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Lattice constants and cohesive energies of alkali, alkaline-earth, and transition metals:
Random phase approximation and density functional theory results
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We present lattice constants and cohesive energies of alkali, alkaline earth, and transition metals using the
correlation energy evaluated within the adiabatic-connection fluctuation-dissipation (ACFD) framework in the
random phase approximation (RPA) and compare our findings to results obtained with the meta-GGA functional
revTPSS and the gradient corrected PBE (Perdew-Burke-Ernzerhof) functional and the PBEsol functional (PBE
reparametrized for solids), as well as a van der Waals (vdW) corrected functional optB88-vdW. Generally, the
RPA reduces the mean absolute error in the lattice constants by about a factor 2 compared to the other functionals.
Atomization energies are also on par with the PBE functional, and about a factor 2 better than with the other
functionals. The study confirms that the RPA describes all bonding situations equally well including van der
Waals, covalent, and metallic bonding.
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I. INTRODUCTION

Benchmarking theoretical methods against experimental
data is common practice widely adopted within the density
functional theory1,2 (DFT) community, in particular, when
introducing new functionals. However, remarkably few sys-
tematic results are available for the transition-metal series.
Although these elements are partly covered in Refs. 3 and 4,
a concise study covering all elements using modern density
functionals is so far not available. The tests presented here
close this gap and include transition metals of the 3d, 4d,
and 5d series, as well as alkali and alkaline earth and coinage
metals. We show results for lattice constants and cohesive
energies obtained with several different approximations to
the exchange correlation energy: the widely applied gener-
alized gradient approximation (GGA) of Perdew, Burke, and
Ernzerhof5 (PBE) and its reparametrized version for solids
PBEsol,6 the recently published meta-GGA revTPSS (Tao-
Perdew-Staroverov-Scuseria),7,8 the optB88-vdW (Ref. 9)
functional which uses the nonlocal correlation functional
of Dion et al.10 with the exchange functional fitted to
reproduce weak interactions in the gas phase, and finally
the random phase approximation in the adiabatic-connection
fluctuation-dissipation (ACFD) framework.11–13 The local
density approximation has not been included in this study
since it underestimates the lattice constants of 3d metals
significantly, strongly overestimates the atomization energies,
and does not yield accurate results for magnetic transition
metals.

Furthermore, all experimental values are corrected for the
effect of zero-point vibrational energies, which were calculated
at the DFT level applying a force constant approach.14 Where
necessary, the lattice constants were also extrapolated from
available finite-temperature data to 0 K. Independent of the
actual results for the here investigated functionals, these data
will serve as a useful reference for future work.

One reason why the 3d, 4d, and 5d series have been rarely
considered as a benchmark might be that most of the semilocal
functionals are not particularly good in describing the different
bonding situations encountered in these series. Although

the alkali and alkaline earth metals are usually considered
to be prototypical metals that can be well described even
using second-order perturbation theory and a free-electron-gas
reference,15 a sizable bonding contribution also stems from
van der Waals bonding, in particular, for the soft alkali metals.
This contribution originates from the semicore p and to a
lesser extent semicore s states, and can modify the lattice
constants by up to 2%–3%.16 As the d filling increases along
the series, the bonding changes from s- and p-like bonding in
alkali and alkaline earth metals to bonding dominated by the
d electrons. It is commonly assumed that d bonding includes
a sizable fraction of covalent bonding with bonding linear
combinations of d states below the Fermi level and antibonding
linear combinations above the Fermi level.17

Other challenging materials are the metallic 3d elements
which exhibit a fairly small band width and are expected
to show strong fluctuations in the ground state. Specifically,
ferromagnetic Fe, Co, and Ni are known to be difficult for
density functionals, as exemplified by the many attempts to
include correlations beyond the mean field.18–21 In summary,
transition metals include contributions from different kinds of
bonding: van der Waals-type bonding between closed semicore
s and p shells, van der Waals bonding from closed semicore d

states towards the end of the series (Cu, Ag, and in particular
Au), free-electron-like metallic bonding for alkali, alkaline
earth metals and the coinage metals, as well as covalent d

bonding.
As we will also see in this work, the general shortcoming

of semilocal functionals in describing bonding between closed
shells results in large errors towards the beginning and the
end of the series: the “classical” PBE functional is indeed
unsatisfactory. With the advent of new functionals that include
the kinetic energy density, the situation has slightly improved,
as we will confirm here for the meta-GGA functional revTPSS.
However, our main focus is on the random phase approxima-
tion, which should capture all important bonding contributions
accurately.22–24 As a side line, we will also show results for
ferromagnetic Fe, Co, and Ni and thereby assess the accuracy
of the random phase approximation for magnetic elements.
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TABLE I. PAW potentials used in this work. The second column
indicates the states treated as valence states. The local potential was
generated by replacing the all-electron potential by a soft potential
within the cutoff radius rloc (a.u.), which is provided in the “rloc”
column. The number of partial waves and projectors for different
angular momentum numbers l is specified in columns 4–7. The
energy cutoff Ecut specifies the VASP “default” cutoff in eV for DFT
calculations usually guaranteeing convergence of absolute energies
to few meV per electron. This cutoff is determined by the largest
wave vector of the spherical Bessel functions that are used when the
all electron partial wave is replaced by a soft pseudopartial wave.

