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We introduce quantum versions of the χ2-divergence, provide a detailed analysis
of their properties, and apply them in the investigation of mixing times of quantum
Markov processes. An approach similar to the one presented in the literature for
classical Markov chains is taken to bound the trace-distance from the steady state
of a quantum processes. A strict spectral bound to the convergence rate can be
given for time-discrete as well as for time-continuous quantum Markov processes.
Furthermore, the contractive behavior of the χ2-divergence under the action of a
completely positive map is investigated and contrasted to the contraction of the trace
norm. In this context we analyze different versions of quantum detailed balance and,
finally, give a geometric conductance bound to the convergence rate for unital quantum
Markov processes. C© 2010 American Institute of Physics. [doi:10.1063/1.3511335]

I. INTRODUCTION

The mixing time of a classical Markov chain is the time it takes for the chain to be close to its
steady state distribution, starting from an arbitrary initial state. The ability to bound the mixing time
is important, for example in the field of computer science, where the bound can be used to give an
estimate for the running time of some probabilistic algorithm such as the Monte Carlo algorithm.
The mixing time for a classical Markov process Pi j , with

∑
i Pi j = 1 on the space of probability

measures S is commonly defined in terms of the one norm, ‖p‖1 = ∑
i |pi |. Let π denote the fixed

point of the classical Markov process, i.e., Pπ = π , then the mixing time is defined as

tmix (ε) = min
{
n | ∀q ∈ S , ‖Pn q − π‖1 < ε

}
. (1)

A large set of tools has emerged over the years that allows to investigate the convergence rate of
classical Markov chains.4 One of the most prominent approaches1–3 to bounding the mixing time
of a Markov chain is based on the χ2-divergence5. This divergence is defined for two probability
distributions p, q ∈ S as

χ2(p, q) =
∑

i

(pi − qi )2

qi
. (2)

The usefulness of the χ2-divergence for finding bounds to the mixing time of classical Markov
chains arises from the fact that it serves as an upper bound to the one norm difference between two
probability distributions,

‖p − q‖2
1 ≤ χ2(p, q) (3)

a)Author to whom correspondence should be addressed. Electronic mail: kristan.temme@univic.ac.at.
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and allows for an easier access to the spectral properties of the Markov chain. The χ2-divergence is
intimately related to the Kullback–Leibler divergence, or relative entropy, H (p, q) = ∑

i pi (log pi −
log qi ). In fact, it can be obtained directly from the relative entropy as the approximating quadratic
form, i.e., as the Hessian, of the latter:

χ2(p, q) = − ∂2

∂α∂β

H (q + α(p − q), q + β(p − q)) |α=β=0. (4)

The χ2 divergence was first introduced by Karl Pearson in the context of statistical inference tests,
the most widely used of which is the “Pearson’s χ2 test.” Its computational simplicity and its clear
relation to other distance measures have made it one of the most studied divergence measures in the
literature.

In this paper, we find convergence bounds for arbitrary quantum Markov chains, also called
quantum channels, with a technique that can be seen as a generalization of the work of 1–3 to noncom-
mutative probability spaces. A prototypical example of mixing time in physics is the decoherence
time of the underlying quantum process, i.e., the time in which quantum states decohere to an (often
classical) mixture given a specific underlying noise model. The ability to bound the mixing time
for quantum processes also turns out to be relevant when one seeks to give bounds on the runtime
of quantum algorithms that are based on quantum Markov chains.6, 7 Other applications of such
bounds can be found in the framework of matrix product states,8, 9 where the correlation length of
the quantum state is connected to the convergence of the corresponding transfer operator that can be
interpreted as a quantum channel. In this article, we introduce the mathematical framework necessary
to extend the classical mixing time results to the quantum setting. In particular, we introduce a new
divergence measure—the quantum χ2-divergence—for quantum states and use it to obtain some
basic convergence bounds that mirror existing classical ones. Furthermore, we extend the classical
concept of detailed balance to the quantum setting and discuss its relevance in general terms.

The paper is organized as follows: the remainder of Sec. I is devoted to setting the notation
and to recalling the framework of quantum channels. Then in Sec. II, we introduce the quantum
χ2-divergence, and prove some basic properties relating it to other divergence and distance measures.
In particular, we focus on a specific subfamily of interest. In Sec. III, we consider contraction of the
χ2-divergence under the action of a channel, and relate it to trace-norm contraction. Furthermore, we
prove some fundamental quantum mixing time results, whose classical analogues are well known.
In Sec. IV, we study quantum detailed balance, and in Sec. V, we extend an important classical
geometric mixing bound (Cheeger’s inequality) to the quantum setting. Conclusions are drawn in
Sec. VI.

A. Formal setting and notation

Throughout this paper we will consider linear maps from the complex d-dimensional matrix
algebra Md to itself. The states are density matrices ρ ∈ Sd , where Sd = {ρ ∈ Md |ρ = ρ†, ρ ≥
0, tr[ρ] = 1}, acting on H = Cd . The set of pure states is denoted S1

d , while the set of positive
definite states is denoted S+

d . Note that Md itself becomes a Hilbert space when equipped with the
standard Hilbert–Schmidt scalar product 〈A|B〉 ≡ tr[A† B]; this Hilbert space is naturally isomorphic
to Md 
 Cd2

. The eigenvalues and singular values of T are understood in terms of the matrix
representation T̂ ∈ Md2 of T acting on Cd2

. The matrix representation of a quantum operation,
which will always be written with a hat (ex. T̂ ), is given in terms of some complete orthonormal
basis {Fi }i=1...d2 of Md , where its matrix elements are T̂i j = 〈Fi |T |Fj 〉. Unless otherwise specified,
we consider the basis of matrix units. The distance between states ρ1, ρ2 ∈ Sd will be measured in
terms of the trace distance ‖ρ1 − ρ2‖1 induced by the trace norm ‖A‖1 = tr[

√
A† A] = ∑

i si (A) for
si (A) the singular values of A ∈ Md . Time discrete quantum Markovian dynamics are described
by completely positive, trace-preserving maps (cpt-maps, or quantum channels) 10 T : Md �→ Md .
Due to the Kraus representation theorem, every cp-map can be expressed in terms of the Kraus

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

131.130.30.233 On: Wed, 30 Jul 2014 12:25:55



122201-3 Mixing times of quantum Markov processes J. Math. Phys. 51, 122201 (2010)

operators Aμ ∈ Md , as

T (ρ) =
∑

μ

Aμρ A†
μ with,

∑
μ

A†
μ Aμ = 1. (5)

The dual map T ∗ can be seen as the hermitian conjugate of T with respect to the Hilbert–Schmidt
scalar product. In the above matrix representation of the map, this corresponds exactly to taking the
hermitian conjugate T̂ †. A quantum channel is called unital, or doubly stochastic, when the dual
map T ∗ is also trace preserving. This immediately implies that T has a fixed point σ = 1/tr[1].
We will also consider time continuous quantum Markov processes, described by a one-parameter
semi-group

Tt (ρ) = etL(ρ). (6)

The Liouvillian L, obeys L∗(1) = 0,11 and its matrix representation L̂ is obtained as in the time-
discrete case. In this paper, we shall often consider primitive quantum channels, i.e., channels with
a unique maximal rank fixed point, and a unique eigenvalue of magnitude 1 (Ref. 12).

