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Finite-element Langevin-dynamics simulations are performed in order to extract the attempt
frequency of small magnetic particles as a function of an applied perpendicular field. The obtained
values of the attempt frequency are in excellent agreement with the analytical results of �Kalmykov,
J. Appl. Phys. 96, 1138 �2004��. It is shown that an external field that is applied perpendicularly to
the easy axis with a strength of just about 1% of the anisotropy field is strong enough that the
framework of the transition state theory �TST� for broken symmetries can be applied. It is concluded
that for most realistic structures, the attempt frequency can be numerically calculated by broken
symmetry—TST formulism. © 2010 American Institute of Physics. �doi:10.1063/1.3460639�

I. INTRODUCTION

Magnetic grains in the nanoscale regime are basic con-
stituents of various magnetic systems, ranging from mag-
netic recording media to biological applications. These small
grains can be approximated as single-domain particles. For
the case of uniaxial anisotropy and zero field, the system
exhibits two equivalent ground states of opposite magnetiza-
tion, which are separated by an energy barrier �E. According
to the Néel–Brown model, the mean time � spent in one of
the states obeys an Arrhenius law

� = �0e�E/kBT, �1�

where �0
−1= f0 is the attempt frequency.

A detailed knowledge of the average lifetime of a nano-
magnet is not only important for predictions of the thermal
stability but also for calculating the coercive field at finite
temperatures.1,2

Recently, various simulation techniques have been suc-
cessfully applied to calculate the energy barrier numerically
for magnetic structures.3,4 However, in order to obtain a full
picture for the thermal stability, a detailed knowledge of the
attempt frequency is required. Based on the work of
Kramers,5 Langer,6 and Langer and Turski,7 the calculation
of the switching rate amounts to the evaluation of the total
probability current of a stationary nonequilibrium distribu-
tion through a surface near the saddle point, which can be
described using the Fokker–Planck equation. Kramers de-
rived the escape rate of point Brownian particles with sepa-
rable and additive Hamiltonians from a potential well for the
�i� intermediate to high damping �IHD� limit and �ii� the very
low damping �VLD� limit. For all damping regimes, it was
assumed that the energy barrier was much larger than the
thermal energy. Kramers developed an ingenious method of
treating these two damping limits but mentioned in his paper
that he could not find a general method to obtain a formula
that holds for any damping regime. Much later Mel’nikov

and Meshkov8 obtained an escape rate formula valid for all
damping regimes what has come to be known as the Kramers
turnover problem.

The paper is structured as follows: In Sec. II, we will
review the results of the calculation of the attempt frequency
for various damping limits and for different symmetries of
the potential for a single-domain particle. In Sec. III, we will
review Langer’s approach for the transition state theory
�TST� and apply the general multidimensional formula to
derive the attempt frequency for a single-domain particle,
when the external field is applied perpendicularly to the
uniaxial easy axis. In Sec. IV, the analytical results are com-
pared with finite-element Langevin dynamics simulations. A
summary and outlook are given in Sec. V.

II. ATTEMPT FREQUENCY OF SINGLE-DOMAIN
PARTICLE

A. Axially symmetric potential

In the case of an external field applied, h�, exactly par-
allel to the easy axis Brown9 derived, by extending the
Kramers method to spins where the Hamiltonians are in gen-
eral nonseparable, the attempt frequency

f0�h�� =
��

1 + �2� HK
3

2KBT�
�1 − h���1 − h�

2� . �2�

Here, it is important to note that the attempt frequency de-
pends on the volume V of the particle and the temperature T.
Due to the symmetry of the magnetic system, Eq. �2� holds
for all values of the damping constant �see Ref. 10 for de-
tails�.