Valence rloc s p d f Ecut (eV)

K 3s 3p 4s 1.2 3 2 1 249
Ca 3s 3p 4s 1.2 3 2 1 281
Sc 3s 3p 4s 3d 1.2 3 2 1 1 285
Ti 3s 3p 4s 3d 1.2 3 2 1 1 286
V 3s 3p 4s 3d 1.1 3 2 1 1 323
Fe 3s 3p 4s 3d 1.0 4 3 1 1 364
Co 3s 3p 4s 3d 1.1 4 3 1 1 364
Ni 3s 3p 4s 3d 1.1 4 3 1 1 413
Cu 3d 4s 1.5 2 2 2 1 417

Rb 4s 4p 5s 1.8 3 2 2 1 221
Sr 4s 4p 5s 1.8 3 2 2 1 225
Y 4s 4p 5s 4d 1.8 3 2 2 1 229
Zr 4s 4p 5s 4d 1.6 3 2 2 1 282
Nb 4s 4p 5s 4d 1.6 3 2 2 1 286
Mo 4s 4p 5s 4d 1.6 3 2 2 1 312
Tc 4s 4p 5s 4d 1.6 3 2 2 1 318
Ru 4s 4p 5s 4d 1.6 3 2 2 1 321
Rh 4s 4p 5s 4d 1.6 3 2 2 1 320
Pd 4d 5s 1.6 2 2 2 2 251
Ag 4d 5s 1.4 2 2 2 2 250

Cs 5s 5p 6s 1.8 2 2 2 2 198
Ba 5s 5p 6s 1.8 2 2 2 2 237
Hf 5s 5p 6s 5d 1.6 3 2 2 1 283
Ta 5s 5p 6s 5d 1.6 3 2 2 1 286
W 5s 5p 6s 5d 1.6 3 2 2 1 317
Re 5s 5p 6s 5d 1.6 3 2 2 1 317
Os 5s 5p 6s 5d 1.6 3 2 2 1 320
Ir 5s 5p 6s 5d 1.6 3 2 2 1 320
Pt 5s 5p 6s 5d 1.6 3 2 2 1 324
Au 5d 6s 1.6 2 2 2 1 300

II. TECHNICAL DETAILS

All calculations were performed using the Vienna ab
initio simulation package (VASP),26,27 applying the projector-
augmented wave (PAW) potentials28,29 listed in Table I.
The potentials correspond to the GW potentials distributed
with the VASP package. These potentials are slightly more
accurate than the standard VASP potentials, although the DFT
lattice constants agree within 0.15% with the lattice constants
obtained using other PAW potentials with a similar set of
valence orbitals.30 Furthermore, we note that freezing the
semicore states by placing them into the core increases the
DFT lattice constants by up to 0.5% for the early transition
metals (Sc, Ti, V, Y, Nb, Mo).

Details for the construction of the pseudopartial waves are
discussed in Ref. 31. This specific construction results in fairly

soft potentials requiring only modest plane wave cutoffs, as
listed in Table I. Since the density functional theory calcula-
tions are comparatively cheap, the energy cutoff has been set
to 800 eV for the revTPSS and optB88-vdW calculations and
to 1000 eV for the PBE and PBEsol calculations. For PBE and
PBEsol, results at 1000 and 800 eV are identical, guaranteeing
that all reported results are fully converged with respect to the
plane wave basis set for semilocal functionals. At 800 eV, the
more costly revTPSS and optB88-vdW calculations are also
essentially exact, as confirmed by repeating some calculations
at a higher plane wave cutoff. For the significantly more
expensive RPA calculations, we have set the energy cutoff
to 1.5 times the “default” energy cutoff listed in Table I. All
RPA calculations were performed using the PBE orbitals and
PBE one-electron energies (RPA@PBE), and no attempts to
obtain self-consistent results were made.

The Brillouin zone (BZ) was sampled by 15 × 15 × 15 k

points for the bulk calculations with the density functionals.
For the RPA, the BZ sampling was increased from 6 × 6 × 6
over 8 × 8 × 8 to 10 × 10 × 10 k points where k-point
convergence was observed, except for Fe, where the k-point
set had to be increased to 16 × 16 × 16 k points. For the hcp
structures we used the ideal c/a ratio and a 10 × 10 × 10
k-point grid. Overall, we found that this setup ensures an
accuracy of about 0.25% in the lattice constants (better than
1% in the volume). The equilibrium volumes were determined
using a seven-point fit to a Birch-Murnaghan equation of state,
where the volume in the calculations was varied by ±15%.
The bulk modulus is not reported here. Because of noise
in the RPA data, the changes in the bulk moduli from one
to the next k-point set sometimes exceed 10% (Cu, Ag, Au),
although changes of 5% are more common. Furthermore, the
bulk moduli show nothing unexpected and follow the usual
trend: if the volume is overestimated, the bulk modulus tends
to be underestimated and vice versa.