II. THE QUANTUM χ2-DIVERGENCE

We want to define a generalization of the classical χ2-divergence to the case when we are
working on spaces with noncommuting density matrices. We shall require that any generalization to
the setting of density matrices satisfies the condition that when the inputs are diagonal, the classical
χ2-divergence is recovered. The first observation we make, reading straight off from 2, is that the
classical χ2-divergence can be seen as an inner product on the probability space weighted with
the inversion of the distribution qi . Due to the noncommutative nature of density matrices there is
no unique generalization of this inversion. Consider for instance a generalization for two density
matrices ρ, σ ∈ Sd , where for now we assume σ to be full rank, that is given by

χ2
α(ρ, σ ) = tr

[
(ρ − σ )σ−α(ρ − σ )σα−1

] = tr
[
ρσ−αρσα−1

] − 1. (7)

This gives rise to an entire family of χ2-divergences with (as we see below) special properties,
for every α ∈ [0, 1]. The natural question of whether there exists a classification of all possible
inversions of σ , was investigated in a series of papers by Morozova and Chentsov31 Petz,14–16 in
the context of information geometry. They considered the characterization of monotone Riemannian
metrics on matrix spaces. Their general definition is based on the modular operator formalism of
Araki,19, 20 which we will also consider here. In order to classify the valid inversions, we first need
to define the following set of functions, each of which gives rise to a possible inversion:

K = {k| − k is operator monotone, k(w−1) = wk(w), and k(1) = 1}. (8)

Now, we define left and right multiplication operators as LY (X ) = Y X and RY (X ) = XY
respectively. The modular operator is defined as


ρ,σ = Lρ R−1
σ , (9)

for all ρ, σ ∈ Sd , σ > 0. Note that Rσ and Lρ commute and inherit hermicity and positivity
from ρ, σ . The above should be read as follows: acting on some A ∈ Md , 
ρ,σ (A) = ρ Aσ−1.
When manipulating the modular operators it is often convenient to write them in matrix form, in
which case they read: 
̂ρ,σ |A〉 = ρ ⊗ σ−1|A〉, where |A〉 = A ⊗ 1|I 〉, and |I 〉 = ∑d

i=1 |i i〉 corre-
sponds to d times the maximally mixed state. This formalism gives rise to a more general quantum
χ2-divergence.

Definition 1: For ρ, σ ∈ Sd , and k ∈ K we define the the quantum χ2-divergence

χ2
k (ρ, σ ) = 〈

ρ − σ,�k
σ (ρ − σ )

〉
, (10)

when supp(ρ) ⊆ supp(σ ), and infinity otherwise. The inversion of σ is defined only when supp(ρ) ⊆
supp(σ ), and given by

�k
σ = R−1

σ k(
σ,σ ). (11)
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The functions kα(w) = 1
2 (w−α + wα−1), with kα ∈ K, yield the family of χ2

α -divergences given in (7)
which we call the mean α-divergences to distinguish them from the well-known family of Wigner-
Yanase-Dyson (WYD) α-divergences, which are described in Appendix A, along with several other
families. Although we focus on the family (7), most of our results hold for any divergence given by
(10) with k ∈ K with the exceptions of Theorem 14.

A. Monotone Riemannian metrics and generalized relative entropies

This definition of the χ2-divergence stems from the analysis of monotone Riemannian metrics.
By Riemannian metric, we mean a positive definite bilinear form Mσ (A, B) on the hermitian tangent
hyperplane T P = {A ∈ Md : A = A†, tr[A] = 0}. The metric is monotone if for all quantum chan-
nels T : Md �→ Md , states σ ∈ S+

d and A ∈ T P , MT (σ )(T (A), T (A)) ≤ Mσ (A, A). Petz showed
that there is a one-to-one correspondence between the above metrics and a special class of convex
operator functions, which correspond to 1/k in our notation. He could furthermore relate several
generalized relative entropies (which he defined much earlier13 and referred to as quasi-entropies) to
monotone Riemannian metrics.15–17 The reverse implication that every monotone Riemannian met-
ric stems from a generalized relative entropy was first proved by Lesniewski and Ruskai.18 Taking
advantage of the well-known integral representations of operator monotone and convex functions21

one can express the χ2-divergences as well as the relative entropies explicitly. We shall briefly
repeat the key points of the analysis that are necessary for our understanding of the mixing-time and
contraction analysis for cpt-maps.

We need to consider the class of functions G by which we denote the set of continuous operator
convex functions from R+ to R that satisfy g(1) = 0. Note that these functions can all be classified
in terms of the integral representation:

g(w) = a(w − 1) + b(w − 1)2 + c
(w − 1)2

w
+

∫ ∞

0

(w − 1)2

w + s
dν(s), (12)

where a, b, c > 0 and the integral of the positive measure dν(s) on (0,∞) is bounded. The gener-
alized relative entropy for states ρ, σ ∈ S+

d was first defined in Refs. 13 and 22.

Definition 2: Let g ∈ G. The generalized quantum relative entropy is given by

Hg(ρ, σ ) = tr
[
ρ1/2g(
σ,ρ)(ρ1/2)

]
(13)

when supp(ρ) ⊆ supp(σ ), and infinity otherwise, and where 
ρ,σ is again the modular operator.

We now recall without proof a theorem15, 16, 18 relating the relative entropy and the monotone
Riemannian metric, mirroring the classical result (4):

Theorem 3: For every k ∈ K, there is a g ∈ G such that for a given σ ∈ Sd , and A, B hermitian
traceless, we get

Mk
σ (A, B) = − ∂2

∂α∂β
Hg(σ + αA, σ + βB)

∣∣∣∣
α=β=0

= 〈
A ,�k

σ (B)
〉
. (14)

and, k is related to g by

k(w) = g(w) + wg(w−1)

(w − 1)2
(15)

From this theorem follows a convenient integral representation of the inversion �k
σ , which is equiv-

alent to (11) (Ref. 18),

�k
σ =

∫ ∞

0

(
1

s Rσ + Lσ

+ 1

Rσ + sLσ

)
Ng(s) ds, (16)

where Ng denotes the singular measure Ng(s)ds = (bg + cg)δ(s) ds + dνg(s). Note that the rela-
tionship between k and g is not one-to-one. Indeed, by setting ĝ(w) = wg(w−1), we get back the
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above relation. However, there is a one-to-one correspondence between each k and a symmetric
gs(w) = g(w) + wg(w−1), and hence between each metric and a symmetric relative entropy.

Note that the α-subfamily of (7) has the associated symmetric relative entropy: gsym(x) =
(1−w)2

2 (wα−1 + w−α), so that

H sym
α (ρ, σ ) = 1

2
(Hα(ρ, σ ) + Hα(σ, ρ)), (17)

where

Hα(ρ, σ ) = tr[ρ2−ασα−1 + ρ1+ασ−α − 2ρασ 1−α].

The integral representation (16) of the inversion �k
σ allows for a partial ordering of different monotone

Riemannian metrics that follows from the set of inequalities:

2

x + 1
≤ 1 + s

2

(
1

s + x
+ 1

sx + 1

)
≤ x + 1

2x
, (18)

for s ∈ [0, 1] and x ∈ R+. We therefore see that there exists a partial ordering for the inversions,
with a lowest and highest element in the hierarchy. The lowest element gives rise to the so called
Bures metric. Thus,

�Bures
σ = 2(Rσ + Lσ )−1 ≤ �k

σ ≤ (L−1
σ + R−1

σ )/2 = �α=0
σ . (19)

The χ2-divergence is recovered from the metric upon setting χ2
k (ρ, σ ) ≡ Mk

σ (ρ − σ, ρ − σ ). We are
therefore left with a partial order for all possible χ2-divergences with a smallest and largest element
according to

χ2
Bures(ρ, σ ) ≤ χ2

k (ρ, σ ) ≤ χ2
α=0(ρ, σ ). (20)

The defining attribute of the above set of metrics is their monotonicity under the action of quantum
channels. This was first shown by Petz,16 and later a proof based on the integral representation of
�k

σ (16), and on Schwarz-type inequalities, was provided by Ruskai and Lesniewski.18 Due to its
importance for the mixing time analysis we shall repeat it here.