B. Broken symmetry

If the symmetry of the system is broken, the completely
degenerate class of saddle points transforms to one saddle
point, and the escape rate for spins now exhibits the same
Kramers damping regimes as exists for point particles. The-
oretical predictions of the attempt frequency for a nonaxiallya�Electronic mail: suess@magnet.atp.tuwien.ac.at.
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symmetric potential were first derived for two limiting cases:
�i� the IHD limit11,12 and �ii� the VLD limit.13 Coffey et
al.14,15 also derived in the IHD limit an explicit equation for
the attempt frequency when the symmetry was broken by an
external field at an angle � to the easy axis. Good agreement
of these formulas with experimental results of single-domain
particles was obtained.15 A detailed derivation of the IHD
formula for magnetic systems is given in Ref. 16. Coffey et
al.10 and Déjardin et al.17 have also shown that the
Mel’nikov–Meshkov formalism can be extended to spins in
order to estimate the relaxation time for nonaxial single-
domain particles for all values of the damping constant. Fol-
lowing Déjardin et al.17 and Kalmykov,18 the attempt fre-
quency of a single-domain particle subjected to a magnetic
field applied at an angle � to the easy axis for all values of
the damping constant can be written as

f0,general�h� = f0�h�
A��S1�A��S2�
A��Si + �Si�

, �3�

where �Si is the energy loss per cycle in well i and f0�h� is
the attempt frequency in the IHD. A��Si� can be calculated
by using the depopulation factor

A��Si� = exp� 1

�
	

0

	 In�1 − exp��− �Si�x2 + 1/4��
x2 + 1/4

dx
 .

�4�

For a single-domain particle, the action Si in the well I can be
calculated by evaluating the integral

Si = ��
V�
,��=V0

��1 − cos2 
�
�

� cos 

V�
,��d�

−
1

1 − cos2 


�

��
V�
,��d�cos 
�
 . �5�

The integral is evaluated along a path P1 �the escape contour
on one side of the saddle point� and also the escape contour
along the other side of the saddle point �P2�. The energy
along each path is constant and equals the saddle point en-
ergy. The path P1 is shown in Fig. 1 by the red curve. For the
case of a perpendicularly applied field, Kalmykov et al. ap-
proximated the action Si by the following series:

Si = 16
K1V

kBT
�h�1 −

13

6
h +

11

8
h2 −

3

16
h3
¯
 . �6�

The asymptotic solutions for the VLD and IHD limits have
been compared with the universal formula Eq. �3� in detail
by Kalmykov.18 In Ref. 18, the validity of the universal for-
mula in the entire damping regime is shown by comparing it
with the exact solution obtained by continued fraction meth-
ods.

C. Crossover between broken symmetry and axial
symmetric potentials

The nonaxially symmetric asymptotes will not reduce to
the axially symmetric ones without adjustment, such as
crossover formulas, which bridge the two asymptotes. This
fact is stressed in the studies of diluted magnetic samples,
where, due to the random anisotropy for some particles, the
external field is applied almost parallel to the easy axis,

FIG. 1. �Color online� Minima and saddle point of the energy of a single-domain particle for two different values of the external field h. The path P1 shows
the path along the action S1, evaluated in Eq. �5�.
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where for other particles, the symmetry is broken. In Ref. 19,
it is stated that these experiments cannot be explained by
using the formulas for the broken symmetry, such as in Ref.
14. The crossover problem was solved by Garanin et al.,20

who developed crossover formulas between the axially-
symmetric asymptotes and the asymptotes for the broken
symmetry for various damping constants. The full math-
ematical details of the various crossover formulas can be
found in Ref. 10.

III. TST FOR MULTIDIMENSIONAL SYSTEMS

The TST represents a powerful method of prediction of
the rate of activated processes. Initially, in order to include
fluctuations and disspipation in the TST Kramers considered
in his famous paper a Brownian particle moving along the x
axis, taking into account frictional and random forces im-
posed by the heat bath.5 Later, Langer6 generalized the
Kramers approach to multidimensional systems, applying it
to the nucleation of a multicomponent system. Although the
TST was originally used for the calculation of the reaction
rates for molecules, it has been shown that any system that
evolves from a well-defined initial state to a final state can be
treated within this framework.

Following the approach of Langer,6 the determination of
the attempt frequency amounts to calculating the total prob-
ability current of a stationary nonequilibrium distribution
through a surface near the saddle point. Let us start with a
system, which is described by a set of variables �i, i
=1, . . . ,K, which describes the K degrees of freedom of the
system. In order to be able to calculate the attempt frequency,
one has to know the following properties:

�i� the state �i,min at the minimum and the state �i,sp at
the saddle point,

�ii� the free energy E��1 , . . . ,�k� at the minimum and at
the saddle point, as well as the curvature of the free
energy at the minimum and the saddle point,

�iii� the equation of motion, so that the dynamics of the
system can be described close to the saddle point.