For the calculations of the atoms, a 14 × 15 × 16 Å3 cell
was used for the density functional theory calculations. The
ground states of the atoms were calculated by seeking the
lowest-energy configuration allowing for spin polarization and
breaking of the spherical symmetry, but disregarding spin-orbit
coupling. All symmetry-broken ground-state configurations
were characterized by orbital occupancies of 1 (occupied)
or 0 (unoccupied) only. In some cases, we started the DFT
calculations from different starting points, to guarantee that
the lowest-energy configuration was correctly determined. In
most (but not all) cases, the DFT ground-state configuration
agrees with the experimental observations (see Sec. III B). For
the RPA, three calculations at three different volumes were
performed (7 × 8 × 9 Å3, 8 × 9 × 10 Å3, and 9 × 10 × 11 Å3)
and the values were extrapolated to the isolated atom limit. The
exact exchange energy (evaluated also using PBE orbitals) was
evaluated for supercells of 10 × 11 × 12 Å3, 11 × 12 × 13 Å3,
and 12 × 13 × 14 Å3 and also extrapolated to the isolated atom
limit (for alkali and alkali earth metals even larger unit cells
were used). Depending on the convergence corrections, the
exact exchange energy can show spurious finite-size errors of
the order 1/volume before this residual correction, whereas
the correlation energy shows residual finite-size errors of the
order 1/volume squared before correction.22 Except for Ti,
the present RPA calculations for atoms are usually based
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on the PBE ground-state orbitals, disregarding that the true
RPA atomic ground state could correspond to a different
atomic configuration. For titanium, the RPA calculations
were initiated from a DFT-PBE calculation with the atomic
configuration 3d24s2 (total spin moment 2μB) compatible to
experiment. This lowered the atomic RPA energy significantly.

The zero-point vibration corrections to the lattice con-
stants and atomization energies were calculated from density
functional theory using the same procedure as outlined in
Ref. 32. The vibrational frequencies were calculated using
a 2 × 2 × 2 supercell of the conventional (cubic) unit cell.
The BZ sampling was done with 8 × 8 × 8 k points. A similar
energy cutoff as in the RPA calculations was chosen, yielding
essentially converged results in the phonon frequencies (errors
are below 1% upon further increase of the energy cutoff).
For elements with a hexagonal close-packed structure (hcp),
the vibrational contributions were estimated using a more
convenient face centered cubic (fcc) structure. In tests, we
found that applying the fcc instead of the hcp structure yields
identical results up to the third digit in the energy (eV).

III. RESULTS AND DISCUSSION

A. Equilibrium volumes

Figure 1 shows the relative error of the equilibrium
volumes with respect to the experimental values extrapolated
where necessary to 0 K. All metals were considered in their
nonmagnetic states, except for Fe, Co, and Ni, which were
considered in the ferromagnetic bcc (Fe) and ferromagnetic
fcc (Co and Ni) structures. We have subtracted the effect
of the zero-point vibrational energies from the experimental
data. In the tables and figures, the elements are ordered by
ascending atomic number. Cr and Mn have been excluded
from this study. Mn exhibits a complicated antiferrimagnetic
structure and would require significant efforts in the RPA.36

Cr is antiferromagnetic, with a very strong change of the local
magnetic moment around the equilibrium volume (at least
in density functional theory). In the RPA, this would require
us to scan the energy landscape as a function of the volume
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FIG. 1. (Color online) Relative error in volume compared to
experimental data from which the effects of the zero-point energy
as well as the thermal effects (where necessary) were subtracted.

and magnetic moment, an effort beyond the scope of this
study. For the other ferromagnetic metals (bcc Fe, fcc Co,
and fcc Ni), we have simply used the PBE density functional
theory orbitals and one-electron eigenvalues to determine the
exact exchange energy, as well as the correlation energy in
the random phase approximation. For the magnetic materials,
the magnetic moment is therefore fixed to the values deter-
mined in the ground-state DFT-PBE calculations.

