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The effects of bond randomness on the universality aspects of a two-dimensional (d = 2) Blume-Capel
model embedded in the triangular lattice are discussed. The system is studied numerically in both its first- and
second-order phase-transition regimes by a comprehensive finite-size scaling analysis for a particularly suitable
value of the disorder strength. We find that our data for the second-order phase transition, emerging under
random bonds from the second-order regime of the pure model, are compatible with the universality class of
the two-dimensional (2D) random Ising model. Furthermore, we find evidence that, the second-order transition
emerging under bond randomness from the first-order regime of the pure model, belongs again to the same
universality class. Although the first finding reinforces the scenario of strong universality in the 2D Ising model
with quenched disorder, the second is in difference from the critical behavior, emerging under randomness, in the
cases of the ex-first-order transitions of the Potts model. Finally, our results verify previous renormalization-group
calculations on the Blume-Capel model with disorder in the crystal-field coupling.
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I. INTRODUCTION

The effect of quenched randomness on the equilibrium
and dynamic properties of macroscopic systems is a subject
of great theoretical and practical interest. It is well known
that quenched bond randomness may produce drastic changes
on phase transitions depending on the type of the transition
[1–8]. Thus, symmetry-breaking first-order transitions are
converted to second-order phase transitions by infinitesimal
bond randomness for spatial dimensionality d = 2 [3,4]
and by bond randomness beyond a threshold strength in
d > 2 [4], as indicated by general arguments [5], rigorous
mathematical work [3], and physically intuitive mappings to
other disordered systems [7]. In particular, this rounding effect
of first-order transitions has now been rigorously established
in a unified way in low dimensions (d � 2) including a large
variety of types of randomness in classical and quantum spin
systems [9].

Historically, the effects of disorder on phase transitions
have been studied in two extreme cases, i.e., in the limits
of weak and strong (near the percolation point) disorder.
The first important conjecture, known today as the Harris
criterion [1], relates the value of the specific heat exponent
α in a continuous transition with the expected effects of
uncorrelated weak disorder in ferromagnets. According to
the Harris criterion, for continuous phase transitions with a
negative exponent α, the introduction of weak randomness is
expected to be an irrelevant field and the disordered system
to remain in the same universality class. On the other hand,
the weakly disordered system is expected to be in a different
universality class in the case of a pure system having a positive
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exponent α. Pure systems with a zero specific heat exponent
(α = 0) are marginal cases of the Harris criterion and their
study, upon the introduction of disorder, has been of particular
interest. The paradigmatic model of the marginal case is, of
course, the general random 2D Ising model and this model
has been extensively debated throughout the years [10–31].
Several recent studies, both analytical (renormalization-group
and conformal field theories) and numerical [mainly Monte
Carlo (MC) simulations] devoted to this model, have provided
very strong evidence in favor of the so-called scenario of
logarithmic corrections. According to this, the effect of
infinitesimal disorder gives rise to a marginal irrelevance of
randomness and besides logarithmic corrections, the critical
exponents maintain their 2D Ising values [13–16].

An interesting candidate for investigating the above pre-
dictions in d = 2—apart from the well-studied case of the
q-states Potts model [20,32–36]—is the Blume-Capel (BC)
model [37,38]. Historically, the pure version of the BC model,
consisting of a spin-one Ising Hamiltonian with a single-ion
uniaxial crystal-field anisotropy [see Eq. (1) below], has been
served as one of the most studied models in the communities of
statistical mechanics and condensed matter physics. This is not
only because of the relative simplicity with which approximate
calculations for this model can be carried out and tested, as
well as the fundamental theoretical interest arising from the
richness of its phase diagram, but also because versions and
extensions of the model can be applied for the description
of many different physical structures, i.e., multicomponent
fluids, ternary alloys, and 3He-4He mixtures [39]. It is worth
noting, the latest applications of the BC model include analyses
of ferrimagnets, as recently discussed by Selke and Oitmaa
[40]. In the present study we are interested in investigating
the effects of disorder on the critical behavior and relevant
universality aspects of the BC model. In this framework, the
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advantage of dealing with the BC model stems from the
fact that its phase diagram consists, in the pure version, of
continuous Ising-like transitions to an ordered ferromagnetic
phase as the temperature is lowered for crystal-field couplings
less than a tricritical value and a first-order transition for
larger values of the crystal-field coupling. Therefore, the BC
model clearly offers the opportunity to study, on the same
footing, two important aspects on the effects of disorder on
critical phenomena, namely, the marginal case of the Harris
criterion in the regime where the 2D BC model is in the
same universality class with the Ising model and also the
softening of the transition in the corresponding first-order
regime.

