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We present a novel scheme for an unbiased, nonperturbative treatment of strongly correlated fermions.
The proposed approach combines two of the most successful many-body methods, the dynamical mean
field theory and the functional renormalization group. Physically, this allows for a systematic inclusion of
nonlocal correlations via the functional renormalization group flow equations, after the local correlations
are taken into account nonperturbatively by the dynamical mean field theory. To demonstrate the feasibility
of the approach, we present numerical results for the two-dimensional Hubbard model at half filling.
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Introduction.—Correlated electron systems display
undoubtedly some of the most fascinating phenomena
of condensed matter physics such as high-temperature
superconductivity and quantum criticality, and with the
tremendous progress to cool and control atomic gases new
many-body physics is explored nowadays. These systems
pose a particular challenge for theory. In this Letter, we
discuss a new route for the theoretical treatment of strong
correlations, which combines the strengths of two of the
most successful approaches developed hitherto: dynamical
mean field theory (DMFT) [1,2] and the functional
renormalization group (fRG) [3–6].
DMFT represents the “quantum” extension of the

classical (static) mean-field theory [2]. More formally, it
provides the exact solution of a quantum many-body
Hamiltonian in the limit of infinite spatial dimensions
(d → ∞) [1]. DMFT allows, hence, for an accurate (and
nonperturbative) treatment of the local part of the corre-
lations. Among others, it provides the essential ingredients
to describe the Mott-Hubbard metal-to-insulator transition
in three-dimensional bulk systems [7,8]. At the same time,
the mean-field nature with respect to the spatial degrees of
freedom implies that all nonlocal spatial correlations are
completely neglected in DMFT.
A powerful technique to treat such nonlocal correlations

is, instead, provided by the fRG. Its starting point is an
exact functional flow equation [9], which yields the gradual
evolution from a simple initial action to the full final action,
that is, the generating functional of all one-particle irre-
ducible vertex functions. The flow parameter (RG scale) is
usually a momentum or energy cutoff. Expanding the
functional flow equation yields an exact but infinite
hierarchy of flow equations for the n-particle vertex
functions, which for most calculations is truncated at the
two-particle level. There have been many applications of

such weak-coupling truncations to low-dimensional fer-
mion systems with competing instabilities and non-Fermi-
liquid behavior (for a review, see [6]).
The approach we present here is coined DMF2RG as the

DMFT solution serves as a starting point of the fRG flow.
DMF2RG aims at overcoming the main restrictions of the
two methods, i.e., the lack of nonlocal correlations in
DMFT and the weak-coupling limitation in practical
implementations of the fRG. The basic idea of the
DMF2RG is the following: We apply the fRG not starting
from a problem without (or with trivial) correlations, but
from a converged DMFT solution of the correlated system.
This way, the local but possibly strong DMFT correlations,
essential to capture the Mott-Hubbard physics, are fully
taken into account from the very beginning. Nonlocal
correlations beyond DMFT, particularly important for
low-dimensional systems, will be systematically generated
by the fRG flow. We note that alternative strong coupling
starting points for the fRG flow were recently discussed for
the Bose-Hubbard [10] and the single-impurity Anderson
model [11].
Before turning to the DMF2RG algorithm, let us mention

alternative approaches proposed in the past to include
nonlocal correlations beyond DMFT. They can be classi-
fied into cluster [12,13] and diagrammatic extensions
[14–19] of DMFT. The former ones are evidently comple-
mentary in nature to DMF2RG, as they provide short-range
correlation beyond DMFT, but at a high numerical cost,
which poses significant limits to multiband calculations.
Similarly, as the diagrammatic extensions of DMFT, the
DMF2RG includes short- and long-range correlations on
equal footing and improves the scaling with the number of
orbitals. At the same time, instead of a simple selection of
diagrams (e.g., second order perturbation theory, ladder,
etc.), DMF2RG exploits the more powerful RG and
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generates parquetlike diagrammatic corrections to DMFT.
This way, DMF2RG provides a systematic and unbiased
treatment of electronic correlations beyond DMFT in all
channels. Topologically, the same diagrams albeit with
different Green’s functions and vertices are obtained in the
proposed parquet implementations of DΓA [14] and multi-
scale methods [18,19]. This is, however, computationally
much more demanding, and suffers from divergences of the
two-particle irreducible vertex [19–21].
Method.—A rather flexible and effective formulation of