We will start our discussion with the well-established PBE
functional. The PBE functional (blue circles) works fairly well
across the series, with the errors being noticeably larger for the
alkali metals and the coinage metals (Cu, Ag, and Au). The
errors in the volumes are particularly sizable for Rb (4.9%), Ag
(6.3%), Cs (5.9%), and Au (6.9%). It is also well established
that PBE yields fairly accurate 3d lattice constants, but the
lattice constants for the 4d and 5d elements are systematically
overestimated. What is particularly unsatisfactory is the
increase of the lattice constants along the series with increasing
d-band filling. We found a similar increase also for other
pure density functionals, for instance, PBEsol (see Fig. 1)
or AM05. Furthermore, a similar behavior is quite generally
found as the atomic number increases.3 The origin for this
is not fully understood. Most likely, the conventional density
functionals fail to describe important electronic correlations
between neighboring sites. Along this line of arguments, the
large error for K, Rb, and Cs, as well as the coinage metals Cu,
Ag, and Au, is then related to the neglect of correlation effects
between closed semicore s and p states for alkali metals, and
between the almost filled d shells for Cu, Pd, Ag, Pt, and Au.

The RPA (red diamonds) yields much improved results.
Most notable is the decrease of the lattice constants for
the alkali metals as well as coinage metals. We relate this to the
fact that the random phase approximation can account for the
correlation between closed shells (van der Waals bonding),22

allowing for an accurate description of the correlation between
the semicore s and p states for K, Rb, and Cs and the filled
d shells for Cu, Ag, and Au. A slight tendency towards too
large lattice constants with increasing d-band filling prevails
in the RPA, but this might be also related to some systematic
deficiency of the PAW data sets for correlated calculations.
Specifically, we note that the RPA results are sensitive to
the description of the unoccupied states, and although we
include partial waves for f states for most elements, we have
not made attempts to include g partial waves as well. Visual
inspection of the scattering properties, however, indicates that
the g scattering properties are very accurately described by the
local potential. The more likely explanation for the increase
in the lattice constant is some residual self-interaction error
within the d shell, which will necessarily increase with d-band
filling.

The results for the 3d metals are also satisfactory for the
RPA. For Co and Ni, we find a tendency towards too large
volumes, but with volume errors of 3%–4% the errors remain
acceptably small. For Fe, the RPA energy-volume curve is very
peculiar, with a double-well structure shown in Fig. 2. We note
that this behavior becomes more apparent when 20 × 20 ×
20 k points are used, and the corresponding calculations were
performed using otherwise less stringent convergence criteria
than for the other calculations. The first minimum is deeper,
and corresponds very well with the experimentally observed
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FIG. 2. (Color online) Energy-volume curve for nonmagnetic fcc,
nonmagnetic hcp, and ferromagnetic bcc iron as obtained for RPA.

lattice constant, whereas the second minimum occurs at larger
volumes. At this volume, the DFT ground-state calculations
that we use to determine the orbitals and occupancies show
a spin of 2.5μB , close to a Hund’s rule ferromagnet which
we believe to be related to the existence of the second
minimum. In passing, we note that no such minimum was
observed for the other ferromagnetic transition metals Co
and Ni. We also determined the energy difference between
magnetic bcc Fe and nonmagnetic hcp and fcc Fe using
the RPA and found values of �Ebcc-hcp = −130 meV and
�Ebcc-fcc = −180 meV. This confirms that the magnetic
phase is more stable than competing nonmagnetic phases.
Furthermore, the energy differences are slightly larger than
for the PBE functional (�Ebcc-hcp = −83 meV, �Ebcc-fcc =
−153 meV). We predict a transition pressure of 32 GPa
for a pressure-induced transition from ferromagnetic bcc to
nonmagnetic hcp, but note that the lowest-energy hcp structure
might possess an antiferromagnetic or antiferrimagnetic spin
order possibly lowering its energy.33 Hence, we do not consider
the overestimation of the transition pressure compared to
experiment to be an issue.

In summary, the RPA yields excellent results with a quite
clear tendency towards, on average, 1%–2% too large volumes,
as we already observed in our previous studies for s- and
p-bonded systems. Compared to PBE, the improvements are
also clearly visible in the statistical mean relative error (MRE)
and mean absolute relative error (MARE) summarized in
Table II. The MRE and MARE drop by almost a factor 2 from
PBE to RPA, and the small MARE is particularly noteworthy.

The revTPSS results are shown as green squares in the first
panel of Fig. 1. We will first concentrate on the 4d and 5d met-
als. Disregarding Rb and Cs, it is astounding how closely the
revTPSS curve follows the RPA. Furthermore, revTPSS yields
about 2% smaller volumes than RPA improving the agreement
with experiment and, most notably, revTPSS exhibits also no
significant slope with increasing d-band filling. Considering
the design principles of revTPSS, we can understand this
behavior. The revTPSS functional uses the kinetic energy
density to distinguish spatial regions where the electron density
stems from a single orbital only from those where the density
is made up by the sum of the density of many (one-electron)

orbitals. When the density is made up by many orbitals, the
functional behaves very similar to the PBEsol functional,
whereas in spatial regions where the density originates from
one orbital only, a functional form is used that largely removes
self-interaction errors. This allows the revTPSS functional to
recover the exchange and correlation energy of the hydrogen
atom almost exactly. As the d band becomes filled, revTPSS
hence gradually switches from a “one-electron” description to
a “many-electron” description, becoming gradually identical
to the PBEsol functional at roughly half filling (compare
Fig. 1). Below half filling, the self-interaction free form
increases the lattice constants compared to PBEsol, counteract-
ing the slope in the PBE and PBEsol functionals. This explains
the very respectable performance of revTPSS for 4d and 5d

metals. For the alkali metals, however, large errors prevail, and
these are certainly related to the neglect of correlation effects
from the filled semicore states that semilocal functionals can
not handle by construction.16

