and 37), for
which the fraction of HF exchange is αx = 0.25 (see Ref. 87).
For λ → ∞, YS-PBE0 reduces to PBE. The calculation of the
total energy for hybrid functionals is given in Appendix B.
As already mentioned in Sec. II B, the second variational
procedure has been implemented, and the matrix elements of
the perturbation operator corresponding to Eq. (33) are given
by 〈

ψσSL
nk

∣∣αx

(
v̂SR-HF

xσ − vSR-SL
xσ

)∣∣ψσSL
n′k

〉
, (37)

where the expression for vSR-SL
xσ = δESR-SL

x /δρσ is given in
Appendix C.

IV. NUMERICAL RESULTS

The calculations presented in this section were done with
values for the parameters such that the results are well
converged. The most important parameters are the number
of k points for the integrations into the Brillouin zone, the
size of the basis sets (first and second variational procedures),
Gmax and �max in Eqs. (13) and (14), and �max in Eq. (15). We
will not discuss in detail the convergence of the results with
respect to these parameters, but just mention the following:
for the transition energies and lattice constants, the number
of orbitals used as basis functions for the second variational
procedure is between two and six times larger than the number
of occupied valence bands in the system. The values of Gmax

lie in the range 4–10 bohr−1 and for most calculations the
value �max = 4 was used, which is more than enough most
of the time. The size of the k meshes will be mentioned
below.

We mention again that the computation of the HF Hamilto-
nian is very expensive, and for the systems we have considered
this leads to computational times which are by one or two
orders of magnitude larger than for semilocal functionals.
Actually, the values of all parameters mentioned above have a
large impact on the computational time.

A. Comparison with other codes

1. HF energy

As a first test of the correctness and accuracy of the imple-
mentation, we considered systems which do not contain core
electrons, such that all electrons are treated self-consistently
with the HF method. The He atom and solid LiH are two such
systems for which highly accurate HF results are available in
the literature. The exchange-only LDA (LDAx) orbitals were
used as basis functions for the Hamiltonian of the second
variational procedure.

The results for the He atom are shown in Table I. The
calculations were done in a fcc cell with a lattice constant of
9.5 Å which is large enough to make the interactions between
the He atoms negligible. First, to have an idea of the accuracy
that can be expected with WIEN2K, we did calculations with
semilocal functionals [exchange only: LDAx, B88 (Ref. 88)
and PW91x (Ref. 3)] and compared them to accurate atomic
results.89,90 From the results we can see that an agreement
at the mHa level can be reached, which is the target for

TABLE I. Total and exchange energies (in Ha) of He atom.

WIEN2K Reference

Functional −Etot −Ex −Etot −Ex

LDAxa 2.724 0.853 2.724 0.853
B88a 2.863 1.016 2.863 1.016
PW91xa 2.855 1.005 2.855 1.005
HFa 2.862 1.024 2.862 1.026
HFb 0.998 0.998
HFc 1.017

aObtained from exchange-only self-consistent calculations. The
reference results are from Refs. 89 and 91.
bEvaluated with LDA (exchange and correlation) orbitals. The
reference result is from Ref. 90.
cEvaluated with B88PW91 orbitals.

the HF calculations. The self-consistent HF results shown
in Table I were obtained using 410 bands for the second
variational procedure, which was enough to reach convergence
and thus agreement with accurate atomic results.91 However,
for the exchange energy Ex , the agreement with the reference
result is not perfect. Actually, we can see in Fig. 3 that
for a given number of bands, the error with respect to the
(approximately) converged value is ten times larger for the
exchange energy than for the total energy. For Etot, about 120
bands are necessary to reach convergence at the mHa level,
while 410 bands are still not enough for Ex (about 3000 LAPW
basis functions are used for the first variational procedure).
It is known that the total energy converges faster than its
components. To evaluate the effects due to self-consistency,
the HF exchange energy was also evaluated using the LDA
(with PW92 for correlation92) and B88PW91 [B88 (Ref. 88)
for exchange and PW91 (Ref. 3) for correlation] orbitals.
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FIG. 3. (a) Total and (b) exchange energy of the He atom with
respect to the values calculated with 410 bands.
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From Table I, we can see that using LDA orbitals leads to
an HF exchange energy whose magnitude is 26 mHa smaller,
while using B88PW91 orbitals leads to a value which is much
closer to the self-consistent one, which is maybe not surprising
since the empirical parameter in B88 was determined by a fit
to HF exchange energy of rare-gas atoms.88 This indicates
that using the B88PW91 orbitals as basis functions for the
second-variational Hamiltonian would be more efficient.