DMF2RG (see also the Supplemental Material [22] for
further details) is obtained starting from the local (or
“impurity”) action of DMFT,

SDMFT ¼ −
Z

β

0

dτdτ0
X
iσ

c̄iσðτÞG0
AIMðτ − τ0Þ−1ciσðτ0Þ þ Sint:

(1)

Here, c̄iσ (ciσ) are the Grassmann variables corresponding
to the creation (annihilation) of a fermion with spin
orientation σ ¼ ↑, ↓ on site i, G0

AIMðτ − τ0Þ is the elec-
tronic-bath Green’s function of the auxiliary effective
Anderson impurity model (AIM), which in a first step
needs to be determined self-consistently in DMFT [7] (see
left-hand side of Fig. 1), and Sint is a local interaction.
With this DMFT solution as a starting point, the fRG

generates a flow to the finite-dimensional action of interest

Slatt ¼ −
Z

β

0

dτdτ0
X
kσ

c̄kσðτÞG0
lattðk; τ− τ0Þ−1ckσðτ0Þ þSint;

(2)

where G0
lattðk; τ − τ0Þ is the free propagator of the finite

dimensional system, which reads G0
lattðk; iωÞ ¼

ðiω − ϵk þ μÞ−1 in terms of Matsubara frequencies, the
energy-momentum dispersion ϵk, and the chemical poten-
tial μ. In Fig. 1 the specific case of a 2D square lattice
is shown.
For the DMF2RG scheme we now introduce a flow

parameter Λ [25] so that G0
Λðk; iωÞ−1 ¼ ΛG0

AIMðiωÞ−1þ
ð1 − ΛÞG0

lattðk; iωÞ−1 interpolates between the initial
DMFT (Λinitial ¼ 1) and the final action (Λfinal ¼ 0).
The flow of DMF2RG, hence, gradually switches off the

DMFT bath and switches on the 2D hopping, including
nonlocal correlations beyond DMFT. Neglecting three (and
more) particle vertices, the flow equations [6,27] for the
self-energy and the two-particle vertex are shown in Fig. 1.
The truncation of the hierarchy at the level of the two-
particle vertex Γ relies on the assumption that the relevant
physics is captured by the structure appearing on the two-
particle level. Let us emphasize, however, that three- (and
more-) particle vertices are included on the local level by
DMFT. This flow scheme results in the following single-
scale propagator (defined as ∂GΛ=∂ΛjΣΛfixed),

SΛðk;iωÞ¼G2
Λðk;iωÞ½G0

lattðk;iωÞ−1−G0
AIMðiωÞ−1�; (3)

which includes the full Green’s function
GΛðk; iωÞ ¼ ½G0

Λðk; iωÞ−1 − ΣΛðk; iωÞ�−1.
While the formal structure of the flow equations,

diagrammatically depicted in Fig. 1, resembles the one
of the conventional fRG implementation, in the DMF2RG
the initial conditions strongly differ, as they are determined,
both at the one- and the two-particle level, by DMFT, which
provides the initial self-energy ΣΛ¼1 ¼ ΣDMFTðiωÞ and
one-particle irreducible (1PI) vertex ΓΛ¼1 ¼ ΓDMFTðiν1;
iν2; iν01; iν

0
2Þ [28]. As a consequence, DMF2RG is numeri-

cally more expensive than the conventional fRG or DMFT
schemes: (i) two-particle vertices have to be computed in
DMFT [29] as an input to the 1PI-fRG flow and (ii) the
frequency dependence of ΣΛ and ΓΛ has to be included in
the fRG [32], with a proper frequency-dependent para-
metrization; according to a generic estimate the numerical
effort scales as N4

kN
4
ω, Nk (Nω) being the number of

momenta (frequencies). DMF2RG allows us to bypass
the sign problem of a direct quantum Monte Carlo
(QMC) treatment of nonlocal correlations, since QMC
usage will be limited, at most, to DMFT calculations of
one- and two-particle local vertices.
Application to the 2D Hubbard model.—We now show,

as a first application of DMF2RG, results for a prototypical
model of correlated fermions, the two-dimensional
Hubbard model. We recall that the interplay of