The pure BC model [37,38] is defined by the Hamiltonian

Hp = −J
∑

〈ij〉
sisj + �

∑

i

s2
i , (1)

where the spin variables si take on the values −1, 0, or +1,
〈ij 〉 indicates summation over all nearest-neighbor pairs of
sites, and J > 0 is the ferromagnetic exchange interaction.
The parameter � is known as the crystal-field coupling and to
fix the temperature scale we set J = 1 and kB = 1. As is well
known, this model has been analyzed, in addition to the original
mean-field theory [37,38], by a variety of approximations
and numerical approaches in d = 2 and d = 3 [41–52]. As
already mentioned, the �-T phase diagram of the model
consists of a segment of continuous Ising-like transitions at
high temperatures and low values of the crystal field which
ends at a tricritical point [�t ; Tt ], where it is joined with a
second segment of first-order transitions between [�t ; Tt ] and
[� = zJ/2; T = 0], where z defines the coordination number
of the lattice. The 2D model given by Eq. (1) is studied here
on the triangular lattice (z = 6) and will be referred to as
the pure BC model. For this case, the tricritical value of the
crystal field has been estimated to be �t = 2.925(8) [51].
In Fig. 1, an approximation of the phase diagram of the
model is given, as was estimated recently by extensive MC
simulations for several values of the crystal-field coupling
� [51].

FIG. 1. Approximation of the phase diagram of the pure triangu-
lar BC model. The dotted and solid curves correspond, respectively,
to first- and second-order phase-transition lines that separate the
ordered and paramagnetic phases. The black rhombus points out the
approximate location of the tricritical point (TP).

However, our main focus is the case with bond disorder
given by the bimodal distribution

P(Jij ) = 1

2
[δ(Jij − J1) + δ(Jij − J2)];

(2)
J1 + J2

2
= 1; J1 > J2 > 0; r = J2

J1
,

so that r reflects the strength of the bond randomness. In Eq. (2)
we keep the ratio of interaction strengths in a fixed 50%:50%
weak:strong bond mixing, following the usual practice of the
traditional bond disorder implementation in the case of the
square lattice Ising and Potts models [7,10]. Although in these
models the above choice is a clear asset for the analysis,
as the critical temperature of the system as a function of
the disorder [Tc = Tc(r)] is exactly known through duality
relations, in the present BC case the only practical advantage
is an easier implementation of disorder in the lattice. The
resulting quenched disordered (random-bond) version of the
Hamiltonian defined in Eq. (1) reads now as

H = −
∑

〈ij〉
Jij sisj + �

∑

i

s2
i . (3)

The rest of the paper is laid out as follows: In the following
section we give a description of our numerical approach uti-
lized to derive numerical data for large ensembles of disorder
realizations and triangular lattices with up to N = 240 × 240
spins. In Sec. III the finite-size scaling (FSS) analysis of
the numerical data is presented, discussing the effects of
bond disorder in both the originally second- (Sec. III A) and
first-order (Sec. III B) phase-transition regimes of the model.
Finally, in Sec. IV we summarize our conclusions and critically
discuss the results of our contribution under the prism of the
current literature.

II. SIMULATION PROTOCOL AND PHYSICAL REMARKS

As already well established in the relevant literature,
numerical simulations are crucial to achieve progress in the
field, especially when it comes to disordered systems. It is also
well known that for such complex systems traditional methods
become inefficient and thus in the last few years several
sophisticated algorithms, some of them based on entropic
iterative schemes, have been proven to be very effective [53].
The present numerical study has been carried out by applying
an efficient entropic sampling scheme in two stages [10],
based on the Wang-Landau (WL) algorithm [54]. One basic
ingredient of this implementation is a suitable restriction of the
energy subspace for the implementation of the WL algorithm.
This was originally termed as the critical minimum energy
subspace restriction [55] and it can be carried out in many
alternative ways, the simplest being that of observing the
finite-size behavior of the tails of the energy probability density
function of the system [55].