The 3d metals are another issue. Errors for Fe are unfor-
tunately fairly large, and the volume almost drops to PBEsol
values (see also Ref. 8). In this case, the functional is too
“PBEsol” like, as the d shell is almost entirely filled. What was
beneficial for the filled 4d and 5d shells has clearly a negative
impact on the magnetic 3d metals. This also significantly
increases the MARE over that for the RPA, resulting in, overall,
an only modest improvement over PBE.

Finally, we turn to the optB88-vdW functional9 which uses
the vdW-DF correlation functional of Dion et al.10 and a
modified B88 exchange functional.37 The results for some of
the materials have been published before,38 namely, the alkali
and alkaline earth metals as well as the late d metals (Cu, Rh,
Pd, and Ag). It was observed that this functional gives similar
results as PBE for the late d metals, while too small equilibrium
volumes were obtained for the alkali and alkaline earth metals.
This follows the trend already observed here for the other
GGA-based functionals (PBE and PBEsol). However, the
slope in the difference to experiment from left to right is even
larger than for PBE and PBEsol. We checked that the reason
for the increase in the slope is the vdW correlation functional:
replacing the vdW correlation by the PBE correlation recovers
the behavior for other semilocal functionals. We conclude
that the vdW functional most likely overestimates dispersion
contributions with particularly sizable errors for the soft alkali
metals (and to a lesser extent alkaline earth metals).

B. Atomization energies

The accurate prediction of atomization energies is a difficult
challenge to density functional theory methods, as well as
many-electron methods. For transition metals, the situation is
particularly severe since transition metals are “strongly” corre-
lated with many almost isoenergetic low-energy configurations
in the Hartree-Fock approximation. Since the true many-
electron wave function for the ground state is then a mixture
of many Slater determinants, often multiconfiguration methods
are needed to make accurate predictions for transition-metal
atoms and their compounds. Despite the multiconfigurational
many-electron wave function, density functionals very often
yield reasonably accurate answers for the atomization energy
of transition-metal solids.4
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TABLE II. Theoretical equilibrium volumes for PBE, revTPSS, and RPA. The columns marked with % report the relative error with respect
to experimental data corrected for zero-point vibrational effects. These are shown in the last column, while the uncorrected results are given in
parentheses. If not otherwise stated, corrected experimental values are from this work. All elements were considered in the nonmagnetic state,
except for Fe, Co, and Ni (ferromagnetic).