Theorem 4: For all σ ∈ Sd , Mk
σ is monotone under the action of a quantum channel

T : Md → Md for all k ∈ K and A ∈ Md , i.e.,

Mk
σ (A, A) ≥ Mk

T (σ ) (T (A), T (A)) . (21)

Proof: The monotonicity follows immediately from the integral representation of the inversion �k
σ

in (16), and an argument proved in the appendix, Theorem 24. The theorem states that for every
channel T and for arbitrary A, we have

tr

[
A† 1

Rσ + sLσ

A

]
= tr

[
T

(
A† 1

Rσ + sLσ

A

)]
≥ tr

[
T (A)† 1

RT (σ ) + sLT (σ )
T (A)

]
. (22)

�
B. Properties of the quantum χ2-divergence

The fact that the quantum χ2
k -divergence can be used to bound the mixing time lies in the

following lemma, that upper bounds the trace distance which is the relevant distance measure in the
mixing time definition.

Lemma 5: For every pair of density operators ρ, σ ∈ Sd , we have that

||ρ − σ ||21 ≤ χ2
k (ρ, σ ). (23)

Proof: If the support of ρ is not contained in the support of σ , then the right-hand side is ∞. We
can therefore assume w.l.o.g. that σ > 0 by restricting the analysis to the support space of σ . The
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trace norm ‖A‖1 of some matrix A ∈ Md can be expressed as23 ‖A‖1 = maxU∈U (d) |tr[U A]|, where
the maximum is taken over all unitaries acting on the d-dimensional Hilbert space. Thus, for any
inversion �k

σ :

‖A‖2
1 = max

U∈U (d)
|tr[U A]|2 = max

U∈U (d)

∣∣∣tr[U
[
�k

σ

]−1/2 ◦ [
�k

σ

]1/2
(A)

]∣∣∣2

= max
U∈U (d)

∣∣∣tr[ [
�k

σ

]−1/2
(U )

[
�k

σ

]1/2
(A)

]∣∣∣2
(24)

≤ tr
[
A†�k

σ (A)
]

max
U∈U (d)

tr
[
U †

[
�k

σ

]−1
(U )

]
.

Let us consider the Bures inversion given by �Bures
σ = 2 [Lσ + Rσ ]−1. Clearly, its inverse is

[�Bures
σ ]−1 = 1

2 [Lσ + Rσ ]. Therefore, for any unitary U,

tr
[
U †[�Bures

σ ]−1(U )
] = 1

2

(
tr

[
U †σU

] + tr
[
U †Uσ

]) = 1. (25)

Setting A = ρ − σ and observing that χ2
Bures ≤ χ2

k for all k ∈ K completes the proof. �
We have already stated that the family of χ2

α -divergences defined in 7 can be cast into the
general framework of monotone Riemannian metrics. Because of its computational simplicity, and
its special symmetry when α = 1/2, we consider its properties more specifically. It is possible for
instance to show monotonicity of this subfamily using arguments from joint convexity. As the proof
is interesting in its own right, we give it here.

Proposition 6: χ2
α is jointly convex in its arguments for α ∈ [0, 1]. Moreover, it is monotone

w.r.t. completely positive trace-preserving maps, i.e.,

χ2
α(ρ, σ ) ≥ χ2

α

(
T (ρ), T (σ )

)
, (26)

for every quantum channel T : Md → Md .

Proof:A direct application of Corrolary 2.1 in Ref. 28 guarantees that χ2
α(ρ, σ ) is jointly convex

in its arguments for any α ∈ [0, 1]. This in turn implies monotonicity w.r.t. cp-maps by a standard
argument: let us represent T as T (ρ) = trE [U (ρ ⊗ ψ)U †] where ψ is a pure state (i.e., rank-one
projection), U a unitary and trE the partial trace over an “environmental” system of dimension m. If
we take a unitary operator basis {Vi }i=1,..,m2 in Mm (orthonormal w.r.t. the Hilbert–Schmidt inner
product), we can write

T (ρ) ⊗ 1m/m = 1

m2

m2∑
i=1

(1 ⊗ Vi )U (ρ ⊗ ψ)U †(1 ⊗ V †
i ). (27)

However, since χ2
α (T (ρ), T (σ )) = χ2

α (T (ρ) ⊗ τ, T (σ ) ⊗ τ ), in particular for τ = 1m/m, we can
now apply joint convexity. With the help of the fact that for any unitary W it holds that (W · W †)α =
W (·)αW † we obtain the claimed result. �

Furthermore, we note that this subfamily also has a natural ordering.

Proposition 7: For every ρ, σ ∈ Sd , χ2
α is convex in α, and reaches a minimum for α = 1/2.

Proof: First note that χ2
α=0(ρ, σ ) = χ2

α=1(ρ, σ ). That the minimum is reached for α = 1/2 follows
directly from the Cauchy–Schwarz inequality. Applied to our problem, we get

tr
[
ρσ−1/2ρσ−1/2

]2 = tr
[
ρσ (α−1)/2σ−α/2ρσ (α−1)/2σ−α/2

]2

≤ tr
[
ρσ−αρσα−1

]2
. (28)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

131.130.30.233 On: Wed, 30 Jul 2014 12:25:55



122201-7 Mixing times of quantum Markov processes J. Math. Phys. 51, 122201 (2010)

To see convexity, consider the second partial derivative of χ2
α with respect to α:

∂2

∂α2
χ2

α(ρ, σ ) = trσα−1ρσ−α(ρ log2 σ + log2 σρ − 2 log σρ log σ )

=
∑

kl

μα−1
k μ−α

l (log μk − log μl)
2|〈k|ρ|l〉|2 ≥ 0, (29)

where we used σ = ∑
k μk |k〉〈k|. �

Finally, we point out a bound on the relative entropy in terms of the α-subfamily of χ2-
divergences:

Theorem 8: For every pair of density operators ρ and σ and every α ∈ (0, 1], we have that

χ2
α(ρ, σ ) ≥ S(ρ, σ ), (30)

where S(ρ, σ ) = trρ(log ρ − log σ ) is the usual relative entropy.

Proof: It was shown in Ref. 27 that for γ ∈ (0, 1], the following holds:

S(ρ, σ ) ≤ 1

γ
(trρ1+γ σ−γ − 1). (31)

Then consider,

χ2
α (ρ, σ ) − S(ρ, σ ) ≥ trρσ−1/2ρσ−1/2 − 2trρ3/2σ−1/2 + 1

= tr(ρ1/2σ−1/2ρ1/2 − ρ1/2)2 ≥ 0, (32)

where the first inequality comes from taking γ = 1/2 in (II B), and α = 1/2 for χ2
α , and the last line

is obtained from rearranging terms. �
III. MIXING TIME BOUNDS AND CONTRACTION OF THE χ2-DIVERGENCE
UNDER CPT MAPS

A. Mixing time Bounds

The χ2-divergence is an essential tool in the study of Markov chain mixing times, because on
the one hand it bounds the trace distance, and on the other it allows easy access to the spectral
properties of the map. The subsequent analysis can be seen as a generalization of the work presented
in Refs. 1 and 2 to the noncommutative setting.

Theorem 9: Let T : Md �→ Md be an ergodic quantum channel with fixed point σ ∈ Sd , for
any ρ ∈ Sd and any k ∈ K, we can bound

‖T n(ρ) − σ‖1 ≤ (
sk

1

)n
√

χ2
k (ρ, σ ). (33)

Here sk
1 denotes the second largest singular value (the largest being 1) of the map

Qk = [
�k

σ

]1/2 ◦ T ◦ [
�k

σ

]−1/2
. (34)

Before we prove Theorem 9, we would like to point out an important fact that regards the the
singular values of Qk . The monotonicity of the χ2-divergence ensures that the singular values sk

i
of Qk are always contained in [0, 1] irrespective of the choice of k ∈ K. Let us therefore prove the
following.