Complications that may arise in complex systems, i.e.,
random systems or systems showing a first-order phase
transition, can be easily accounted for by various simple
modifications that take into account possible oscillations in
the energy probability density function and expected sample-
to-sample fluctuations of individual realizations [57]. Details
of various sophisticated routes for the identification of the
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appropriate energy subspace (E1,E2) for the entropic sampling
of each realization have been presented in Ref. [10]. To
estimate the appropriate subspace from a chosen pseudocritical
temperature one should be careful to account for the shift
behavior of other important pseudocritical temperatures and
extend the subspace appropriately from both low- and high-
energy sides, in order to achieve an accurate estimation of
all finite-size anomalies. Of course, taking the union of the
corresponding subspaces ensures accuracy for the temperature
region of all studied pseudocritical temperatures.

The up to date version of our implementation uses a
combination of several stages of the WL process. First, we
carry out a starting (or preliminary) multirange (multi-R) stage,
in a very wide energy subspace. This preliminary stage is
performed up to a certain level of the WL random walk. The
WL refinement is G(E) → f G(E), where G(E) is the density
of states (DOS) and we follow the usual modification factor
adjustment fj+1 = √

fj and f1 = e [54,55]. The preliminary
stage may consist of the levels: j = 1, . . . ,j = 18 and to
improve accuracy the process may be repeated several times.
However, in repeating the preliminary process and in order to
be efficient, we use only the levels j = 13, . . . ,18 after the first
attempt, using as the starting DOS the one obtained in the first
random walk at the level j = 12. From our experience, this
practice is almost equivalent to simulating the same number of
independent WL random walks. Also in our recent studies we
have found out that it is much more efficient and accurate to
loosen up the originally applied very strict flatness criteria [55].
Thus, a variable flatness process starting at the first levels with
a very loose flatness criteria and assuming at the level j = 18
the original strict flatness criteria is nowadays used. After
the above described preliminary multi-R stage, in the wide
energy subspace, one can proceed in a safe identification of
the appropriate energy subspace using one or more alternatives
outlined in Ref. [55].

The process continues in two further stages (two-stage
process), using now mainly high iteration levels, where the
modification factor is very close to unity and there is no
significant violation of the detailed balance condition during
the WL process. These two stages are suitable for the accumu-
lation of histogram data (for instance, energy-magnetization
histograms), which can be used for an accurate entropic
calculation of nonthermal thermodynamic parameters, such
as the order parameter and its susceptibility [55]. In the first
(high-level) stage, we follow again a several times repeated
(typically ∼5–10) multi-R WL approach, carried out now only
in the restricted energy subspace. The WL levels may now be
chosen as j = 18,19,20 and as an appropriate starting DOS
for the corresponding starting level the average DOS of the
preliminary stage at the starting level may be used. Finally,
the second (high-level) stage is applied in the refinement WL
levels j = ji, . . . ,ji + 3 (typically ji = 21), where we usually
test both a one-range (one-R) or a multi-R approach with
large energy intervals. In the case of the one-R approach we
have found it very convenient and more accurate to follow
the Belardinelli-Pereyra adjustment of the WL modification
factor according to the rule ln f ∼ t−1, where t denotes the
MC time [56]. Finally, it should also be noted that by applying
in our scheme a separate accumulation of histogram data in the
starting multi-R stage (in the wide energy subspace) offers the

opportunity to inspect the behavior of all basic thermodynamic
functions in an also wide temperature range and not only in
the neighborhood of the finite-size anomalies.

A last general comment on the WL method concerns the
fact that the WL recursion violates the detailed balance from
the early stages of the process and care is necessary in setting
up a proper protocol of the recursion. In spite of the fact that
the WL method has produced very accurate results in several
models, it is fair to say that there is no safe way to access
possible systematic deviations in the general case. This has
been pointed out and critiqued in a recent review by Janke
[58]. However, from our experience and especially from our
recent studies on disordered spin models [10,49,57,59], the
WL implementation followed in these papers has produced
excellent results, enabling at the same time the discrimination
between competing theoretical predictions [10] and clarifying
long debated issues in the literature [57].

As our primary goal in this paper was to identify the
effect of bond disorder on the two different regimes of
the pure model’s phase diagram (first- and second-order
phase-transition regimes in Fig. 1), the following issue should
be treated with caution: Two characteristic values of the
crystal-field coupling � should be chosen and at the same time
a value of the disorder strength r , under which the originally
first-order phase transition of the system undoubtedly switches
to second order. In the current model this is a nontrivial issue,
compared to the case of the Potts model, for which Picco [60]
and Chatelain and Berche [61] have proposed techniques
which allow one to find an optimal value for the ratio of
couplings to secure the minimum scaling corrections to the
critical behavior.