In Ref. 74 (as well as in the Comment), well-converged
calculations on solid LiH (rocksalt structure) using Gaussian
basis sets yielded a value of Etot = −8.0645 Ha at the
experimental geometry (4.084 Å). Using a 7 × 7 × 7 k mesh
and 65 bands for the second variational procedure we obtained
Etot = −8.0642 Ha. Increasing further the number of bands
would lower the total energy and reduce the difference between
the Gaussian and LAPW results. Therefore, as for the He atom,
the HF energy calculated with the LAPW code agrees very well
with the literature results.

2. PBE0 calculations

In Refs. 44 and 61, calculations with the unscreened hybrid
functional PBE0 were done within the projector augmented-
wave (VASP code) and LAPW (FLEUR code) methods, re-
spectively. The implementation of the HF equations within
the LAPW basis set as reported in Ref. 61 was done using
another technique (mixed product basis) as the one used in the
present work (pseudocharge method). The integrations into
the Brillouin zone were done with a 7 × 7 × 7 k mesh for the
semiconductors and insulators, while for the metals Li, Cu, and
Rh a 12 × 12 × 12 k mesh was used. The results from Refs. 44
and 61 were done with a 12 × 12 × 12 k-mesh, however,
test calculations indicate that our results are converged within
∼0.02 eV for the transition energies and ∼ 0.002 Å for the
lattice constants.

Transition energies were calculated for six solids at the
experimental lattice constant: Ar (fcc, 5.260 Å), C (diamond,
3.567 Å), Si (diamond, 5.430 Å), GaAs (zinc blend, 5.648 Å),
MgO (rocksalt, 4.207 Å), and NaCl (rocksalt, 5.595 Å). The
PBE0 results, as well as the PBE and experimental results,
are given in Table II, where we can see that the WIEN2K

results agree very well with the FLEUR and VASP results.
There are a few cases where the discrepancy is larger than
0.1 eV. For the � → L transition in C, there is a difference
of 0.12 eV between the WIEN2K and FLEUR values and in the
case of NaCl, a disagreement of 0.15–0.2 eV with FLEUR is
found for the � → � and � → X transitions. Nevertheless,
overall the agreement with the FLEUR and VASP codes for the
PBE0 hybrid functional is clearly satisfactory, in particular
with VASP. Compared to the experimental values, the PBE0
functional clearly improves upon PBE, however, some sizable
disagreements with the experiment are still present, as, for
example, for Ar and NaCl for which PBE0 underestimates
the � → � transition by about 3 and 1.2 eV, respectively. In
general, the tendency of the PBE0 functional is to overestimate
small band gaps (e.g., GaAs) and to underestimate large band
gaps (e.g., rare-gas solids).47

The lattice constant and bulk modulus of a few selected
compounds, namely, Li (bcc), C (diamond), Si (diamond),
Cu (fcc), Rh (fcc), LiF (rocksalt), BN (zinc blend), and
SiC (zinc blend) were calculated using the PBE and PBE0
functionals. The results are shown in Table III together with
the values obtained with the VASP code 44 and the experimental
data, which were corrected for the zero-point anharmonic
expansion.85 By comparing the WIEN2K and VASP results, we
can see that excellent agreement between the two codes is
obtained both for the PBE and PBE0 functionals. The largest
discrepancy in the lattice constant is found for Si, where a
difference of 0.007–0.01 Å is found for PBE and PBE0. From

TABLE II. Transition energies (in eV) obtained with the PBE, PBE0, and YS-PBE0 (λ = 0.165 bohr−1) functionals.