Lemma 10: The spectrum of the map Sk ≡ Q∗
k ◦ Qk = [�k

σ ]−1/2 ◦ T ∗ ◦ �k
σ ◦ T ◦ [�k

σ ]−1/2 is
contained in [0, 1].

Proof: Let us first note that the map Sk is hermitian and positive by construction. Furthermore,
the monotonicity of the χ2-divergence, as stated in Theorem 4, ensures that the Rayleigh–Ritz
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quotient is bounded by 1. This holds, since ∀B

〈B, Sk(B)〉 = 〈
A, T ∗ ◦ �k

σ ◦ T (A)
〉 = Mk

T (σ )(T (A), T (A))

≤ Mk
σ (A, A) = 〈A,�k

σ (A)〉 = 〈B, B〉, (35)

where we defined the intermediate state A = [�k
σ ]−1/2(B). Note that we made use of the fact that

σ = T (σ ) is the fixed point of the map. Therefore

λmax = max
B∈Md

〈B, Sk(B)〉
〈B, B〉 ≤ 1 (36)

and the maximum is attained for λmax = 1 and Bmax = [�k
σ ]1/2(σ ). �

With the bound on the spectrum at hand, it is now straightforward to prove Theorem 9.

Proof: Define e(n) ∈ Md , as e(n) = T n(ρ − σ ). By Lemma 5, we get ‖e(n)‖2
1 ≤

χ2
k (T n(ρ), T n(σ )) ≡ χ2

k (n). In the matrix representation, |e(n)〉 = e(n) ⊗ 1|I 〉, we can rewrite
χ2

k (n) = 〈e(n)| �̂k
σ |e(n)〉. Also note that |e(n + 1)〉 = T̂ |e(n)〉 and so,

χ2
k (n) − χ2

k (n + 1) = 〈e(n)| �̂k
σ |e(n)〉 − 〈e(n)|T̂ † �̂k

σ T̂ |e(n)〉 (37)

= 〈e(n)| [
�̂k

σ

]1/2 (
1 − Q̂k

†
Q̂k

) [
�̂k

σ

]1/2 |e(n)〉. (38)

Due to Lemma 10 we know that the spectrum of Ŝk = Q̂k
†
Q̂k , which is equal to the square of the

singular values of Q̂k , is contained in the interval [0, 1]. Hence,

〈e(n)| [�̂k
σ

]1/2
(1 − Ŝk)

[
�̂k

σ

]1/2 |e(n)〉 (39)

≥ (
1 − s2

1

) 〈e(n)| [�̂k
σ

]1/2 ∑
α �=0

Pα

[
�̂k

σ

]1/2 |e(n)〉. (40)

The sum is taken over spectral projectors Pk
α of Ŝk = ∑

α(sk
α)2 Pα , apart from Pk

0 which projects onto
[�̂k

σ ]−1/2|σ 〉. In particular, Pk
0 = [�̂k

σ ]−1/2|σ 〉〈I |[�̂k
σ ]−1/2, so that 〈e(n)|[�̂k

σ ]1/2 Pk
0 [�̂k

σ ]1/2|e(n)〉 =
〈e(n)|σ 〉tr[T n(ρ − σ )] = 0, by trace preservation of T . We can write

χ2
k (n) − χ2

k (n + 1) ≥ (
1 − (sk

1 )2
)
χ2

k (n). (41)

Rearranging terms completes the theorem. �
Remark: The fact that the singular values of Qk are always smaller or equal to 1 justifies the use

of the generalized χ2-divergence as the appropriate distance measure to bound the convergence of
an arbitrary channel. It is tempting to use the Hilbert–Schmidt inner product to give an upper bound
to the trace norm. This can always be done at the cost of a dimension dependent prefactor, since on
finite dimensional spaces all norms are equivalent. However, when doing so a problem arises if one
tries to bound the convergence in terms of the spectral properties of the map SH S = T ∗ ◦ T . It is in
general not ensured that the spectrum will be bounded by 1. In fact, for every nonunital channel T ,
SH S will have an eigenvalue grater than 1 (Ref. 32). The similarity transformation of the channel T
with [�k

σ ]1/2 alters the singular values, but of course leaves the spectrum invariant. Furthermore, it
is a well-known fact23 that the singular values of a square matrix log-majorize the absolute value
of the eigenvalues. As the spectrum of Qk is bounded by 1 (and equal that of T̂ by similarity), we
conclude that its second largest eigenvalue is always smaller or equal to its second largest singular
value. One can also give a general bound in terms of the second largest eigenvalue of T (Ref. 33),
but one is then confronted with a potentially severe dimensional prefactor.

For some instances of the inversion �k
σ it becomes immediately evident that the symmetrization

Sk has the desired spectral properties without making use of the monotonicity of the χ2
k -divergence.

It can occur that Sk is again similar to a quantum channel that is of the form T k
s = [�k

σ ]−1/2 ◦ Sk ◦
[�k

σ ]1/2. A possible example of such an inversions is �
α=1/2
σ = L−1/2

σ R−1/2
σ . This is however not

the generic case, most inversions will lead to maps that are not completely positive any longer. It
would be very desirable to find other such examples, as they mirror the classical situation where the
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symmetrized maps are always probability transition matrices, and because these specific inversions
allow for clean contraction bounds as seen in Sec. III.B.

It is clear from the discussion above that the singular values of Qk play a crucial role in the
mixing time analysis presented here. This seems to contradict the general understanding that the
convergence is determined by the spectral properties of the channel T in the asymptotic limit. This can
however be understood as follows: the matrix Q̂k is similar to T̂ , i.e., Q̂k = [�̂k

σ ]1/2 · T̂ · [�̂k
σ ]−1/2,

so the spectra of Qk and T coincide. The following lemma establishes a relation between the singular
values and the eigenvalues in the asymptotic limit (for a proof, see e.g., Ref. 24, p. 180).

Lemma 11: Let Q̂k ∈ Md2 be given, and let s0(Q̂k) ≥ · · · ≥ sd2−1(Q̂k) and {λi (Q̂k)}i=0...d2−1

denote its singular values and eigenvalues, respectively with |λ0(Q̂k)| ≥ . . . ≥ |λd2−1(Q̂k)|. Then

lim
n→∞

[
si (Q̂n

k )
]1/n = |λi (Q̂k)| ∀ i = 0 . . . d2 − 1. (42)

In the limit of n → ∞ applications of the quantum channel, we can start blocking the channel in
m subsequent applications T (m) ≡ T m and bound the convergence rate as a function of the singular
values of the corresponding Q̂(m)

k , which indeed converge to the eigenvalues of the original cp-map.
Convergence following the eigenvalue is therefore only guaranteed in the limit of n → ∞, and this
would indeed be the case, when for example the eigenstructure of the original cp-maps contains
a Jordan block associated with the second largest eigenvalue. Note that convergence in the above
lemma goes typically as 1/n, which is very slow. Hence for finite n, convergence is governed by the
singular values of Q̂k as opposed to the eigenvalues. The bound derived in (9) is an absolute bound
for finite n and clearly leads to a strictly monotonic decay. Note that in the case that the second
largest singular value is also equal to 1, this can then always be cured by blocking the cp-maps
together. Finally, it is worth mentioning that the convergence can in fact be much more rapid if one
starts in a state “closer” to the fixed point. In particular, if the initial state is such that ρ − σ ∝ Yk ,
k ≥ 2, where Yk is the eigenvector corresponding to λk , then the convergence will be governed by
the magnitude of λk . Furthermore, if instead of a single fixed point, we have a fixed subspace, or
a collection of fixed subspaces (with or without rotating points), then the convergence to this fixed
subspace will be governed by the largest eigenvalue whose magnitude is strictly smaller than 1.