In fact, as has already been discussed in previous papers
(see, e.g., Ref. [49]), there is a certain critical disorder strength,
below which the BC system departs from the ferromagnetic
ground state and an unsaturated ground state is produced,
which is further enhanced with vacant sites (si = 0), as we
increase the disorder strength. In the presence of bond random-
ness, the competition between the ferromagnetic interactions
with the crystal-field coupling results in a destabilization of
the ferromagnetic ground state. Entering in this rough regime,
may cause serious problems of physical (huge increase of
the sample-to-sample fluctuations) or technical origin in the
positive-temperature WL simulations, which are already a
difficult task due to the very dense energy states of the
disordered BC model. Noteworthy here is that, as the originally
ex-first-order � regime of the triangular BC model is rather
small (� > 2.92; see Fig. 1) the option for the choice of
the crystal-field coupling in this regime is rather limited, as
we do not wish to approach the regime T → 0 (through
� → 3), where the WL algorithm shows unconventional
behavior.

After taking all these physical and technical restrictions
into account simultaneously, and via a preliminary numerical
scanning of the phase diagram of the model treating both
parameters � and r on the same footing, we decided to
select the following optimum set of values for the disorder
strength and crystal-field couplings: r = 0.75/1.25 = 0.6,
� = 1 (ex-second-order regime), and � = 2.95 (ex-first-order
regime). For this set of values, as will be seen below, we were
able to account for the logarithmic corrections that are present
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FIG. 2. Disorder distribution of the susceptibility maxima of a
lattice with linear size L = 80 of the random-bond triangular BC
model at [� = 1; r = 0.6]. The running average over the samples is
shown by the solid line.

in the ex-second-order regime of the model, as well as for
the clear conversion of the originally first-order transition of
the pure model to second order, avoiding the above discussed
pathologies. Thus, using the two-stage approach we performed
extensive simulations of the random BC model using lattice
sizes in the range L = 20–240 and averaging over fairly
large ensembles of random realizations {1, . . . ,q, . . . ,Q} of
the order of Q = 250–500. Each disorder realization was
simulated approximately five times with different initial
conditions to improve accuracy.

It is well known that, extensive disorder averaging is
necessary when studying random systems, where usually
broad distributions are expected leading to a strong violation
of self-averaging [62,63]. Figure 2 presents evidence that
the above number of random realizations is sufficient in
order to obtain the true average behavior and not a typical
one. In particular, we plot in this figure (for a lattice size
L = 80 of the random-bond BC model at [� = 1; r = 0.6])
the disorder distribution of the susceptibility maxima χ∗

q and
the corresponding running average. This is a series of averages
of different subsets of the full data set—each of which is
the average of the corresponding subset of a larger set of
data points, over the samples for the simulated ensemble of
Q = 500 disorder realizations. A first striking observation
from this figure is the existence of a very large variance
of the values of χ∗

q , indicating the expected violation of
self-averaging for this quantity. This figure illustrates that the
simulated number of random realizations is sufficient in order
to probe correctly the average behavior of the system, since
already for Q ≈ 200 the average value of χ∗

q appears quite
stable.

Closely related to the above issue of self-averaging in dis-
ordered systems is the manner of averaging over the disorder.
This nontrivial process may be performed in two distinct ways
when identifying the finite-size anomalies, such as the peaks
of the magnetic susceptibility. The first way corresponds to the
average over disorder realizations ([. . .]av) and then taking the
maxima ([. . .]∗av) and identifying their temperature locations
T[...]∗av

. However, in an alternative approach [63] one may con-
sider individual sample dependent anomalies ([. . .∗]av) and the
corresponding sample dependent pseudocritical temperatures

[T ∗
...]av, as also followed in the current investigation. This

alternative route is far more demanding computationally, but
the corresponding FSS analysis may be more precise, and
additional useful information concerning the properties of
disorder averages becomes available. It should be noted here
that, for disordered systems one can make a clear distinction
between typical and averaged exponents [64,65]. An extreme
example of this case with very pronounced differences in the
corresponding ν exponents has been provided, and critically
discussed, by Fisher [64] on the random transverse-field Ising
chain model. Finally, disordered critical phenomena are known
to display in general multicritical exponents [66,67].

Closing this outline, let us comment on the statistical errors
of our numerical data. The statistical errors of our WL scheme
on the observed average behavior were found to be of small
magnitude (of the order of the symbol sizes) and thus are
neglected in the figures. On the other hand, the error bars shown
in the figures below reflect the sample-to-sample fluctuations
of the disorder-averaged maxima [. . .∗]av.