WIEN2K VASPa FLEURb

Solid Transition PBE PBE0 YS-PBE0 PBE PBE0 HSE06 PBE PBE0 Expt.c

Ar � → � 8.69 11.09 10.36 8.68 11.09 10.34 8.71 11.15 14.2

C � → � 5.59 7.69 6.94 5.59 7.69 6.97 5.64 7.74 7.3
� → X 4.76 6.64 5.91 4.76 6.66 5.91 4.79 6.69
� → L 8.46 10.76 9.97 8.46 10.77 10.02 8.58 10.88

Si � → � 2.56 3.95 3.30 2.57 3.97 3.32 2.56 3.96 3.4
� → X 0.71 1.91 1.31 0.71 1.93 1.29 0.71 1.93
� → L 1.53 2.86 2.23 1.54 2.88 2.24 1.54 2.87 2.4

GaAs � → � 0.53 1.99 1.39 0.56 2.01 1.45 0.55 2.02 1.63
� → X 1.46 2.66 2.08 1.46 2.67 2.02 1.47 2.69 2.18, 2.01
� → L 1.01 2.35 1.74 1.02 2.37 1.76 1.02 2.38 1.84, 1.85

MgO � → � 4.79 7.23 6.49 4.75 7.24 6.50 4.84 7.31 7.7
� → X 9.16 11.58 10.83 9.15 11.67 10.92 9.15 11.63
� → L 7.95 10.43 9.68 7.91 10.38 9.64 8.01 10.51

NaCl � → � 5.22 7.29 6.61 5.20 7.26 6.55 5.08 7.13 8.5
� → X 7.59 9.80 9.06 7.60 9.66 8.95 7.39 9.59
� → L 7.33 9.40 8.70 7.32 9.41 8.67 7.29 9.33

aReference 44 (see Erratum for HSE06 results).
bReference 61.
cThe references for the experimental values are given in Table 1 of Ref. 61.

235118-7



FABIEN TRAN AND PETER BLAHA PHYSICAL REVIEW B 83, 235118 (2011)

TABLE III. Equilibrium lattice constants a0 (in Å) and bulk moduli B0 (in GPa) obtained with the PBE, PBE0, and YS-PBE0 (λ =
0.165 bohr−1) functionals. The experimental values, which are corrected for the zero-point anharmonic expansion, are from Ref. 85.

WIEN2K VASPa

PBE PBE0 YS-PBE0 PBE PBE0 HSE06 Expt.

Solid a0 B0 a0 B0 a0 B0 a0 B0 a0 B0 a0 B0 a0 B0

Li 3.434 13.9 3.464 13.1 3.467 12.6 3.438 13.7 3.463 13.7 3.460 13.6 3.453 13.9
C 3.575 435 3.549 475 3.554 467 3.574 431 3.549 467 3.549 467 3.553 455
Si 5.476 89.0 5.443 99.4 5.459 96.5 5.469 87.8 5.433 99.0 5.435 97.7 5.421 101
Cu 3.631 141 3.630 131 3.654 119 3.635 136 3.636 130 3.638 126 3.595 145
Rh 3.830 256 3.787 292 3.799 280 3.830 254 3.785 291 3.783 288 3.794 272
LiF 4.069 67.2 4.008 70.2 4.035 67.3 4.068 67.3 4.011 72.8 4.018 72.7 3.972 76.3
BN 3.628 374 3.601 407 3.607 401 3.626 370 3.600 402 3.600 402 3.592 410
SiC 4.384 213 4.352 242 4.361 236 4.380 210 4.347 231 4.348 230 4.346 229

aReference 44 (see Erratum for HSE06 results).

Table III we can see that there is also a good agreement between
the two codes for the bulk modulus. On average, the hybrid
functional PBE0 improves over the GGA PBE for the lattice
constant and bulk modulus of semiconductors and metals as
shown in Ref. 44.