FIG. 1 (color online). Schematic illustration of the DMF2RG
approach, showing the evolution of the Gaussian part G0

Λ of the
action from DMFT to its exact expression for a two-dimensional
system. The (truncated) flow equations for the self-energy ΣΛ and
the two-particle vertex ΓΛ are explicitly given in terms of
Feynman diagrams.
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antiferromagnetism and superconductivity in this model
has been studied by weak coupling truncations of various
versions of the fRG already some time ago [33–36]. In
standard second-quantization notation, the Hubbard
Hamiltonian reads [37]

H ¼ −t
X
hijiσ

c†iσcjσ þ U
X
i

ni↑ni↓; (4)

where t denotes the nearest-neighbor hopping amplitude on
a square lattice and U the local Coulomb repulsion. In the
following, we will define our energies in terms of 4t≡ 1,
and fix the average particle density to half filling n ¼ 1. In
this case, the momentum transfer of (π, �π) corresponds to
perfect (antiferromagnetic) nesting on the square shaped
Fermi surface.
We solve the truncated flow equations numerically,

including the self-energy feedback in the equation for
ΓΛ. We use a channel decomposition of the interaction
vertex [22,38] with Matsubara frequency dependence of the
self-energy and the interaction vertex. The momentum-
dependence is taken into account by discretizing the
Brillouin zone into patches with momentum-independent
initial vertex function. If fine enough, this discretization
captures the angular variation of the vertex function along
the Fermi surface with good precision. For simplicity, we
restrict ourselves to 8 patches, which already includes
important physical aspects of the 2D system [39].
Numerical results.—Our calculations for the two-particle

vertex function and self-energy are reported in Figs. 2 and
3–4, respectively. In Fig. 2 we plot the largest component
(gmax) of the vertex function, which–at half filling–is found

in the particle-hole crossed channel for zero frequency and
antiferromagnetic momentum transfer (π, π). The data,
which refer to a weak-intermediate regime (U ¼ 1), clearly
show that the DMF2RG mitigates the fRG tendency to a
low-T divergence of the flow: We still obtain a converged
DMF2RG result for gmax at β ¼ 1=T ¼ 10 , whereas the
fRG flow for the vertex is manifestly divergent [40].
Quantitatively, by fixing an upper bound for gmax, we
observe that the temperature at which it is reached is
slightly decreased in DMF2RG compared to fRG for
moderate values of the interaction (up to U ¼ 0.75) while
is significantly decreased from T ∼ 0.125 (fRG) to ∼0.085
(DMF2RG) at U ¼ 1. This is attributed to the damping
effect of the local correlations, included from the very
beginning in the flow of DMF2RG. We emphasize that this
“divergence” is not associated with a true onset of a long-
range order. In fact, fRG schemes can be adapted to access
also the disordered phase at lower T [41], though such an
extension goes beyond the scope of this work.
We now turn to the analysis of the self-energy results

obtained with the DMF2RG flow at the lowest temperature
considered, i.e., β ¼ 10. Here, the fRG flow diverges, and it
is worth comparing the DMF2RG results with the original
DMFT data; see Fig. 3. As expected in two dimensions, the
nonlocal correlations captured by the DMF2RG strongly
modify the DMFT (k-independent) results, determining a
significant momentum dependence of the self-energy at
low frequencies: While in DMFT, a metallic solution with a
moderate Fermi-liquid renormalization of the quasiparticle
mass is obtained; in DMF2RG we observe a strong
enhancement of the imaginary part of the self-energy at

FIG. 2 (color online). Flow of the largest component (gmax) of
the two-particle vertex function, i.e., in our case, Γ in the particle-
hole crossed channel, for zero transfer frequency (ν2 − ν01 ¼ 0),
antiferromagnetic momentum transfer [k2 − k0

1 ¼ ðπ; πÞ] and
k1 ¼ ð0; πÞ, k2 ¼ ðπ; 0Þ computed by fRG, with interaction
cutoff Λint[26] (inset) and DMF2RG (main panel) for the two-
dimensional half-filled Hubbard model at U ¼ 1, at different
(inverse) temperatures.