Thus far we have only considered the time-discrete case, it is however straightforward to give
a similar bound for time-continuous Markov processes that are described by a one parameter semi-
group. The following lemma bounds the trace-distance as a function of t ∈ R+

0 : The proof of the
following lemma is very similar to the proof of the time discrete case, we will therefore omit it here.

Lemma 12: Let L denote the generator of a time continuous Markov process, described by
the master equation ∂tρ = L(ρ), with solution ρ(t) ∈ Sd ∀ t ∈ [0,+∞). Furthermore, let σ ∈ S+

d
denote the fixed point L(σ ) = 0, then

‖ρ(t) − σ‖2
1 ≤ elk

1 tχ2
k (ρ(0), σ ). (43)

Here, lk
1 ≤ 0 refers to the second largest eigenvalue of

�k = [�k
σ ]1/2 ◦ L∗ ◦ [�k

σ ]−1/2 + [�k
σ ]−1/2 ◦ L ◦ [�k

σ ]1/2. (44)

The symmetrization for the generator of the time continuous Markov process is additive as
would be expected. Furthermore, we note that the monotonicity of the χ2-divergence ensures that
the spectrum of �k is never positive, based on a similar reasoning as given in lemma (10).

B. Contraction Coefficients

In the following we study the contraction of the χ2-divergences under quantum channels, and
its relation to the trace norm contraction. We consider general contraction rather than contraction
to the fixed point because analytic results are more readily available, and because these bounds
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are in a sense the most stringent one can require. We focus primarily on the mean α-subfamily of
χ2-divergences.

Let us define the following contraction coefficients which we call the χ2- and trace norm-
contraction respectively:

ηα
χ (T ) = sup

ρ,σ∈Sd

χ2
α(T (ρ), T (σ ))

χ2
α(ρ, σ )

(45)

and

ηtr(T ) = sup
ρ,σ∈Sd

||T (ρ − σ )||1
||ρ − σ ||1 = sup

φ,ψ∈S1
d ,〈φ|ψ〉=0

1

2
||T (ψ) − T (φ)||1, (46)

where T : Md → Md is a quantum channel, and the last equality is seen simply by convexity of
the trace norm.

We first upper bound the trace-norm contraction in terms of the χ2 contraction, which is a
generalization of a result in Ref. 26.

Theorem 13: For all α ∈ (0, 1], and a quantum channel T : Md → Md ,

ηtr (T ) ≤
√

ηα
χ (T ). (47)

Proof: From Lemma 5, we have that ||T (ρ − σ )||21 ≤ χ2
α (T (ρ), T (σ )), for all ρ, σ ∈ Sd . Let N be

traceless and hermitian, and note that it can be written as N = N+ − N−, where N+, N− are positive
definite and orthogonal in their support. Now let P = |N |/||N ||1 and recall that |N | = N+ + N−,
then we get tr[N P−α N Pα−1] = ||N ||21, for every α ∈ (0, 1]. Also,

||T (N )||21
||N ||21

≤ tr[T (N )T (P)−αT (N )T (P)α−1]

tr[N P−α N Pα−1]
, (48)

where the inequality is in the numerator, and the denominators are equal, by the previous observation.
Taking the supremum over all traceless hermitian N on the left hand side and identifying ρ − σ =
N/||N ||1, P = σ then gives the desired result. �

We now provide a lower bound to the trace norm contraction for primitive channels.

Theorem 14: Given a quantum channel T : Md → Md ,

ηα=1/2
χ (T ) ≤ ηtr (T ). (49)

First we introduce an eigenvalue type min–max characterization of the χ2-contraction, and then
show that this eigenvalue must be smaller than the trace norm-contraction.

Let P > 0, and consider the following eigenvalue equation:

�̂|A〉 ≡ �̂−1
P T̂ †�̂T (P)T̂ |A〉 = λ|A〉, (50)

where �X ≡ �
α=1/2
X . It T has a nontrivial kernel, then �T (P) should be understood in terms of the

pseudoinverse. First note that � is a quantum channel, so its spectrum is bounded by 1, and that it
reaches 1 for A = P . Also note that � is similar to a hermitian operator, so it has all real eigenvalues,
so we can take the eigenvectors to be hermitian. Then rewriting (50) as T̂ †�̂T (P)T̂ |A〉 = λ�̂P |A〉,
we can express the second largest eigenvalue as

λ1(T, P) = sup
〈N |�P (P)〉=0,N=N †

〈N |T̂ †�̂T (P)T̂ |N 〉
〈N |�̂P |N 〉

= sup
trN=0,N=N †

tr [T (N )T (P)−1/2T (N )T (P)−1/2]

tr [N P−1/2 N P−1/2]
. (51)
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Clearly, by maximizing over all P , one recovers η
1/2
χ (T ). We now prove the above theorem.

Proof: Let N1 be the eigenvector for which λ1 satisfies the eigenvalue equation (50), and recall
that N1 is Hermitian and traceless. Then,

λ1||N1||1 = ||�(T (N1))||1 ≤ ||T (N1)||1 (52)

because � is a channel, and

λ1 ≤ ||T (N1)||1
||N1||1 ≤ sup

trN=0,N †=N

||T (N )||1
||N ||1 = ηtr , (53)

taking the supremum over positive P completes the proof. �
Remark: Theorem 14 gives a computable lower bound to the trace norm contraction. A key

subtlety in the argument is that [�P (A)]−1 = √
P A

√
P is a completely positive (CP) map (with

a single Kraus operator
√

P), which implies that � is a quantum channel. In general, �P is not
even positivity preserving. Another exception is the monotone metric associated with the usual
logarithmic relative entropy for which k(w) = log w

w−1 . It is well known13, 18, 38 that �
log
P (A) can be

written as

�
log
P (A) =

∫ ∞

0

1

P + x I
A

1

P + x I
dx, (54)

which is clearly CP. An analogous lower bound was shown in Ref. 18 for this map using a similar
argument. Clearly, this can be extended to any monotone metric for which �P is CP; however, we
do not know of any other examples.

Very little is known about the ordering of the general ηk contraction coefficients. In particular,
we do not know whether ηlog

χ is smaller or larger than ηα=1/2
χ . However, it is known18 that ηk are

not all identical for different k ∈ K; because examples can be constructed using nonunital qubit
channels. Theorem 13 can readily be extended to any metric associated with k ∈ K. However, it
seems unlikely that Theorem 14 holds in general. Thus, we can conclude

max{ηα=1/2
χ (T ), ηlog

χ (T )} ≤ ηtr(T ) ≤ inf
k∈K

√
ηk

χ (T ). (55)

Note that if instead of maximizing over all P, we only consider contraction of the map to the
steady state and denote it η̄(T ) = η(T )P=σ , then from the above arguments one immediately gets

η̄α
χ (T ) ≤ η̄tr(T ) ≤ ηtr(T ) ≤ 1. (56)

Combing this with the previous bounds above, we have

λ1 ≤ sα=1/2
1 = η̄α=1/2

χ ≤ ηα=1/2
χ ≤ ηtr ≤

√
η

α=1/2
χ . (57)

Moreover, k(w) = √
w on the right can be replaced by any k ∈ K, and that on the left by k(w) =

(w − 1)−1 log w. It is very tempting to conjecture that η̄2
tr ≤ η̄α

χ , and/or that ηtr ≤
√

η̄
α=1/2
χ , but simple

numerical counterexamples show these to be false.