3. YS-PBE0 calculations

As mentioned in Sec. III (see Fig. 2), choosing λ = (3/2)μ
in Eq. (34) leads to a splitting of the Coulomb operator which
is very similar to the one obtained by using the error function
with a given μ (Refs. 77–79). In the HSE06 functional,45

μ is fixed to 0.11 bohr−1 and to see how well the YS-
PBE0 functional can reproduce the HSE06 transition energies
(see Erratum of Ref. 44), calculations with λ = (3/2)0.11 =
0.165 bohr−1 were done. From the results shown in Table II,
we can see that the agreement between HSE06 (VASP) and
YS-PBE0 is as good as it was for PBE0 with differences
smaller than 0.03 eV in most cases. Compared to PBE0, the
screened hybrid functionals lead to better (worse) agreement
with the experiment for small (large) band gaps (see also
Ref. 47).

The YS-PBE0 results for the lattice constant and bulk
modulus are shown in Table III. The agreement between the
HSE06 and YS-PBE0 results is fairly good in cases like Li
or C, while larger differences can be seen for Si (0.024 Å),
LiF (0.017 Å), Cu (0.016 Å), and Rh (0.016 Å). An important
contribution to these differences in the lattice constant between
the HSE06 and YS-PBE0 values could be attributed to the
different schemes used for the screening of the semilocal
exchange term [Eq. (35)]. For YS-PBE0, the method of Iikura
et al.81 is used, while in HSE06 the screened exchange energy
is obtained by integrating a model of the exchange hole.39,83

However, it seems that using one of the scheme or the other
has very little influence on the transition energies as shown
above.

B. Cu2O

Cuprous oxide (Cu2O) is a semiconductor which has been
used in many applications (e.g., catalysis and photovoltaics).
Its structure is cubic (space group Pn3m) and the unit cell,
which has a lattice constant of 4.27 Å (Ref. 93), contains

six atoms. In this structure, shown in Fig. 1 of Ref. 94, the
O atoms are fourfold coordinated by Cu atoms, whereas the
Cu atoms are linearly coordinated by O atoms. Formally Cu
has a valency of +1 and the Cu-3d shell in Cu2O is full,
therefore the correlation effects in the Cu-3d shell should not
play an important role as it is the case for CuO (Ref. 95).

Many experimental and theoretical studies on Cu2O have
been done. On the theoretical side it has been shown that
the semilocal approximations underestimate the band gap as
expected (see Refs. 96 and 97 for collections of previously
done calculations), but also the Cu electric-field gradient
(EFG),98 which is a ground-state property derived from the
electron density. LDA + U (or GGA + U ) improves only
slightly over the semilocal approximations,97,98 while the
pseudo self-interaction method (pseudo-SIC),99 the hybrid
functionals,96,100,101 and self-consistent GW (scGW )102 pro-
vide band gaps in much better agreement with the experiment.
Actually, the results for the EFG show that the semilocal and
LDA + U methods do not provide an accurate description of
the occupied states.

In Table IV, we show the results for the band gap and
EFG obtained with the hybrid functionals PBE0 and YS-PBE0
(λ = 0.165 bohr−1), which were obtained with a mesh of 5 ×
5 × 5 k points. The calculations with the semilocal (LDA,92

PBE,4 B88PW91,3,88 and EV93PW913,103), LDA + U [fully
localized limit (FLL)104 and around mean-field (AMF)104

versions], and onsite PBE051 methods (results in Table IV)
were done with a 12 × 12 × 12 k mesh. The radii of the Cu and
O atomic spheres are 1.84 and 1.63 bohr, respectively. LDA,
PBE, and B88PW91 give values for the band gap (∼0.5 eV)
and EFG (∼−5.5 × 1021 V/m2) which are much smaller than
the experimental values (above 2 eV for the band gap105 and
9.8 × 1021 V/m2 for the EFG106,107). EV93PW91 improves
for the EFG with a value of −6.6 × 1021 V/m2, but not for
the band gap, contrary to what was reported for many other
solids in Ref. 108. LDA + U slightly improves the results for
the band gap and its two versions, FLL and AMF, lead to the
same value for a given value of the Coulomb parameter U (the
exchange parameter J has been fixed to 0.95 eV). However,
this improvement is minor and even with U = 12 eV the band
gap remains well below the experimental value. For the EFG,
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TABLE IV. Band gap (in eV) and Cu EFG (in 1021 V/m2) of
Cu2O calculated at the experimental lattice constant (4.27 Å).