PBE % PBEsol % revTPSS % optB88-vdW % RPA % Experiment

K bcc 73.51 3.8 70.70 −0.1 75.05 6.0 68.67 −3.0 70.02 −1.1 70.79a (71.32)a

Ca fcc 42.15 −1.7 40.53 −5.5 41.97 −2.1 40.31 −6.0 42.74 −0.3 42.88a (43.09)a

Sc hcp 24.63 −0.4 23.58 −4.6 24.24 −1.9 23.95 −3.1 25.28 2.3 24.72 (25.00)b

Ti hcp 17.39 −0.7 16.71 −4.6 16.99 −3.0 17.06 −2.6 18.00 2.8 17.52 (17.66)b

V bcc 13.45 −3.2 12.93 −6.2 13.05 −5.0 13.28 −3.7 13.96 1.1 13.78 (13.88)b

Fe bcc 11.36 −2.2 10.83 −6.7 10.92 −6.0 11.23 −3.3 11.67 0.5 11.61a (11.71)a

Co fcc 10.86 −0.7 10.40 −4.9 10.50 −4.0 10.81 −1.1 11.33 3.6 10.94 (11.08)b

Ni fcc 10.78 −0.1 10.34 −4.2 10.39 −3.7 10.83 0.4 11.07 2.6 10.79 (10.94)b

Cu fcc 11.97 3.0 11.31 −2.7 11.19 −3.7 11.88 2.3 11.48 −1.2 11.62c (11.69)c

Rb bcc 90.99 4.9 86.22 −0.6 93.00 7.2 84.79 −2.2 85.11 −1.9 86.73a (87.10)a

Sr fcc 54.53 −1.0 51.71 −6.1 53.95 −2.1 51.79 −6.0 55.11 0.0 55.09a (55.31)a

Y hcp 32.84 0.0 31.29 −4.7 32.19 −2.0 31.90 −2.8 32.95 0.4 32.83 (33.18)b

Zr hcp 23.37 1.1 22.45 −2.9 22.85 −1.2 23.07 −0.2 23.25 0.5 23.12 (23.27)b

Nb bcc 18.14 1.5 17.56 −1.7 17.71 −0.9 18.08 1.2 18.14 1.5 17.87a (17.90)a

Mo bcc 15.79 1.9 15.35 −0.9 15.44 −0.4 15.81 2.0 15.70 1.3 15.49a (15.54)a

Tc hcp 14.45 2.0 14.02 −1.0 14.06 −0.7 14.48 2.2 14.43 1.8 14.17 (14.30)d

Ru hcp 13.77 2.5 13.33 −0.8 13.36 −0.6 13.81 2.7 13.67 1.7 13.44 (13.55)b

Rh fcc 14.06 3.0 13.51 −1.0 13.52 −1.0 14.09 3.2 13.83 1.3 13.65c (13.70)c

Pd fcc 15.21 4.5 14.43 −0.9 14.46 −0.7 15.18 4.3 14.77 1.5 14.56c (14.61)c

Ag fcc 17.81 6.3 16.61 −0.9 16.62 −0.8 17.57 4.8 17.01 1.5 16.76c (16.84)c

Cs bcc 116.65 5.9 108.16 −1.8 119.51 8.5 102.69 −6.8 110.96 0.8 110.12e (110.45)e

Ba bcc 63.17 1.0 58.01 −7.3 60.99 −2.5 58.95 −5.8 62.59 0.0 62.58a (62.76)a

Hf hcp 22.43 1.4 21.50 −2.8 21.62 −2.3 22.00 −0.6 22.22 0.5 22.12 (22.25)d

Ta bcc 18.25 1.7 17.61 −1.9 17.66 −1.6 18.09 0.8 18.09 0.7 17.95a (17.98)a

W bcc 16.11 2.1 15.68 −0.6 15.67 −0.7 16.10 2.0 15.79 0.1 15.78a (15.81)a

Re hcp 14.92 2.1 14.52 −0.7 14.51 −0.7 14.97 2.4 14.69 0.5 14.61 (14.71)b

Os hcp 14.29 2.8 13.91 0.1 13.88 −0.1 14.37 3.4 14.01 0.8 13.90 (13.99)b

Ir fcc 14.47 2.9 14.02 −0.3 13.98 −0.6 14.59 3.8 14.30 1.7 14.06a (14.15)a

Pt fcc 15.63 4.4 15.02 0.3 14.99 0.0 15.74 5.1 15.24 1.7 14.98a (15.01)a

Au fcc 17.92 6.9 16.95 1.1 16.95 1.1 17.94 7.1 17.28 3.1 16.76a (16.79)a

MRE 1.9 −2.5 −0.8 0.0 1.0
MARE 2.5 2.6 2.4 3.2 1.3

aReference 3.
bReference 35.
cReference 32.
dReference 34.
eReference 4.

Here, we define the atomization energy (or cohesive energy)
of a material M with N atoms in a unit cell as

EAtm(M) = 1

N

{∑
atoms

E(X) − E(M)

}
. (1)

E(M) is the total energy of the solid and E(X) denotes
the corresponding energy of the constituent atoms. With
this definition, positive errors correspond to an overbinding,
whereas negative errors correspond to underbinding. It is
clear from Fig. 3 that PBE performs quite reasonably for
the atomization energies. It is also quite remarkable that,
with few exceptions, the atomic electronic configurations
predicted by PBE agree with experiments (compare Table III).
These exceptions are Ti, V, and W. For Ti, the exact

exchange energy (EXX) and the RPA atomic energy are
considerably lower when the experimental configuration is
chosen as starting point for the RPA calculations, which can
be achieved by fixing the magnetic moment in the preceding
DFT calculations to 2μB (triplet). Therefore, RPA and EXX
predict an atomic electronic configuration in agreement with
experiment, whereas PBE fails to predict the correct atomic
ground state of Ti. For V, PBE, and RPA, as well as EXX,
all predict the wrong atomic electronic configuration, and
for W we where unable to stabilize the experimental 5d46s2

configuration, as our electronic-structure code always ended
up in the 5d56s1 configuration.