III. FINITE-SIZE SCALING ANALYSIS

A. Ex-second-order phase-transition regime

We now present our numerical results and the relevant
finite-size FSS analysis for the random-bond 2D triangular
BC model with � = 1 for disorder strength r = 0.6. Bond
randomness favoring second-order transitions, this system is
also expected to undergo a second-order transition between the
ferromagnetic and paramagnetic phases and it is reasonable to
expect that this transition will be in the same universality class
as the 2D random Ising model. The latter model is a particular
case of the more general random Ising model (random site,
random bond, and bond diluted) and has been extensively
investigated and debated [10–30]. As already discussed in
the Introduction, using renormalization-group and conformal
field theories, the marginal irrelevance of randomness at the
second-order ferromagnetic-paramagnetic transition has been
predicted for the marginal case of the 2D random Ising
model [13–16]. More recently, this appearance of logarithmic
corrections in the scaling behavior of the thermodynamic
quantities that characterize the transition and its implications
in the scaling analysis have been discussed under a new prism
by Berche and Shchur [68], as well as Kenna et al. [69]. In the
following we will also consider these logarithmic corrections
in the relevant fitting attempts of our numerical data for the
ex-second-order regime of the random BC model.

Figure 3 illustrates in the main panel the shift behavior
of six disorder-averaged pseudocritical temperatures as a
function of the inverse linear size 1/L. The pseudocritical
temperatures considered correspond to the peaks of the fol-
lowing six quantities: specific heat C, magnetic susceptibility
χ , derivative of the absolute order parameter with respect
to inverse temperature K = 1/T : ∂〈|M|〉/∂K = 〈|M|H〉 −
〈|M|〉〈H〉 [70], and logarithmic derivatives of the first-
(n = 1), second- (n = 2), and fourth-order (n = 4) powers
of the order parameter with respect to inverse temperature
∂ ln〈Mn〉/∂K = 〈MnH〉/〈Mn〉 − 〈H〉 [70].

Fitting simultaneously our data for the lattice range L =
40–240 to the expected power-law behavior, including the
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FIG. 3. Estimation of the critical temperature and correlation
length’s exponent of the random-bond triangular BC model at [� =
1; r = 0.6]. Shift behavior of several pseudocritical temperatures
defined in the text (main panel). Additional estimation of the critical
temperature via the crossings of the fourth-order Binder’s cumulant
(inset).

theoretically predicted logarithmic corrections [T ∗
Z ]av = Tc +

bZL−1/ν+cz[ln(L)]−ω

[13], where Z stands for the different ther-
modynamic quantities mentioned above, we find the critical
temperature of the random model to be Tc = 2.7341(11) and
the estimate ν = 1.000(28) for the critical exponent of the
correlation length. Note that in the above fitting attempt we
have fixed the correction-exponent ω to the value ω = 1, as
also indicated by Talapov and Shchur in their relevant scaling
analysis of the random Ising model [18]. In fact, by performing
a set of different fittings, we identified that this value for ω gave
the best-fitting quality and estimates for the expected value
ν = 1. The inset of Fig. 3 is a further illustration of the accuracy
of our numerical scheme. We plot the FSS of the crossings
of the fourth-order’s Binder cumulant with the inverse new
linear size L′ (see definition below). We show four data points
which denote the temperature crossing points (T ∗

cross) of the
Binder cumulant for the following pairs of lattices: (L1,L2) =
(40,80), (60,120), (80,160), and (120,240). The notation L′
in the x axis refers to the value L′ = (L1 + L2)/2. The solid
line is a linear fitting extrapolating to L′ → ∞, which gives
an estimate for the critical temperature Tc = 2.7337(7) in
excellent agreement with the estimate shown in the main panel
of the same figure.