EFG

Method Band gap Total p-p d-d

LDA 0.53 −5.3 −16.0 10.5
PBE 0.53 −5.5 −16.4 10.6
B88PW91 0.55 −5.6 −16.4 10.6
EV93PW91 0.57 −6.6 −17.4 10.6
LDA + U (FLL, U = 4 eV) 0.65 −6.1 −16.1 9.8
LDA + U (FLL, U = 8 eV) 0.80 −6.6 −16.4 9.5
LDA + U (FLL, U = 12 eV) 0.91 −7.6 −16.5 8.8
LDA + U (AMF, U = 4 eV) 0.63 −4.8 −16.0 11.0
LDA + U (AMF, U = 8 eV) 0.79 −2.6 −16.2 13.4
LDA + U (AMF, U = 12 eV) 0.94 0.6 −16.6 17.0
PBE0 (onsite) 0.79 −3.4 −16.4 12.8
PBE0 2.77 −8.5 −19.5 10.8
YS-PBE0 1.99 −8.3 −19.3 10.8
pseudo-SICa 1.80
B3LYPb 2.1
HSE (αx = 0.275)c 2.12
scGW d 1.97
Expt. 2.17e 9.8f

aReference 99.
bReference 96.
cReference 101.
dReference 102.
eReference 105.
fOnly the magnitude is known. Calculated using Q(63Cu) = 0.22
(Refs. 106 and 107).

FLL and AMF lead to different trends. An increase of U leads
to an increase of the magnitude of the EFG with FLL, while the
opposite is obtained with AMF, which yields a positive value
for U = 12 eV. In Table IV, the p-p and d-d components
(inside the Cu atomic sphere) of the EFG are also shown. As
expected, the change in the EFG due to U comes mainly from
the d-d part. The onsite PBE0 method slightly improves the
results for the band gap (0.8 eV), but significantly decreases
the EFG (−3.4 × 1021 V/m2). Overall, the FLL version of
LDA + U leads to a moderate improvement over the semilocal
functionals, while AMF and onsite PBE0 behave similarly by
reducing the magnitude of the EFG.

The results obtained with PBE0 and YS-PBE0 are in
much better agreement with the experiment. In particular, the
screened YS-PBE0 functional leads to a band gap of 1.99 eV,
which is very close to the experimental value, and an EFG of
−8.3 × 1021 V/m2 which is much closer to the experiment
compared to the values obtained with other functionals. PBE0
leads to a band gap which seems to be too high and an EFG
very similar to YS-PBE0. Focusing now on the PBE and PBE0
results for the EFG, we can see from the decomposition of the
EFG (Table IV) that the increase in magnitude of the EFG
by going from PBE to PBE0 comes mainly from the p-p
component. By decomposing further the p-p component, we
could see that the subcomponent from the Cu-4p states (which
actually originate mainly from a reexpansion of the O-2p tails)
is more negative than the total p-p and that the subcomponent

FIG. 4. (Color online) Density of states of Cu2O calculated with
different functionals. The Fermi energy is set at E = 0 eV.

from the low-lying (∼−5 Ry) semicore Cu-3p states is small
and positive. From this we could also determine that the more
negative PBE0 p-p component comes half and half from the
Cu-3p and Cu-4p states.

Figure 4 shows the density of states (DOS) of Cu2O for a
few selected functionals. We can see that in the energy range
between −8 and −5 eV below the Fermi energy (set at E =
0 eV), most of the DOS comes from O-2p electrons. The
DOS between −4 and 0 eV is entirely due to Cu-3d states,
while above the band gap, the different partial DOSs actually
represent Cu-4s states. By comparing the different functionals,
we can observe that the O-2p peaks are higher in energy (closer
to the Cu-3d states) for the FLL version of LDA + U . Also,
the LDA + U and hybrid methods shift the main Cu-3d peaks
down in energy.