IV. QUANTUM DETAILED BALANCE

The detailed balance condition is often crucial in the analysis of classical Markov chain mixing
times, as it ensures several convenient properties of the Markov chain. In particular, it implies that
the classical probability distribution with respect to which the stochastic map is detailed balanced
is a fixed point of the chain. Furthermore, detailed balanced stochastic maps have a real spectrum.
In this section we generalize the notion of classical detailed balance to quantum Markov chains.
Alternative definitions of quantum detailed balance have been given in the literature 29, 34, 36, 37 and
references therein. Central to our approach is the operator Qk as previously introduced in Lemma 9.
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In the literature, for classical Markov chains, an analogous matrix exists and is often referred to as
the discriminant.

Definition 15: For a channel T : Md → Md and a state σ ∈ S+
d with corresponding inversion

�k
σ as defined in (11), we define the quantum discriminant of T as

Qk = [�k
σ ]1/2 ◦ T ◦ [�k

σ ]−1/2. (58)

We recall that the convergence of an arbitrary quantum Markov process can be bounded by the
singular values of Q̂k . Classical detailed balanced Markov chains have the property that the corre-
sponding discriminant becomes symmetric. We shall therefore define the quantum generalization
for a quantum detailed balanced process

Q∗
k = Qk . (59)

This immediately allows to make a statement about the spectrum of quantum detailed balanced maps.
Due to the hermicity of the matrix representation of the map (58), we can immediately deduce, just
as for classically case, that the quantum channel T has a real spectrum. For detailed balanced
maps, the second largest eigenvalue in magnitude coincides with the second largest singular value.
Furthermore, we would like to point out that this is actually not just a single condition for quantum
detailed balance but a whole family. Hence every different inversion �k

σ gives rise to a different
condition for detailed balance. We therefore define as the quantum generalization of detailed balance.

Definition 16: For a channel T : Md → Md and a state σ ∈ S+
d , we say that T obeys k-detailed

balance with respect to σ with k ∈ K , when

[�k
σ ]−1 ◦ T ∗ = T ◦ [�k

σ ]−1. (60)

A consequence of this definition is that σ is a fixed point of T .

Lemma 17: Let σ ∈ Sd be a state and T be a channel that satisfies the detailed balance
definition 16 with respect to �k

σ , then σ is a steady state of T .
Proof: Recall that the inverse is given by [�k

σ ]−1 = Rσ f (
σ,σ ), where f (w) = 1/k(w). Hence,
since k(1) = f (1) = 1, we have

[�k
σ ]−1(1) = Rσ f (
σ,σ )1 = Rσ1 = σ. (61)

Now, since T ∗(1) = 1, we have that

T (σ ) = T ◦ [
�k

σ

]−1
(1) = [

�k
σ

]−1 ◦ T ∗(1) = [�k
σ ]−1(1) = σ. (62)

�
Given a probability distribution on some set of states, it is desirable to have a simple criterium to
check whether a completely positive map obeys detailed balance with respect to the state generated
from the distribution. This criterium may then serve to set up a Markov chain that actually converges
to the desired steady state.

Proposition 18: Let {|i〉}i be a complete orthonormal basis of H and let {μi }i be a probability
distribution on this basis. Furthermore, assume that a quantum channel T obeys

μn

k (μm/μn)
〈i | T ( |n〉〈m| ) | j〉 = μi

k
(
μ j/μi

) 〈m| T ( | j〉〈i | ) |n〉, (63)

then σ = ∑
i μi |i〉〈i | and T obey the detailed balance condition with respect to �k

σ .

Proof: Note that {|i〉〈 j |}i j forms a complete and orthonormal basis in the spaceMd with respect
to the Hilbert–Schmidt scalar product. We can therefore express (60) on this basis. The individual
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entries are equal due to

tr
[
(|m〉〈n|)† [�k

σ ]−1 ◦ T ∗(| j〉〈i |)] = μn k−1 (μm/μn) tr
[
T ( |m〉〈n| )† (| j〉〈i |)] =

μn k−1 (μm/μn) 〈i | T ( |n〉〈m| ) | j〉 = μi k−1
(
μ j/μi

) 〈m| T ( | j〉〈i | ) |n〉 =
μi k−1

(
μ j/μi

)
tr

[
(|m〉〈n|)† T (| j〉〈i |)] = tr

[
(|m〉〈n|)† T ◦ [�k

σ ]−1(| j〉〈i |)] . (64)

�
Remark: We note that the different quantum detailed balance conditions coincide for classical

channels, i.e., for stochastic processes that are included in the framework of quantum channels.
Define the following “classical” Kraus operators:

Acl
i j = √

Pi j |i〉〈 j | and a state, σ =
∑

i

μi |i〉〈i |. (65)

In this case, the condition of Proposition 18 reduces to the classical condition. This can be seen when
considering the channel T cl(ρ) = ∑

i j Acl
i jρ Acl†

i j and checking for detailed balance with respect to
sigma, since

μm

k (μn/μm)
〈i |T cl(|n〉〈m|)| j〉 = μm

k (μn/μm)
δnmδi j Pin

and
μi

k
(
μ j/μi

) 〈i | T cl ( |n〉〈m| ) | j〉 = μi

k
(
μ j/μi

)δnmδi j Pni . (66)

However since k(1) = 1 we are just left with the classical detailed balance condition μi Pni = μn Pin

for all pairs i, n.
A natural question to ask is, therefore, whether the different detailed balance condition are all

identical. To see that this is not the case, consider the example given by the Kraus operators of a
single qubit, i.e., H = C2,

A1 = 1√
2

(
1 1
0 0

)
and A2 = 1

2

(
1 −1
1 −1

)
. (67)

This channel has the unique fixed point

σ = 1

6

(
5 1
1 1

)
. (68)

From this channel it is now possible to construct a channel that obeys detailed balance with respect
to the inversion given by choosing k(w) = w−1/2, that is the inversion reads �

α=1/2
σ = L−1/2

σ R−1/2
σ .

We consider therefore the symmetrized map,

Ts = [
�α=1/2

σ

]−1 ◦ T ∗ ◦ �α=1/2
σ ◦ T . (69)

For the specific instance where �
α=1/2
σ is given as above, we are assured that the map Ts is again a

quantum channel, because one immediately finds the Kraus representation for Ts(ρ) = ∑
i j Bi jρB†

i j

as Bi j = √
σ A†

i [
√

σ ]−1 A j . The individual Kraus operators read

B11 = 3
5

(
1 1

1/2 1/2

)
and B12 =

√
2

5

(
1 −1

1/2 −1/2

)
,

B21 =
√

2
20

(
3 3

−1 −1

)
and B22 = 1

5

(
3 −3

−1 1

)
. (70)

The channel Ts satisfies detailed balance with respect to �
α=1/2
σ by construction. This channel how-

ever does not satisfy detailed balance with respect to the inversion �Bures
σ = 2 [Lσ + Rσ ]−1 as can

be seen directly by evaluating the detailed balance condition in terms of the matrix representations,[
�̂Bures

σ

]−1 · T̂ †
s − T̂s · [

�̂Bures
σ

]−1 = 7

600
[1 ⊗ Y + Y ⊗ 1] , (71)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

131.130.30.233 On: Wed, 30 Jul 2014 12:25:55



122201-14 Temme et al. J. Math. Phys. 51, 122201 (2010)

where

Y =
(

0 −1
1 0

)
. (72)

The family of quantum detailed balance conditions is therefore much richer than the classical
counterpart.