Knowledge of the above properties allows one to calcu-
late the calculation of the attempt frequency, which can be
written as

f0 =

+

2�
�0, �7�

where 
+ denotes for the dynamical prefactor and �0 is the
ratio of the well and saddle angular frequencies.

A. Calculation of �+

For the calculation of 
+, one needs to know the mag-
netic configuration at the saddle point. The prefactor 
+ is
obtained by solving the noiseless linearized equation of mo-
tion for a configuration close to the saddle point. For a sys-
tem with N spins, the noiseless equation of motion is given
by the Landau–Lifshitz–Gilbert �LLG� equation as

�Mi

�t
= − �M � Heff,i + � �

M0
�Mi �

�Mi

�t
, �8�

where �=2.210�105 �s A /m�−1 is the gyromagnetic ratio,
Mi denotes the magnetization vector for the spin i in Carte-
sian coordinates, and Vi describes the corresponding volume
of the spin i. In order to transform the system to a coordinate
system that describes the K=2N degrees of freedom, we re-
write the LLG equation in spherical coordinates with con-
stant radius. Furthermore, we substitute Heff,i�
−1 /�0Vi��E /�Mi�. We get for the LLG equations

fk��1, . . . ,�2N� =�
�
i

�t

��i

�t
�

=
− �

JsVi�1 + �2�
1

sin 
i�� sin 
i
�E

�
i
+

�E

��i

−
�E

�
i
+

�

sin 


�E

��i

� ,

�9�

where

�2i−1 = 
i

�2i = �i
and

f2i−1��1, . . . ,�2N� =
�
i

�t

f2i��1, . . . ,�2N� =
��i

�t

�10�

and

E = E�
1,�1, . . . ,
N,�N� = E��1, . . . ,�2N� . �11�

Since we need to know only the magnetization dynamics
close to the saddle point, we can linearize the LLG Eq. �9�
around the saddlepoint, �̄k. We get

�
��1

�t

]

��2N−2

�t
� � � f1��̄1, . . . ,�̄2N−2�

]

f2N−2��̄1, . . . ,�̄2N−2�
�

+ ��
� f1

��1
¯

� f1

��2N−2

] � ]

� f2N−2

��1
¯

� f2N−2

��2N−2

��
SP

�� �1 − �̄1

]

�2N−2 − �̄2N−2
� , �12�

where fk= fk��1 , . . . ,�2N−2� and ��k− �̄k=�k�. At the saddle
point of the energy, fk��̄1 , . . . , �̄2N−2� vanishes. Hence, we
rewrite the equation above and get
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�
��1

�t

]

��2N−2

�t
� � Hdyn� �1

]

�2N−2
� , �13�

where

Hdyn = ��
� f1

��1
¯

� f1

��2N−2

] � ]

� f2N−2

��1
¯

� f2N−2

��2N−2

��
SP

. �14�

The solution of the dynamics close to the saddle point leads
to the ansatz

�� = ��0e
t, �15�

which describes the exponential change in the magnetic con-
figuration close to the saddle point. By inserting the ansatz
�15� into �13�, we get


��0 = Hdyn��
0. �16�

Due to the construction of the matrix Hdyn the eigenvalue
problem according to Eq. �16� has only one positive eigen-
value. This positive eigenvalue is 
+ of Eq. �7�. Hence, the
problem of calculating 
+, which is required to evaluate Eq.
�7� reduces to the determination of the positive eigenvalue of
the matrix Hdyn.

B. Calculation of Ω0

�0 is obtained by evaluating the curvature of the free
energy E at the saddle point and at the minimum. The cur-
vature is obtained by calculating the second derivative of the
energy.