For PBE, errors are always close to zero and hardly ever
exceed 0.5 eV. The RPA inherits this good overall performance
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FIG. 3. (Color online) Error of the theoretic atomization energy in
eV compared to experiment. Positive value means that the atomization
energy is overestimated by a given functional.

from PBE, in particular for the mean absolute error (MAE).
The statistical errors compiled in Table III indicate that RPA
shows the usual underestimation of the binding energies also
observed for other elements in the periodic table.24 It has been
demonstrated that this error is significantly reduced by adding
the second-order screened exchange (SOSEX) contribution,25

but the corresponding calculations are presently not possible
for metallic systems. Furthermore, outliners with particularly
large errors are Ni, Nb, and Pt. These three atoms are
characterized by PBE one-electron band gaps that are smaller
than 0.15 eV in the atomic ground state. This small band gap
causes a single strong transition in the excitation spectrum,
shifting the RPA atomic energies to too negative values. The
magnitude of this small one-electron band gap depends on the
DFT functional, and increases by a factor 1.5 for the revTPSS
functional. When the revTPSS functional is used to generate
the orbitals and one-electron energies for the RPA calculations,
the atomization energies of Ni, Nb, and Pt agree slightly better
with experiment (Ni 4.25, Nb 7.15, Pt 5.14), whereas the
atomization energies of other elements hardly change by more
than 50 meV. The improvement is, however, modest, and the
small changes suggest that the atomization energies are not
very sensitive to the choice of the initial DFT functional.

Remarkably, the RPA as well as all density functionals
exhibit minima in the binding curve for close to half filling
(Nb and W) and for an entirely filled d band (Ni, Pd, Ag,
Pt, and Au). Note that the d band contains more electrons
for equivalent 4d elements than 5d elements (e.g., Mo versus
W) since the 6s shell is pulled down by relativistic effects
increasing its occupancy in the 5d series. Hence, the minimum
for half filling occurs slightly earlier in the 4d elements (Nb)
than in the 5d elements (W).

One possible reason for this systematic variation in the
atomization energies and the agreement between RPA and
PBE is that the interpolation of the correlation energy between
the nonmagnetic and fully spin-polarized case (known from
quantum Monte Carlo simulations) is based on the RPA
correlation energy for a partially spin-polarized electron gas.39

Possibly, this underestimates the correlation energy of atoms

with partially spin-polarized shells, with accurate results only
obtained at full spin polarization and zero spin polarization.
Finally, we observe that the 3d metals behave differently than
the 4d and 5d metals. Specifically, the PBE overbinds all
3d metals compared to experiment (recall the too small PBE
lattice constants), whereas the RPA yields excellent agreement
with experiment, with a slight tendency towards too small
binding energies as for the 4d and 5d series.

The performance of revTPSS and PBEsol for the atom-
ization energies is somewhat disappointing. The mean error
increases from − 0.07 eV for PBE to 0.41 for revTPSS. We
note that a similar behavior has already been observed for other
solids in our recent work.8 As opposed to semiconductors
and insulators where the revTPSS atomization energies are
very good, the revTPSS atomization energies of metals are
generally close to PBEsol values and significantly too large.
We can understand this along the same line of arguments
already discussed above: in metals, and specifically in tran-
sition metals with a largely filled d shell, the total charge
density is the sum of several one-electron orbitals. In this case,
the revTPSS functional behaves very similar to the PBEsol
functional. Although this was clearly beneficial for the lattice
constants, it undesirably increases the atomization energies to
that of the PBEsol functional. We finally note that PBEsol and
revTPSS seem to be accurate for some elements, for instance,
the alkali metals, Au, and Ag, as well as Pd and Pt, elements
that are often included in benchmark data sets. This highlights
that too limited test sets might be misleading in judging the
overall quality of a functional.

IV. SUMMARY AND CONCLUSIONS

The here considered test set of 30 alkali, alkaline earth,
transition, and coinage metals turns out to be a significant
challenge to present day semilocal density functionals. The
deficiencies of semilocal functionals can be summarized as
follows. (i) Using the PBE functional, the 3d lattice constants
are slightly too small, and the 4d and 5d lattice constants are
too large. (ii) Furthermore, the difference to the experimental
volumes shows an upwards slope with increasing d-band
filling for 4d and 5d metals. Since other semilocal functionals,
for instance PBEsol, reduced the volume by roughly the same
magnitude for all metals, none of the semilocal functionals
gives a satisfactory description.

The meta-GGA functional revTPSS yields essentially
identical results as the PBEsol functional from half filling
on, but improves significantly upon the PBEsol functional for
less than half filling. By rectifying issue (ii), the revTPSS
functional yields the best lattice constants for 4d and 5d metals,
with sizable errors only prevailing for the alkali metals. The
volume error for the alkali metals using semilocal functionals
is related to the neglect of dispersion forces related to the
semicore s and p states, an issue that has already been partly
resolved in Ref. 16 using pairwise corrections. Unfortunately,
issue (i), the underestimation of the lattice constants of 3d

metals, remains unaddressed by the revTPSS functional.
As previously observed, the optB88-vdW functional seems

to overestimate the dispersion forces in the alkali and alkaline
earth metals and gives lattice constants that are too short
at the beginning of the series. Furthermore, towards the
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TABLE III. Theoretical atomization energies in eV for PBE, PBEsol, revTPSS, and RPA. The atomic electron configuration considered
as starting point for the RPA calculations is reported in the second column. The lowest atomic electronic configuration of Ti for the DFT
functionals is 3d34s1. The electronic configurations of V and W also differ from experiment (experiment: V 3d34s2, W 5d46s2). The “Error”
columns report the absolute error with respect to experiment. The last column reports the experimental values corrected for phonon zero-point
vibrational effects (uncorrected values are in parentheses). The estimated error bar for the atomization energies of the DFT and RPA calculations
(technical convergence with respect to all parameters) is ±20 meV and ±50 meV, respectively.