V. QUANTUM CHEEGER’S INEQUALITY

In the context of classical stochastic processes a very powerful formalism has been developed,
often referred to as the conductance bound or Cheeger’s inequality, to bound convergence rates of
stochastic processes. We will generalize this to the quantum setting in this section. Similar results
have appeared in Ref. 30. The gap of the map Sk is defined as the difference between the largest and
second largest eigenvalue, 
 = 1 − λ1. The gap can be characterized in a variational fashion.23

Proposition 19: The gap of the map Sk = [�k
σ ]−1/2 ◦ T ∗ ◦ �k

σ ◦ T ◦ [�k
σ ]−1/2 is given by


 = min
X∈Md

〈X, (id − Sk)X〉
1
2

∥∥(X ⊗ √
σ − √

σ ⊗ X )
∥∥2

H S

, (73)

where ‖A‖2
H S = tr[A† A] denotes the standard Hilbert–Schmidt norm and 〈 , 〉 the corresponding

Hilbert–Schmidt scalar product.

Proof: The eigenvector that corresponds to the eigenvalue λ0 = 1 of Sk is given by
√

σ . The
gap can therefore be written as23


 = min
X∈Md ;tr[X

√
σ ]=0

1 − tr[X†S(X )]

tr[X† X ]

= min
X∈Md ;tr[X

√
σ ]=0

tr[X†(X − S(X ))]

tr[X† X ] − tr[X
√

σ ]2

= min
X∈Md

tr[X†(X − S(X ))]
1
2

∥∥(X ⊗ √
σ − √

σ ⊗ X )
∥∥2

H S

. (74)

Note that the constrained tr[X
√

σ ] = 0 can be dropped in the last line. Suppose that tr[X
√

σ ] = c,
we can then define X ′ = X − c

√
σ and vary X ′ since the equation is invariant under such shifts. �

Throughout the remainder of this section we consider unital quantum channels, i.e., maps which
obey T (1) = 1. For this case it is ensured that already the simple map S = T ∗ ◦ T has a spectrum that
is contained in [0, 1], since all �k

σ coincide and correspond to the identity map. The χ2-divergence
just reduces to the standard Hilbert–Schmidt inner product times a prefactor given by d = dim(H).
In the case of a detailed balanced stochastic map, it even suffices to just consider the map itself. In
either case we will denote the corresponding map as S from now on. The variational characterization
of the gap 
 now allows us to give an upper as well as a lower bound to the second largest eigenvalue
of S.

Lemma 20: Let T : Md → Md be a unital quantum channel. Then the second largest eigen-
value λ1 of its symmetrization S = T ∗ ◦ T , is bounded by

1 − 2h ≤ λ1 ≤ 1 − 1

2
h2, (75)

where h is Cheeger’s constant defined as

h = min
�A,tr[�A]≤d/2

tr [(1 − �A) S(�A)]

tr [�A]
. (76)

The minimum is to be taken over all projectors �A on the space A ⊂ H, so that tr[�A] ≤ d/2.
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Proof: An upper bound to the gap is immediately found by choosing X = �A. Due proposition
(19) we can write


 ≤ tr[�A(id − S)(�A)]

tr[�2
A] − 1

d tr[�A]2

= tr[(1 − �A)S(�A)]
1
d tr[(1 − �A)]tr[�A]

≤ 2h, (77)

where in the last line we have used that tr[1 − �A] ≥ d/2.
For the lower bound, we can restrict the minimization in (76) to diagonal projections. Fur-

thermore, when considering only unital quantum channels, it is possible to reduce the problem of
bounding the gap 
 to that of bounding the gap of a classical stochastic process. To see this, let us
work on the basis where the eigenvector X1 ∈ Md corresponding to λ1 is diagonal. We shall assume
wlog that X†

1 = X1. Accordingly, we can write X = ∑
xi |i〉〈i |. The numerator then becomes

tr
[
X†(X − S(X ))

] =
∑

i j

xi x j (tr[|i〉〈i || j〉〈 j |] − tr [|i〉〈i |S(| j〉〈 j |)]

=
∑

i

x2
i −

∑
i j

xi x j Pi j = 1

2

∑
i j

Pi j (xi − x j )
2. (78)

We introduced the matrix Pi j = 〈i |S(| j〉〈 j |)|i〉, which is a symmetric nonnegative matrix which
obeys Pi j ≥ 0,

∑
i Pi j = 1 and PT = P . Hence P is doubly stochastic. Performing the same reduc-

tion in the denominator, we obtain

1

2d
‖(X ⊗ 1 − 1 ⊗ X )‖2

H S = 1

2d

∑
i j

(xi − x j )
2. (79)

Hence, we arrive at the classical version of Mihail’s identity,3


 = min
{xi }

∑
i j Pi j (xi − x j )2

1/d
∑

i j (xi − x j )2
. (80)

Given the classical version of Mihail’s identity, the proof of the lower bound is the same as in the
classical case. For completeness we repeat it here. First, we define, zi ≡ |xi |xi and write∑

i j

Pi j |zi − z j | =
∑

i j

Pi j ||xi |xi − |x j |x j | ≤
∑

i j

√
Pi j

√
Pi j (|xi | + |x j |)(xi − x j )

≤
√∑

i j

Pi j (xi − x j )2

√∑
i j

Pi j (|xi | + |x j |)2, (81)

where we used Cauchy–Schwartz in the last step. Consider now,∑
i j

Pi j (|xi | + |x j |)2 = 2(
∑

i

x2
i +

∑
i j

|xi |Pi j |x j |) ≤ 4
∑

i

|xi |2. (82)

Furthermore, note that we can bound

1/d
∑

i j

(xi − x j )
2 ≤ 2/d

∑
i j

x2
i = 2

∑
i

|zi |. (83)

We are therefore left with a lower bound to Mihail’s identity, which holds for all choices of {xi }

1

2

(∑
i j Pi j |zi − z j |
2
∑

i |zi |

)2

≤
∑

i j Pi j (xi − x j )2

1/d
∑

i j (xi − x j )2
. (84)

We shall now assume that xi ≥ 0 everywhere and we can hence drop the absolute values in the
definition for the zi . This assumption is valid since we are free to add an arbitrary constant xi →
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xi + c to make all xi positive. Note that we therefore are left with a lower bound to the gap of the
form


 ≥ 1

2

(∑
i j Pi j |x2

i − x2
j |

2
∑

i x2
i

)2

. (85)

Let us focus on the right side of the inequality. Since

2
∑

i, j : xi ≥x j

Pi j (x
2
i − x2

j ) = 4
∑

i, j : xi ≥x j

Pi j

∫ xi

x j

t dt = 4
∫ ∞

0
t

∑
i j : xi >t≥x j

Pi j dt, (86)

and furthermore, ∑
i j : xi >t≥x j

Pi j =
∑

i∈A(t)

∑
j∈Ac(t)

Pi j where, A(t) ≡ {i |xi ≥ t} , (87)

we can bound

4
∫ ∞

0
t

∑
i j : xi >t≥x j

Pi j dt ≥ h 4
∫ ∞

0
t

∑
i∈A(t)

�(t − xi ) dt = 2 h

(∑
i

x2
i

)
, (88)

where we defined h in a similar fashion as above. We have therefore found the desired lower bound
for the spectral gap of the map S. �
A. Example: Conductance bound for unital qubit channels

A convenient basis for the matrix space M2 associated with the Hilbert space H = C2 is
given in terms of the Pauli basis {1, σx , σy, σz}. On this basis a density matrix ρ ∈ S2 can be
parametrized in terms of its Bloch vector r ∈ R3. In the Bloch representation the density matrix
reads ρ = 1

2 (1 + r · �), where � = (σx , σy, σz). It is also straightforward to determine the matrix
representation of a quantum channel T : M2 → M2 with respect to the Pauli basis. A general
channel can be written as a matrix T̂ ∈ M4

T̂ =
(

1 0
t L

)
. (89)