In Fig. 4 we present an alternative estimation of the critical
exponent ν [upper panel (a)] and original estimations of the
magnetic exponent ratios γ /ν [main lower panel (b)] and β/ν

[inset of lower panel (b)] for the case � = 1 of the random
(r = 0.6) BC model. In particular, in panel (a) we illustrate the
FSS of the maxima of the disorder-averaged order-parameter’s
logarithmic derivatives of first (n = 1), second (n = 2), and
fourth order (n = 4), specifically defined above. These quan-
tities are expected to scale, in a second-order phase transition,
as ∼ L1/ν with the system size [33,70]. Including here
the logarithmic corrections, we get [(∂ ln〈Mn〉/∂K)∗]av =
anL

1/ν+bn[ln(L)]−ω

, following the practice of the shift scaling
form of the pseudocritical temperatures. n refers as usual to
the order of the order-parameter derivative. A simultaneous
fitting for all numerical data gives the estimate ν = 0.999(5)

FIG. 4. Estimation of critical exponents ν [upper panel (a)], γ /ν

[main lower panel (b)], and β/ν [inset of lower panel (b)] of the
random-bond triangular BC model in the ex-second-order regime
[� = 1; r = 0.6]. The data are shown in a double logarithmic scale.

in very good agreement with the expected value ν = 1 and
with the original estimation via the shift behavior of Fig. 3.

Moving now to the main bottom panel (b) of Fig. 4,
the FSS behavior of the maxima of the disorder-averaged
magnetic susceptibility for the complete lattice range is shown.
This is expected to scale as [χ∗]av = aLγ/ν+b[ln(L)]−ω

with
the system size. The fitting procedure provides us with the
estimate γ /ν = 1.751(6), clearly identical to the value 1.75
of the pure Ising model. In the corresponding inset of panel
(b) we illustrate the scaling behavior of the magnetization
data at the estimated critical temperature Tc = 2.747. These
values were extracted from the disorder-averaged curves of
the order parameter as a function of the temperature obtained
in our WL simulations. Note here that, for every disorder
realization the curve M = M(T ) is a direct outcome of the
WL algorithm for a wide temperature range, with no additional
cost, and this is one of its clear advantages in the numerical
simulations of disordered systems [57]. The applied power
law [M]av(T = Tc) = aL−β/ν+b[ln(L)]−ω

, shown by the solid
line in a double logarithmic scale, produces an estimate
β/ν = 0.126(3), almost identical to the value 0.125 of the
Ising model. Let us comment here that these values of the
ratios γ /ν and β/ν are obeyed, not only in the simple Ising
model, but also in several other cases in d = 2. In particular,
it appears that they are very well obeyed in the cases of
disordered models, including the site-diluted, bond-diluted,
and random-bond Ising model [10,21,23]. Furthermore, it has
been shown that they are also valid in both the pure and
random-bond versions of the square Ising model with nearest-
and next-nearest-neighbor competing interactions [10].
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At this point we would like to draw attention to a relevant
paper by Aarão Reis et al. [22]. These authors implemented
extensive transfer-matrix calculations to address the notions
of strong universality and scaling corrections in disordered
systems, using as a toy model the 2D random-bond Ising
model. In general, their analysis provided a clear manifestation
of the strong universality scenario. Moreover, through a careful
consideration of subtle FSS effects they have shown that,
while the correlation length and the susceptibility display
no signature of size-dependent logarithmic corrections, the
temperature derivative of the correlation length shows an ln L

dependence, where L defines the strip width. Their FSS theory
also suggested that there exists a critical size above which
logarithmic enhancements vanish, leaving only the typical
pure system’s power-law-like behavior. Although the main
outcome of Ref. [22] on the strong universality hypothesis
is fully aligned with the current results of the random BC
model, a discrepancy related to the presence of logarithmic
corrections in the scaling behavior of the temperature and
susceptibility data of the present model is raised. To our
understanding, this may be due to the different nature of
the BC model, or furthermore to the considered L regime. It
may be that the linear sizes studied here—and also in several
other related papers, where analogous corrections have been
considered [10,27,30]–are still small enough to allow a clear
identification of such effects. In any case, it is well accepted
that transfer-matrix calculations are by far more accurate than
any kind of MC scheme and the analysis of Ref. [22] opens
a route for the investigation of the random BC model under a
new perspective.

To summarize, in the first part of our study we have
investigated the critical properties of the triangular BC model
under bond randomness in the second-order transition regime
of the corresponding pure model (� = 1). We have provided
clear evidence that the random model shares in this regime
the values of the simple Ising model’s critical exponents and
we have also shown the marginal irrelevance of disorder, as
mirrored in the logarithmic corrections appearing in the scaling
forms of the thermodynamic quantities studied. A further
discussion on this issue follows below in Sec. IV, where we
shall contrast the scaling behavior of the specific-heat data for
both values of � considered in this paper. In the sequel, we
proceed with the investigation of the effects of disorder on the
ex-first-order regime of the triangular BC model.