Hstat =�
�h1

��1
¯

�h1

��2N−2

] � ]

�h2N−2

��1
¯

�h2N−2

��2N−2

�
=�

�2E

��1 � �1
¯

�2E

��2N−2 � �1

] � ]

�2E

��1 � �2N−2
¯

�2E

��2N−2 � �2N−2

� , �17�

where hk��1 , . . . ,�2N−2�= ��E /��k�. The ratio �0 in Eq. �7� is
obtained by calculating the determinant of the matrix Hstat as

�0 =� det�Hstat��min

− det�Hstat��sp
�18�

From Eqs. �16� and �18�, the attempt frequency can be cal-
culated using Eq. �7�. We emphasize that these formulas are
valid only in the IHD. In order to generalize them to any

value of the damping constant, the formalism resulting in Eq.
�3� can be applied.

C. Example: single-domain particle with external field
perpendicular to easy axis

In this section, we will apply the previous results in or-
der to calculate the attempt frequency of a single-domain
particle, where the external field is applied perpendicularly to
the uniaxial easy axis. In Ref. 21, a similar derivation is
performed under the assumption of a hard axis anisotropy
perpendicular to the easy axis. The total energy of a magnetic
particle can be described by the theory of micromagnetics as

E =	 �A��u�2 − KE�êeasy · u�2 − J · Hext − J · Hdemag�dV ,

�19�

where JS�T� is the magnetization polarization, Ke�J /m3� is
the crystalline anisotropy constant, and A�J /m� is the ex-
change constant. For a magnetic particle whose dimensions
are smaller than the domain wall width, we assume that the
magnetization remains homogeneous within the particle.
Hence, we will neglect the first term in Eq. �19�. If we as-
sume a spherical particle, we can also neglect the last term in
Eq. �19�. In the following, we assume that êeasy points in the
x-direction and the external field Hext points in the
y-direction. Introducing polar coordinates �ux=sin � cos �,
uy =sin � sin �, and uz=sin ��, we get,

E = − VKE�sin2 � cos2 � + 2h� sin � sin �� , �20�

with

h� =
HyJs

2KE
. �21�

The two minima of the energy are situated at 
min,1=� /2,
�min,1=arcsin�h� and 
min,2=� /2, �min,1=�−arcsin�h�. The
saddle point configuration is 
sp=�sp=� /2. The contour plot
of the energy for two different values of the external field h
is shown in Fig. 1.

Substituting Eq. �20� into Eq. �17�, we get at the mini-
mum

Hstat,min = �2h2VKe + 2�1 − h2�VKe 0

0 2�1 − h2�VKe

 ,

�22�

and at the maximum

Hstat,sp = �2hVKe 0

0 �h − 1�2VKe

 �23�

Using Eq. �22� and Eq. �23� for the evaluation of Eq. �18�,
we get for the statical prefactor �0=�1+1 /h.

Substituting Eq. �20� into Eq. �9� and Eq. �23�, we can
calculate the dynamical prefactor, which leads together with
the static prefactor to the attempt frequency in the IHD:

033915-4 Schratzberger et al. J. Appl. Phys. 108, 033915 �2010�
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f0 =
1

2�

+�0 =

1

2�
� �1Ke

Js�1 + �2�
���1 − 2h�

+ ��2 − 4h�h − 1��
�1 +
1

h
, �24�

which agrees with the results obtained by Coffey et al.,14

which was derived as a special case of the Langer theory.

IV. COMPARING TST WITH LANGEVIN-DYNAMICS
SIMULATIONS

As mentioned in Sec. II, the formulas for the attempt
frequency for the broken symmetry and the axial symmetric
case do not converge to each other when the external field
h→0 without additional adjustment.20 In order to judge the
applicability of the formula for the broken symmetry �Eq.
�24�� and the formula for the axial symmetric case �Eq. �2��,
we perform micromagnetic simulation using Langevin-
dynamics, where we adjust the broken symmetry by applying
perpendicularly applied fields h=Hext /Hani with different am-
plitudes. In real magnetic structures, it seems reasonable that
due to imperfections, in most cases the symmetry is broken
to a certain degree. A detailed discussion about the require-
ments for the application of the formulas for broken symme-
try, in order to explain experimental results, can be found in
Ref. 19.