The channel acts on a density matrix via T (ρ) = T ( 1
2 (1 + r · �)) = 1

2 (1 + (t + Lr) · �). It can
be shown that the map T is unital if and only if t = 0. Let us now consider the optimization
for Cheeger’s constant h as given in lemma (20). Given the constraint, we have to vary all one-
dimensional projectors �A = |ψ〉〈ψ | with ‖|ψ〉‖2 = 1, so that

h = min
|ψ〉∈C2

tr [(1 − |ψ〉〈ψ |) S (|ψ〉〈ψ |)] . (90)

The symmetrized map S of the unital channel T , with t = 0, now assumes the matrix representation,

Ŝ =
(

1 0
0 L†L

)
. (91)

Furthermore note that any projector |ψ〉〈ψ | ∈ S2 can be parametrized via a Bloch vector a ∈ R3

that obeys ‖a‖2 = 1. The minimization for Cheeger’s constant reduces therefore to

h = min
‖a‖2=1

1 − 〈a| L†L |a〉, (92)

where 〈a|b〉 denotes the canonical scalar product in R3. The minimum is attained when a is the
eigenvector associated with the largest eigenvalue s2

1 of the matrix L†L. Hence for an arbitrary
single qubit unital channel, Cheeger’s constant is given by h = 1 − s2

1 , where s1 is the largest
singular value of the matrix L and hence the second largest singular value of the channel T . We see
that the conductance bound as stated in (20) is indeed satisfied, since

2s2
1 − 1 ≤ s2

1 ≤ 1

2
(1 + s2

1 ). (93)
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VI. CONCLUSION AND DISCUSSION

We have seen that by generalizing the χ2-divergence to the quantum setting, many of the
classical results for the convergence of Markov processes can be recovered. The general perception
that the convergence should be governed by the spectral properties of the quantum channel could
be verified in the asymptotic limit. The fact that we were working with noncommuting probabilities
gave rise to a larger set of possibilities of defining an inversion of the fixed point density matrix,
all of which give rise to a valid upper bound for the trace distance. An interesting question is how
the different singular values sk

i of the corresponding quantum discriminant relate to each other.
The generalization of the χ2-divergence also led to the definition of detailed balance for quantum
channels. Again, not only a single condition for quantum detailed balance exists but an entire family
of conditions each determined by a different function k ∈ K, all of which coincide in the case
when we consider classical stochastic processes on a commuting subspace. The quantum concept
of detailed balance therefore appears to be richer and allows for a wider set of channels to obey
this definition. The conductance bound that was derived could only be shown for unital quantum
channels. However we would like to point out that it is possible to give conductance bounds for
classical maps when the Markov chain is not doubly stochastic. The fact that in general we may not
assume that the fixed point of an arbitrary channel commutes with the eigenvector associated with
the second largest eigenvalues seems to hinder a generalization for nonunital channels. Moreover, the
classical conductance bound has a nice geometrical interpretation in terms of the cut set analysis and
the maximal flow on the graph associated with the stochastic matrix Pi j . When investigating general
quantum channels such a nice geometric interpretation seems to be lacking. For unital quantum
channels Cheeger’s constant can also be viewed in terms of the minimal probability flow of one
subspace to its compliment.
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APPENDIX A: FAMILIES OF DIVERGENCES

The most widely used family of divergences, often called α-divergence (see Ref. 38,
Chapter 7), is associated with the functions

kWYD
α (w) = (1 − wα)(1 − w1−α)

α(1 − α)(1 − w)2
for α ∈ [−1, 2]. (A1)

This family is sometimes called the WYD divergences, because it arises from an extension of
the Wigner–Yanase–Dyson entropy18, 41 associated with the (unsymmetrized) function g(w) =

1
α(1−α) (w − wα). In the limit α → 1 this yields39 the familiar (asymmetric) relative entropy

H (ρ, σ ) = Trρ(log ρ − log σ ) and �
log
P given by (54). Like the family of divergences introduced

here, the minimal WYD divergence occurs for α = 1/2, it is convex in α, symmetric around α = 1/2
and yields the maximal 1+w

2w
when α = −1 or 2. However, α = 1/2 gives kWYD

1/2 (w) = 4(1 + √
w)−2

which is quite different from kmean
1/2 (w) = w−1/2. The WYD family is often studied only for α ∈ (0, 1);

it was first observed by Hasegawa in40 that it yields a monotone metric if and only if α ∈ [−1, 2].
The metrics associated with kmean

α (w) and kWYD
α (w) both give increasing families for α ≥ 1

2 and
both yield the maximal metric k(w) = (1 + w) (2w) for α the maximal values of 1 and 2, respectively.
However, neither reduces to the minimal metric k(w) = 2/(1 + w). The measure δ(s − a) in (16)
leads to the family ka(w) = (1+a)2

2
(1+w)

(1+wa)(w+a) for a ∈ [0, 1] which reduces to the the maximal and
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minimal functions for a = 0, 1. However, this family is neither increasing nor decreasing. Hansen41

has found families of functions which increase monotonically from the smallest to the largest of
which we mention only

ka(w) = w−a
(1 + w

2

)2a−1
for a ∈ [0, 1]. (A2)

APPENDIX B: PROOF OF A KEY INEQUALITY

The proof of the contractivity of a general Riemannian metric is based on the following theorem
first proved in Ref. 18.

Theorem 21: For a channel T : Md → Md , we have that

tr

[
A† 1

Rσ + sLρ

A

]
= tr

[
T

(
A† 1

Rσ + sLρ

A

)]
≥

tr

[
T (A)† 1

RT (σ ) + sLT (ρ)
T (A)

]
. (B1)

Proof: Let σ > 0, then tr[A†σ A] ≥ 0, and tr[A† Aσ ] ≥ 0 so that Lσ as well as Rσ are both
positive semidefinite super operators on the matrix space. Therefore we infer that for a positive
ρ > 0 the operator Rσ + sLρ is also positive. We define a matrix X = [Rσ + sLρ]−1/2(A) + [Rσ +
sLρ]1/2T ∗(A) and furthermore B = [RT (σ ) + sLT (ρ)]−1T (A). Since tr[X† X ] ≥ 0, we have that

tr

[
A† 1

Rσ + sLρ

A

]
− tr

[
T ∗(B†)A

] − tr
[
A†T ∗(B)

] + tr
[
T ∗(B†)[Rσ + sLρ]T ∗(B)

] ≥ 0.

(B2)
Furthermore note that

− tr
[
A†T ∗(B)

] − tr
[
T ∗(B†)A

] = −2tr

[
T (A†)

1

RT (σ ) + sLT (ρ)
T (A)

]
. (B3)

It therefore suffices to show that we are able to bound the last term in (B2) by the right side of the
inequality (B1). Note that

tr
[
T ∗(B†)[Rσ + sLρ]T ∗(B)

] = tr
[
T ∗(B†)T ∗(B)σ + sT ∗(B†)ρT ∗(B)

]
≤ tr

[
T ∗(B† B)σ + sT ∗(B B†)ρ

]
, (B4)

since ρ, σ > 0 and due to the operator inequality T ∗(B†)T ∗(B) ≤ T ∗(B† B). This inequality holds
for any B since T is a channel and by that trace preserving, hence T ∗(1) = 1. With tr

[
T ∗(B† B)σ

] =
tr

[
B† BT (σ )

]
, we can write

tr
[
T ∗(B†)[Rσ + sLρ]T ∗(B)

] ≤ tr
[
B† BT (σ ) + s B† BT (ρ)

]
= tr

[
B†[RT (σ ) + sLT (ρ)]B

] = tr
[
B†T (A)

] = tr

[
T (A†)

1

RT (σ ) + sLT (ρ)
T (A)

]
. (B5)
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