Compared to the other hybrid results from the literature
(also shown in Table IV), we can see that the HSE (with
αx = 0.275) band gap of 2.12 eV (Ref. 101) is close to the YS-
PBE0 value of 1.99 eV, as expected from the results obtained
in Sec. IV A 3. The B3LYP band gap of 2.1 eV reported in
Ref. 96 is much smaller than our PBE0 value of 2.77 eV. This
is mainly due to the smaller amount of HF exchange αx in
B3LYP (0.2 for B3LYP versus 0.25 for PBE0).
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V. SUMMARY

The implementation of unscreened and screened hybrid
functionals into the WIEN2K code, which is based on the
LAPW basis set, has been presented. The screening is based
on the Yukawa potential for which the expansion in spherical
harmonics has a simple expression. Also, it was possible to
calculate analytically all integrals which were necessary for
the derivation of the various formulas for the pseudocharge
method. To check the validity of the implementation, first,
test calculations were done on systems which do not contain
core electrons, such that the total Hartree-Fock energy could
be compared with benchmark results from the literature. As
a further test of the implementation, the band gap and lattice
constant of several solids have been calculated with the hybrid
functionals PBE0 and YS-PBE0 which are based on the
GGA functional PBE. The results are in very good agreement
with the results obtained by other codes. Noticeably, for the
screened hybrid functional YS-PBE0, it was possible to find a
value of the screening parameter λ such that the results are very
close to the results of HSE06, whose screening is based on the
error function. Finally, we applied the hybrid functionals to the
semiconductor Cu2O. The results obtained with the unscreened
PBE0 and screened YS-PBE0 for the band gap and EFG are
much more accurate than the results obtained with semilocal
and LDA + U functionals.
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APPENDIX A: PSEUDOCHARGE METHOD

In this Appendix, the basic formulas of the pseudocharge
method are given (Appendix A 1), as well as explicit expres-
sions used for the HF energy (Appendix A 2).

1. Basic formulas

In all-electron calculations, the charge density ρ has large
oscillations near the nuclei, therefore its Fourier expansion
will converge slowly, making the calculation of the potential
v generated by ρ with Fourier transforms inefficient. The idea
of the pseudocharge method58 is to replace the charge density
ρ inside the atomic spheres Sα by a smoother one (ρ̃) such
that the Fourier expansion of ρ̃ = ρPW + ρ converges faster.
ρPW is the continuation inside the spheres of the plane waves
(PW) representation of the charge density and ρ = ∑

α ρα is
zero in the interstitial region. Such a scheme is possible since
the potential in the interstitial region created by the charge
inside the spheres depends only on the multipole moments
qα

�m which are defined as follows for the unscreened [Eq. (8)]
and screened [Eq. (9)] potentials:

qα
�m =

∫
Sα

Y ∗
�m(r̂)r�ρ(r)d3r, (A1)

qα
�m = (2� + 1)!!

λ�

∫
Sα

Y ∗
�m(r̂)i�(λr)ρ(r)d3r. (A2)

Therefore, ρα should be chosen such that inside the spheres,
the multipole moments of ρ̃ are equal to the multipole moments
of the true charge density ρ. After having determined ρ̃, the
potential in the interstital region is calculated with

vI (r) = 4π
∑

G

ρ̃G

|G|2 eiG·r, (A3)

and

vI (r) = 4π
∑

G

ρ̃G

|G|2 + λ2
eiG·r, (A4)

for the unscreened and screened potentials, respectively. Then,
inside the atomic sphere Sα , the potential is the solution of a
Green function problem

vα(r) =
∫

Sα

ρ(r′)Gα(r,r′)d3r ′

− R2
α

4π

∮
Sα

vI (r′)
∂Gα

∂n′ (r,r′) sin θ ′dθ ′dφ′, (A5)

where the Green function is given by58,109

Gα(r,r′) =
∞∑

�=0

�∑
m=−�

Gα
� (r,r ′)Y ∗

�m(r̂′)Y�m(r̂), (A6)

where

Gα
� (r,r ′) = 4π

2� + 1

r�
<

r�+1
>

(
1 − r2�+1

>

R2�+1
α

)
, (A7)

or

Gα
� (r,r ′) = 4πλi�(λr<)k�(λr>)

(
1 − k�(λRα)i�(λr>)

i�(λRα)k�(λr>)

)
,

(A8)

for the unscreened and screened potentials, respectively.
∂Gα/∂n′ is the normal derivative of Gα at the sphere boundary.