FIG. 3 (color online). Comparison of the results for the
imaginary part of the fermionic self-energy of the two-dimen-
sional Hubbard model for U ¼ 1, and β ¼ 10, calculated within
DMFT (k independent, in black) and DMF2RG, for different k
vectors [the color coding of the different k is defined in the inset,
note that the values of ImΣðk; iωnÞ for k ¼ ð0; 0Þ and (π, π)
coincide because of the particle-hole symmetry]. Upper inset:
Scheme of the 8 patches discretization used for the calculations.
Lower inset: T dependence of the momentum-resolved static spin
susceptibility Sðq; iΩ ¼ 0Þ.
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the Fermi surface. In fact, at the “antinodal” point (π, 0),
where the largest value of −ImΣ is found, the low-
frequency behavior is manifestly non-quasi-particle-like,
indicating the destruction of the Fermi surface in this region
of the Brillouin zone. The trend of large nonlocal correc-
tions to DMFT at the antinodal momentum and towards a
pseudogap formation is similar to cluster-DMFT results
[13,42]. Deviations from the DMFT metallic results, albeit
less marked, are found at the “nodal” point (π=2, π=2), for
which one cannot exclude, at this temperature, a residual
presence of strongly damped quasiparticle excitations. The
significant reduction of −ImΣ with respect to DMFT,
observed at (0,0) or (π, π), does not imply metallicity
since these points are far away from the Fermi surface, and
the real part of the self-energy (not shown) is also strongly
enhanced with respect to DMFT. A further insight on the
nonlocal correlations captured by the DMF2RG is given by
the analysis of the momentum- or frequency-dependent
susceptibilities, which in DMF2RG can be extracted from
the two-particle vertex. In the lower inset of Fig. 3, we show
the DMF2RG results for the momentum-resolved static
spin susceptibility Sðq; iΩ ¼ 0Þ. This quantity is most
important at half filling, where magnetic fluctuations
predominate, and it is experimentally accessible, e.g., via
neutron spectroscopy. Our results are in qualitative agree-
ment with the QMC data of Refs. [43,44] and show the
major role played by antiferromagnetic fluctuations, with a
pronounced peak at (π, π), growing upon decreasing T. The
ferromagnetic fluctuations also get enhanced due to the van
Hove singularity at the Fermi level.
In Fig. 4, we compare the DMF2RG self-energy data

with the fRG. The comparison can only be performed at
weaker coupling and/or higher T than in Fig. 3, as the fRG
flow needs to converge. Our numerical data of Fig. 4
indicate that in the considered parameter region (same T,

but weaker interaction than in Fig. 3) the fRG and
DMF2RG yield qualitatively similar results for the
k-dependent self-energy. Considering that in DMF2RG
local correlations have been included nonperturbatively via
DMFT, this confirms the validity of previous fRG analysis
of the Hubbard model at weak and moderate interaction. At
the same time, the applicability of DMF2RG goes beyond
the weak-to-intermediate coupling of the fRG, allowing for
the study of parameter regions where the Mott-Hubbard
physics “already” captured by DMFT becomes important.
Technically, a full treatment of this regime requires an
improvement of the frequency parametrization of the 1PI
vertex in the fRG flow beyond the current frequency
decomposition [38].
Summary and outlook.—We introduced the DMF2RG

approach, which exploits the synergy of local DMFT
correlations and nonlocal correlations generated by the
fRG flow. Applying DMF2RG to the 2D Hubbard model,
we find that, due to the inclusion of all local correlations by
the DMFT starting point, the divergence of the flow for the
interaction vertex is pushed to lower temperatures, where
significant nonlocal corrections to DMFT are found. At the
same time, in the temperature interval where both fRG and
DMF2RG converge, the self-energy results are qualitatively
similar, supporting the results of previous fRG studies at
weak-to-intermediate U. Quantitatively, the most visible
effect of DMF2RG compared to fRG consists of a stronger
k dependence of the self-energy for the considered param-
eters and a suppression of the “pseudocritical” temperature
at which the vertex diverges. We emphasize, finally, the
potential of the presented DMF2RG approach to access the
strong-coupling regime, where the Mott-Hubbard physics
captured by DMFT will play a more important role and
qualitative changes in the self-energy results are to be
expected. The flexibility of the DMF2RG scheme and its
ability to avoid the sign problem of a direct QMC treatment
of nonlocal physics beyond DMFT look promising for
future, unbiased studies of correlations in realistic multi-
band models.
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