B. Ex-first-order phase-transition regime

We discuss in this part of the paper the FSS analysis of
the random (r = 0.6) triangular BC model in its ex-first-order
regime for the value � = 2.95 of the crystal-field coupling. As
already noted above, the tricritical value of the pure model’s
crystal field—above which a clear first-order phase transition
takes place—is approximated to be �t = 2.925(8) [51], which
indicates that the chosen value of � = 2.95 goes well into
the originally first-order regime of the pure model. Moreover,
from our preliminary analysis, the value r = 0.6 of the bond
randomness switches directly the transition to second order and
this has been verified in a number of relevant thermodynamic
quantities, such as the energy probability density function and
the order parameter as a function of the temperature.

FIG. 5. The same as the main panels of Fig. 4 but for the case
[� = 2.95; r = 0.6] of the ex-first-order regime of the pure model.

Figure 5 illustrates the same aspects of the critical behavior
of the model with that defined in Fig. 4, but for crystal-field
value � = 2.95, again in a double logarithmic scale. The re-
sults obtained from simultaneous [panel (a)] and simple [panel
(b)] power-law fittings of the form [(∂ ln〈Mn〉/∂K)∗]av =
anL

1/ν and [χ∗]av = aLγ/ν , respectively, point to an Ising-like
continuous transition, with critical exponents ν = 1.000(3)
and γ /ν = 1.752(5). Let us make a small comment at this point
about the possibility of the existence of further corrections to
the power laws applied in the data of Fig. 5. In principle,
one would expect also for this disorder-induced second-order
phase transition the presence of logarithmic corrections in
the logarithmic derivatives of the order parameter and the
magnetic susceptibility, as for the ones described in Sec. III A.
However, performing an extensive fitting procedure to the
numerical data of Fig. 5 including logarithmic corrections and
several test values of the correction-exponent ω, we did not
observe any kind of substantial improvement, either in the
stability of the fittings or in the resulting exponent’s estimate.
Perhaps, in the present case of a disorder-induced continuous
transition, larger systems may be necessary to clear out the
role of these logarithmic corrections in quantities related to the
order parameter and its fluctuations. This is an open problem
that calls for further numerical tests on suitable models that
undergo a first-order phase transition in their pure version, and
for which vast simulations of even larger systems are easier to
perform. Alternatively, the methods and analysis of Ref. [22]
may be a true asset for the achievement of such a complicated
task.

Comparing now the main result of Fig. 5 with the current
literature on the 2D (q > 4) Potts model, we find a marginal
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difference. Although the first work on the random q = 8 Potts
model by Chen et al. [33] suggested that the emerging, under
disorder, continuous transition belongs to the universality class
of the Ising model, this result is known now to be false. In
particular, many works have been devoted to this issue since
then [7,8,36,60,61,66,67,71–77] and the values of the critical
exponents are pretty well known for various values of q (below
and above q = 4). So, the situation is now completely clarified,
with the universality class of the random Potts model changing
continuously with the values of q.

However, the behavior and critical properties of the current
BC model, which is clearly less studied, is under debate.
In terms of physical interactions the BC model is much
more complicated than the corresponding Potts model, and
this stems from the existence of vacant sites, si = 0, and
from the presence of competition between the ferromagnetic
interactions with the crystal-field coupling, a phenomenon that
becomes even more pronounced under the presence of bond
disorder. Thus, since the physical mechanisms that respond to
the presence of randomness are quite different among the two
models, we believe it is not fair to judge the models under
the same prism. Of course, it would be very interesting to
have a more wide spectrum of results in terms of crystal-field
couplings and disorder strengths, but as already stated in
Sec. II, this is a rather demanding task that goes beyond the
first observations pointed out in the present paper.

IV. DISCUSSION AND OUTLOOK

Summarizing, in the present paper we have investigated
through extensive simulations via an optimized numerical
approach based on a two-stage implementation of the WL
algorithm, the critical behavior of the d = 2 random-bond
triangular BC model. In the first part of our analysis, referring
to the originally second-order transition regime of the model,
we showed that the model belongs to the universality class of
the random Ising model, as expected on theoretical grounds.
This has been achieved by estimating with high accuracy the
set of critical exponents that describe the continuous transition
of the model for � = 1, incorporating also in the scaling
analysis the proposed logarithmic corrections.