2. Explicit expressions for the Hartree-Fock energy

In Eqs. (18) and (19), the Fourier coefficients of the
pseudocharge density are given by

ρ̃
σq
nkn′k′ = ρσG

nkn′k′ + ρ
σq
nkn′k′ , (A9)

where (unscreened case)

ρ
σq
nkn′k′ = 4π

�

cell∑
α

∑
�,m

(2� + 2p + 3)!!

R
�+p+1
α

(−i)�

(2� + 1)!!

×j�+p+1(|q|Rα)

|q|p+1
e−iq·ταY�m( q̂ )qασnkn′k′

�m ,

(A10)

or (screened case)

ρ
σq
nkn′k′ = 4π

�

cell∑
α

∑
�,m

λ�+p+1

i�+p+1(λRα)

(−i)�

(2� + 1)!!

×j�+p+1(|q|Rα)

|q|p+1
e−iq·ταY�m( q̂ )qασnkn′k′

�m .

(A11)
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In Eqs. (A10) and (A11), p is an integer which is chosen such
that � + p is fixed.58 For q = 0, Eqs. (A10) and (A11) reduce to

ρσ0
nkn′k =

√
4π

�

cell∑
α

qασnkn′k
00 , (A12)

and

ρσ0
nkn′k =

√
4π

�

cell∑
α

(λRα)p+1

(2p + 3)!!ip+1(λRα)
qασnkn′k

00 , (A13)

respectively. In Eqs. (A10)–(A13),

qασnkn′k′
�m = qασnkn′k′

�m − q
PW,ασnkn′k′
�m , (A14)

where qασnkn′k′
�m and q

PW,ασnkn′k′
�m are the multipole moments

of ρσ
nkn′k′ inside the spheres and of the continuation of the

PW representation of ρσ
nkn′k′ inside the spheres, respectively,

whose expressions are given by

qασnkn′k′
�m =

∑
�1,�2

∑
f1,f2

T
f1f2�1�2�m

ασnkn′k′

∫ Rα

0
uασ

f1�1
(r)uασ

f2�2
(r)r�+2dr,

(A15)

q
PW,ασnkn′k′
�m =

∑
G

4πi�R�+2
α j�+1(|q|Rα)

|q| eiq·ταY ∗
�m( q̂ )ρσG

nkn′k′ ,

(A16)

for the unscreened potential and

qασnkn′k′
�m = (2� + 1)!!

λ�

∑
�1,�2

∑
f1,f2

T
f1f2�1�2�m

ασnkn′k′

×
∫ Rα

0
uασ

f1�1
(r)uασ

f2�2
(r)i�(λr)r2dr, (A17)

q
PW,ασnkn′k′
�m

=
∑

G

[λj�(|q|Rα)i�−1(λRα) − |q|j�−1(|q|Rα)

× i�(λRα)]
4πi�R2

α(2� + 1)!!

λ�(|q|2 + λ2)
eiq·ταY ∗

�m( q̂ )ρσG
nkn′k′ ,

(A18)

for the screened potential. When k = k′, the term G = 0 in
Eqs. (A16) and (A18) reduces to

δ�0

√
4π

R3
α

3
ρσ0

nkn′k, (A19)

and

δ�0

√
4π

R2
αi1(λRα)

λ
ρσ0

nkn′k, (A20)

respectively.