Recently, various groups have claimed good agreement
between Langevin-dynamics simulations and analytical ex-
pressions for the attempt frequency for various damping
limits.22–24 Usov and Grebenshchikov24 compared the relax-
ation time of a single-domain particle with a nonaxially sym-
metric double-well potential with Langevin-dynamics simu-
lations and found good agreement of the magnetization
relaxation process. Vouille et al.22 compared Langevin-
dynamics simulations with the formulas of Ref. 15 and found
favorable agreement with Coffey’s formulae. Suh et al.23

have shown that there is an excellent agreement between the
attempt frequency obtained from Langevin-dynamics simu-
lations and the theoretical formulas of the attempt frequency
�Eqs. �2� and �3�� for nanomagnets with thin-film geometry.
In Refs. 22–24, the Langevin-dynamics simulations were
performed in the macrospin approximation, where the nano-
magnet was represented by one magnetization vector only. In
the following Langevin-dynamics simulations, the magnet is
subdivided into several finite elements in order to resolve
magnetization inhomogeneities. The mesh size dependence
is minimized by using a scaling approach.25

To study the average lifetime of a single particle, a series
of simulations are performed, where the particle’s magneti-
zation along the easy axis is measured as a function of time.
Thus, the mean life time � of Eq. �1� becomes directly ac-
cessible. This type of measurement is called telegraph noise
measurement because of the expected stochastic fluctuation
between the two states of lowest energy �see Fig. 2�. As �
increases exponentially with decreasing temperature, it is
very unlikely that an escape process will be observed at low
temperatures. However, applying a constant field perpen-
dicularly to the easy axis reduces the height of the energy
barrier. When the energy barrier is sufficiently small, enough

switching events will occur in order to obtain � with a rea-
sonable accuracy. In order to extract �0 from �, we perform
various simulations. The magnetic properties are compiled in
the caption of Fig. 2. In order to be able to calculate the
average lifetime of a particle, it is essential to define the
switching event properly. In the following simulations, we
defined a particle to be switched when both of the following
criteria apply: �i� the z-component of the magnetization
�component parallel to easy axis� has to overcome a thresh-
old of mz /ms= �0.87 and �ii� the magnetization has to per-
form at least one full precessional cycle around the minimum
of the switched state.26 In order to estimate the attempt fre-
quency if � is measured, Eq. �1� is used. In order to be able
to obtain accurate fits, we use only �0=1 / f0 as a fit param-
eter. The energy barrier E0 is obtained from the simulation
using the nudged elastic band method.3

In the first simulation, we studied the influence of the
discretization size on the attempt frequency. Figure 3 shows

FIG. 2. �Color online� The time evolution of the magnetization at finite
temperature is shown. The input parameters are as follows: h=0.2, cube
length a=1.0 nm, T=18 K, JS=0.5 T, KE=3�106 J /m3, and �=0.05.
The number of finite elements to discretize the cube is 13.

FIG. 3. �Color online� Results of a cube with for different finite element
mesh sizes; the other parameters are the same as in Fig. 2. �a� mesh size
=1.0 nm and �b� mesh size=0.5 nm.

033915-5 Schratzberger et al. J. Appl. Phys. 108, 033915 �2010�
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a weak dependence of f0 on the mesh size. In all of the
following simulations, a mesh size of 1 nm was assumed,
which leads to 13 finite elements.

Figure 4 shows the attempt frequency as a function of
temperature for different values of the applied perpendicular
field. According to Eq. �24�, the attempt frequency does not
depend on temperature in the IHD. However, the Langevin
simulations clearly show an increase in f0 as function of 1/T.
The results of the Langevin simulations are clearly supported
by extending the analytical simulation to the general equa-
tion, which is valid for all values of the damping constant. In
the comparison, we evaluate f0 with Eq. �3� and use the
approximation of Eq. �6�.

The dependence of the attempt frequency as a function
of the external field is shown in detail in Fig. 5. Again, the
Langevin simulations are compared with analytical results.
The analytical formula for the IHD for the broken symme-
tries Eq. �24� clearly overestimates the attempt frequency. In
the limit when the external field approaches zero, the attempt
frequency obtained by Langevin dynamics simulations con-
verge to a value, which is also smaller than the prediction of
Eq. �2�. Again, the general equation Eq. �3� for the attempt
frequency, which is valid for all values of the damping con-
stant, describes the simulation results very well. Although
the analytical formula Eq. �24� diverges for h→0, which one
must remember is an artifact10,20 of the steepest descents

approximation used to evaluate the various integrals, the
general equation for the attempt frequency �Eq. �3�� seems to
converge to a finite value. The comparison between Eq. �3�
and the results of f0 obtained by Langevin dynamics simula-
tions are summarized by the contour plot of Fig. 6. Although
sharp contours require a large amount of simulation points,
the overall agreement can be seen well.