At this point we would also like to address the scaling
behavior of the specific heat, which is known to be the most
hard to deal with quantity within the theory of FSS, on the same
footing for both values of the crystal field considered (ex-first-
and ex-second-order regimes of the model). Figure 6 illustrates
the scaling behavior of the disorder-averaged specific-heat
maxima for � = 1 and � = 2.95 and for the larger lattice sizes
considered (L � 60) as a function of the double logarithm of
the lattice size. Using these data we tried to observe the quality
of the fittings, assuming a logarithmic divergence, a double-
logarithmic divergence, and a power-law behavior. Although
there is no irrefutable way of numerically distinguishing
between the above scenarios, our fitting attempts indicated that
the power-law option is completely excluded, and also that the
double logarithmic form applies more than satisfactorily to our
data and gives stable results, as moving to higher lattice-size
ranges, especially when compared to the simple logarithmic
scaling behavior encountered in the 2D Ising model. Thus, in
Fig. 6 we present linear fittings in both � = 1 and � = 2.95

FIG. 6. Disordered averaged specific-heat data as a function of the
double logarithm of the lattice size for the two values of � considered
in this paper. The solid lines are linear fittings for L � 60.

data which follow the logarithmic corrections of the form
[C∗]av = a + b ln[ln(L)]. This result, given that the BC model
shares in its pure version—for � < �t—the critical exponents
of the Ising model, is a further verification in favor of the
well-established logarithmic corrections’ scenario proposed
originally for the random version of the Ising model is d = 2.

Regarding now the effect of disorder on the line of first-
order phase transitions of the pure model, we presented results
for the emerging, under random bonds, continuous transition,
that are compatible again with the Ising universality class and
with a double logarithmic divergence of the specific heat. This
outcome is in contradiction to relevant results concerning the
emerging under disorder continuous transitions of the (q > 4)
Potts model in d = 2. In fact, it is now well established
in the current literature [7,8,36,60,61,66,67,71–77] that the
universality class of the random Potts model is never that of
the pure (or disordered) Ising model, but changes as a function
of the number of states of the model. Thus, one may suspect
that this should also be the case for the current BC model, i.e.,
the appearance of second-order phase transitions that belong to
different universality classes, depending continuously on the
value of the crystal-field coupling. Although such a scenario
cannot be completely excluded, we believe that the extensive
simulations and careful analysis performed in the current paper
account for the declared result. Of course, further simulations
for various values of �(> �t ) and stronger disorder strengths
r(< 0.6) are welcomed and may clear out the situation to a
larger extent. However, as already noted in Sec. II, this is not an
easy task. First, numerical methods that work efficiently in the
low-temperature regime should be implemented. Additionally,
we remind the reader that the BC model is unique, in terms
of the competing presence of ferromagnetic interactions and
the crystal field, a phenomenon which is further enhanced by
the presence of disorder. Previous experience [49] indicates
that one should be really careful when deciding the set
of parameters (�,r) to work with, a restriction that we
have treated with real caution here. Until a clear remedy
of this unexplored issue is made possible—for instance, by
implementing powerful optimization methods—we feel it is
prudent to postpone such an attempt.

Overall, our results in both the ex-first- and ex-second-
order regimes of the model are in agreement with an earlier
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real-space renormalization-group analysis of the 2D random
BC model performed by Branco and Boechat [78]. These
authors studied the corresponding model on the square
lattice for a different kind of randomness, implemented
via a site-dependent crystal-field coupling �i of the form
P(�i) = pδ(�i + �) + (1 − p)δ(�i − �), where p ∈ (0,1).
Their analysis predicted that the complete phase diagram of
the random model consists of a line of Ising-like continuous
transitions, although they were not able to account for the
existence, or not, of logarithmic corrections, something that
became possible in the present paper through a convincing
scaling analysis in the ex-second-order regime of the model.

Last but not least, it is worth comparing the present results
with the recently studied critical aspects of the d = 2, square
lattice, random-bond BC model [49]. Although the main
results of our analysis corroborate well those of Ref. [49] for
the ex-second-order regime of the models, there is a marginal
difference in the respective ex-first-order regime. Specifically,

in Ref. [49], for the continuous transition emerging under bond
randomness in the ex-first-order regime of the model, a value
of ν > 1 has been estimated for the critical exponent of the
correlation length and also a strong saturation of the disorder-
averaged specific maxima has been recorded. This observed
variation can only be attributed to the different topology of
the considered lattice and its sensitivity to the combination of
disorder and the existence of an originally first-order transition,
an aspect that may not have been previously considered under
this prism in the study of disordered systems, that definitely
deserves more attention.
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