APPENDIX B: TOTAL ENERGY

For the case of a hybrid exchange-correlation functional,
the total energy is given by (spin-unpolarized form)

Etot = Ts + 1

2

∫
cell

vCoul(r)ρ(r)d3r − 1

2

cell∑
α

Zαvα
M (τα)

+ESL
xc + αx

(
EHF

x − ESL
x

)
, (B1)

where Ts is the kinetic energy of the electrons and

vCoul(r) =
∫

crystal

ρ(r′)
|r − r′|d

3r ′ −
crystal∑

β

Zβ

|r − τβ | , (B2)

vα
M (τα) =

∫
crystal

ρ(r′)
|τα − r′|d

3r ′ −
crystal∑

β

β �=α

Zβ

|τα − τβ | , (B3)

are the Coulomb and Madelung potentials, respectively. By
using the sum of the eigenvalues∑

nc,�c,mc

εnc�cmc
+

∑
n,k

wnkεnk

= Ts +
∫

cell
vCoul(r)ρ(r)d3r +

∫
cell

vSL
xc (r)ρ(r)d3r

+αx

(
2EHF

x,vv + EHF
x,vc −

∫
cell

vSL
x (r)ρval(r)d3r

)
, (B4)

where ρval is the valence electron density (the core electrons
experience the semilocal potential), the total energy can be
rewritten as

Etot =
∑

nc,�c,mc

εnc�cmc
+

∑
n,k

wnkεnk − 1

2

∫
cell

vCoul(r)ρ(r)d3r

− 1

2

cell∑
α

Zαvα
M (τα) −

∫
cell

vSL
xc (r)ρ(r)d3r + ESL

xc

+αx

(
EHF

x,cc − EHF
x,vv +

∫
cell

vSL
x (r)ρval(r)d3r − ESL

x

)
.

(B5)

For a screened hybrid functional, the exchange-only terms
are simply replaced by their SR counterparts. The use of the
second variational procedure allows us to write the sum of the
valence eigenvalues in the following way:∑
n,k

wnkεnk =
∑
n,k

wnk

∑
m

∣∣cm
nk

∣∣2
εSL
mk

+αx

(
2EHF

x,vv + EHF
x,vc −

∫
cell

vSL
x (r)ρval(r)d3r

)
,

(B6)

where cm
nk are the coefficients of the expansion of ψnk

(ψnk = ∑
m cm

nkψ
SL
mk). From Eq. (B6), the valence-valence HF

exchange energy EHF
x,vv can be calculated, thus avoiding the use

of Eq. (2), which is the most expensive component of the total
energy to calculate.

APPENDIX C: FUNCTIONAL DERIVATIVE OF ESR-SL
x

The functional derivative of ESR-SL
x [Eq. (35)] for the spin-

unpolarized case is given by

vSR-SL
x = −3

4

(
3

π

)1/3 (
v1J + v2

dJ

da
+ v3

d2J

da2

)
, (C1)

where

v1 = 4

3
ρ1/3Fx − 1

b2

∇2ρ

ρ4/3
Hx +

(
4

3
ρ1/3s3 − 1

b3

t

ρ8/3

)
dHx

ds
,

(C2)

235118-11



FABIEN TRAN AND PETER BLAHA PHYSICAL REVIEW B 83, 235118 (2011)

v2 = −1

3

λ

b
F 3/2

x +
(

1

2

λ

b
s2 − 1

2

λ

b3

∇2ρ

ρ5/3

)
F 1/2

x Hx

+
(

2

3

λ

b
s3 − 1

2

λ

b4

t

ρ3

)
F 1/2

x

dHx

ds

+
(

λ

b
s4 − 3

4

λ

b4

st

ρ3

)
H 2

x

F
1/2
x

, (C3)

v3 = 1

6

λ2

b2

s2

ρ1/3
FxHx +

(
1

3

λ2

b2

s4

ρ1/3
− 1

4

λ2

b5

st

ρ10/3

)
H 2

x ,

(C4)

where b = 2(3π2)1/3, s = |∇ρ|/(2(3π2)1/3ρ4/3), t =
∇ρ · ∇|∇ρ|, and Hx = (1/s)dFx/ds.

1P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
2W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
3J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R.
Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671
(1992); 48, 4978 (1993).

4J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,
3865 (1996); 78, 1396 (1997).

5F. Tran, R. Laskowski, P. Blaha, and K. Schwarz, Phys. Rev. B 75,
115131 (2007).

6P. Haas, F. Tran, and P. Blaha, Phys. Rev. B 79, 085104 (2009);
79, 209902(E) (2009).
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