V. CONCLUSION AND OUTLOOK

Langevin-dynamics simulations of the single-domain
particle confirm the validity of Eq. �3�. The broken symmetry
cases seem to be relevant for all realistic samples studied in
this paper. As a consequence, the formalism summarized in
Eqs. �7�–�18� seems to be a useful framework to estimate the
thermal stability for large magnetic structures, including ar-
bitrary shaped geometries and inhomogeneous magnetization
configurations. This will allow us to estimate the long-term
thermal stability of magnetic structures that cannot be ac-
cessed by Langevin-dynamics simulations. The attempt fre-
quency in the IHD limit can be calculated numerically if: �i�
the second derivative of the energy at the saddle point and at
the minimum is known and �ii� the magnetization dynamics
around the saddle point can be expressed as shown in Eq.
�12�. All of these properties are usually accessible in micro-
magnetic simulations, which will allow for the calculation of
the attempt frequency in the IHD limit. Starting from this
approximation, correction to the general formula, which is
valid for all values of the damping constant, can be tackled
numerically. A promising route will be to investigate the en-
ergy loss per cycle in both wells next to the saddle point.

ACKNOWLEDGMENTS

The financial support of the FWF Projects No. P20306,
No. F4112-N13, and the support of the European Project
TERAMAGSTOR �Grant No. FP7-ITC-2007-2-224001� are
acknowledged.

1R. W. Chantrell, N. Walmsley, J. Gore, and M. Maylin, Phys. Rev. B 63,
024410 �2000�.

2M. P. Sharrock, J. Appl. Phys. 76, 6413 �1994�.
3R. Dittrich, T. Schrefl, D. Suess, W. Scholz, H. Forster, and J. Fidler, J.
Magn. Magn. Mater. 250, 12 �2002�.

4E. Paz, F. Garcia-Sanchez, and O. Chubykalo-Fesenko, Physica B 403,
330 �2008�.

FIG. 4. �Color online� Attempt frequency as a function of the temperature.
The magnetic parameters are the same as in Fig. 2. The dotted lines are
analytical results according to Eq. �3�, using the approximation of Eq. �6�.

FIG. 5. �Color online� Attempt frequency as a function of the perpendicular
external field strength. The magnetic parameters are the same as in Fig. 2.
�IHD� is the analytical results in the intermediate to high damping limit
according to Eq. �24� �Ref. 9�. is the analytical result for the symmetric case
according to Eq. �2�. The two dotted lines at the bottom �blue and red� are
analytical results, valid for all damping values according to Eq. �3� using the
approximation of Eq. �6�

FIG. 6. �Color online� Contour plot of the attempt frequency as a function of
temperature and external field h. �left� f0 according to Eq. �24�. �right� f0

obtained by Langevin-dynamics simulations. The magnetic parameters are
the same as in Fig. 2.

033915-6 Schratzberger et al. J. Appl. Phys. 108, 033915 �2010�

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

131.130.30.233 On: Wed, 30 Jul 2014 12:25:06

http://dx.doi.org/10.1103/PhysRevB.63.024410
http://dx.doi.org/10.1063/1.358282
http://dx.doi.org/10.1016/S0304-8853(02)00388-8
http://dx.doi.org/10.1016/S0304-8853(02)00388-8
http://dx.doi.org/10.1016/j.physb.2007.08.042


5H. A. Kramers, Physica �Utrecht� 7, 284 �1940�.
6J. S. Langer, Ann. Phys. �N.Y.� 41, 108 �1967�.
7J. S. Langer and L. A. Turski, Phys. Rev. A 8, 3230 �1973�.
8V. I. Mel’nikov and S. V. Meshkov, J. Chem. Phys. 85, 1018 �1986�.
9W. F. Brown, Phys. Rev. 130, 1677 �1963�.

10W. T. Coffey, D. A. Garanin, and D. McCarthy, Adv. Chem. Phys. 117,
483 �2001�.

11D. A. Smith and F. A. de Rozario, J. Magn. Magn. Mater. 3, 219 �1976�.
12W. F. Brown, IEEE Trans. Magn. 15, 1196 �1979�.
13I. Klik and L. Gunther, J. Stat. Phys. 60, 473 �1990�.
14W. T. Coffey, D. S. F. Crothers, J. L. Dormann, L. J. Geoghegan, and E. C.

Kennedy, Phys. Rev. B 58, 3249 �1998�.
15W. T. Coffey, D. S. F. Crothers, J. L. Dormann, Y. P. Kalmykov, E. C.

Kennedy, and W. Wernsdorfer, Phys. Rev. Lett. 80, 5655 �1998�.
16L. J. Geoghegan, W. T. Coffey, and B. Mulligan, Adv. Chem. Phys. 100,

475 �1997�.

17P. M. Déjardin, D. S. F. Crothers, W. T. Coffey, and D. J. McCarthy, Phys.
Rev. E 63, 021102 �2001�.

18Y. P. Kalmykov, J. Appl. Phys. 96, 1138 �2004�.
19H. Kachkachi, W. T. Coffey, D. S. F. Crothers, A. Ezzir, E. C. Kennedy,

M. Noguès, and E. Tronc, J. Phys.: Condens. Matter 3077, 12 �2000�.
20D. A. Garanin, E. C. Kennedy, D. S. F. Crothers, and W. T. Coffey, Phys.

Rev. E 60, 6499 �1999�.
21H. B. Braun, J. Appl. Phys. 76, 15 �1994�.
22C. Vouille, A. Thiaville, and J. Miltat, J. Magn. Magn. Mater. 272–276,

E1237 �2004�.
23H.-J. Suh, C. Heo, C.-Y. You, W. Kim, T.-D. Lee, and K.-J. Lee, Phys.

Rev. B 78, 064430 �2008�.
24N. A. Usov and Y. B. Grebenshchikov, J. Appl. Phys. 105, 043904 �2009�.
25M. Kirschner, T. Schrefl, F. Dorfbauer, G. Hrkac, D. Suess, and J. Fidler,

J. Appl. Phys. 97, 10E301 �2005�.
26S. Wang and P. B. Visscher, J. Appl. Phys. 99, 08G106 �2006�.

033915-7 Schratzberger et al. J. Appl. Phys. 108, 033915 �2010�

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

131.130.30.233 On: Wed, 30 Jul 2014 12:25:06

http://dx.doi.org/10.1016/S0031-8914(40)90098-2
http://dx.doi.org/10.1016/0003-4916(67)90200-X
http://dx.doi.org/10.1103/PhysRevA.8.3230
http://dx.doi.org/10.1063/1.451844
http://dx.doi.org/10.1103/PhysRev.130.1677
http://dx.doi.org/10.1002/9780470141779.ch5
http://dx.doi.org/10.1016/0304-8853(76)90035-4
http://dx.doi.org/10.1109/TMAG.1979.1060329
http://dx.doi.org/10.1007/BF01314931
http://dx.doi.org/10.1103/PhysRevB.58.3249
http://dx.doi.org/10.1103/PhysRevLett.80.5655
http://dx.doi.org/10.1002/9780470141595.ch6
http://dx.doi.org/10.1103/PhysRevE.63.021102
http://dx.doi.org/10.1103/PhysRevE.63.021102
http://dx.doi.org/10.1063/1.1760839
http://dx.doi.org/10.1103/PhysRevE.60.6499
http://dx.doi.org/10.1103/PhysRevE.60.6499
http://dx.doi.org/10.1016/j.jmmm.2003.12.1353
http://dx.doi.org/10.1103/PhysRevB.78.064430
http://dx.doi.org/10.1103/PhysRevB.78.064430
http://dx.doi.org/10.1063/1.3078174
http://dx.doi.org/10.1063/1.1846411
http://dx.doi.org/10.1063/1.2176868