Configuration PBE Error PBEsol Error revTPSS Error RPA Error Experiment

K 4s 0.87 −0.07 0.93 −0.01 0.97 0.03 0.86 −0.08 0.94a (0.93)a

Ca 4s2 1.91 0.05 2.12 0.26 2.06 0.20 1.51 −0.35 1.86 (1.84)b

Sc 3d4s2 4.11 0.18 4.54 0.61 4.30 0.37 3.75 −0.18 3.93 (3.90)b

Ti 3d24s2 5.27 0.39 5.83 0.95 5.58 0.70 4.98 0.10 4.88 (4.85)b

V 3d44s1 5.37 0.03 5.97 0.63 5.80 0.46 5.24 −0.10 5.34 (5.31)b

Fe 3d64s2 4.89 0.59 5.66 1.36 5.24 0.94 4.20 −0.10 4.30 (4.28)b

Co 3d74s2 4.98 0.56 5.79 1.37 5.38 0.96 4.52 0.10 4.42 (4.39)b

Ni 3d84s2 4.75 0.27 5.46 0.98 5.24 0.76 4.00 −0.48 4.48 (4.44)b

Cu 3d104s1 3.50 −0.02 4.06 0.54 4.16 0.64 3.33 −0.19 3.52c (3.49)c

Rb 5s 0.77 −0.09 0.84 −0.02 0.86 0.00 0.83 −0.03 0.86 (0.85)b

Sr 5s2 1.61 −0.12 1.81 0.08 1.81 0.08 1.50 −0.23 1.73 (1.72)b

Y 4d5s2 4.16 −0.23 4.60 0.21 4.46 0.07 4.04 −0.35 4.39 (4.37)b

Zr 4d25s2 6.19 −0.08 6.84 0.57 6.53 0.26 6.14 −0.13 6.27 (6.25)b

Nb 4d45s1 6.96 −0.63 7.67 0.08 7.51 −0.08 6.97 −0.62 7.59 (7.57)b

Mo 4d55s1 6.28 −0.56 7.09 0.25 6.91 0.07 6.60 −0.24 6.84 (6.82)b

Tc 4d55s2 6.88 0.00 7.82 0.94 7.46 0.58 6.94 0.06 6.88 (6.85)b

Ru 4d75s1 6.70 −0.07 7.75 0.98 7.20 0.43 6.61 −0.16 6.77 (6.74)b

Rh 4d85s1 5.70 −0.08 6.65 0.87 6.28 0.50 5.44 −0.34 5.78c (5.75)c

Pd 4d10 3.76 −0.18 4.50 0.56 4.46 0.52 3.44 −0.50 3.94c (3.91)c

Ag 4d105s1 2.52 −0.46 3.09 0.11 3.05 0.07 2.63 −0.35 2.98c (2.96)c

Cs 6s 0.72 −0.09 0.78 −0.03 0.83 0.02 0.81 0.00 0.81 (0.80)b

Ba 6s2 1.88 −0.03 2.12 0.21 2.09 0.18 1.75 −0.16 1.91 (1.90)b

Hf 5d26s2 6.42 −0.04 7.08 0.62 6.95 0.49 6.20 −0.26 6.46 (6.44)b

Ta 5d36s2 8.11 −0.01 8.93 0.81 8.83 0.71 7.88 −0.24 8.12 (8.10)b

W 5d56s1 8.39 −0.53 9.17 0.25 9.17 0.25 8.53 −0.39 8.92 (8.90)b

Re 5d56s2 7.80 −0.25 8.77 0.72 8.69 0.64 7.76 −0.29 8.05 (8.03)b

Os 5d66s2 8.34 0.14 9.42 1.22 9.19 0.99 8.19 −0.01 8.20 (8.17)b

Ir 5d76s2 7.31 0.34 8.35 1.38 8.09 1.12 7.03 0.06 6.97 (6.94)b

Pt 5d96s1 5.51 −0.35 6.38 0.52 6.27 0.41 5.06 −0.80 5.86 (5.84)b

Au 5d106s1 3.05 −0.78 3.74 −0.09 3.67 −0.16 3.12 −0.71 3.83 (3.81)

ME −0.07 0.56 0.41 −0.23
MAE 0.24 0.57 0.42 0.25

aReference 4.
bReference 34.
cReference 32.

right of the periodic table, the functional essentially recovers
the PBE results. Hence, the trend (ii) to overestimate the
equilibrium volumes with increasing d-band filling is even
more pronounced for optB88-vdW than for either PBE or
PBEsol, a point that needs to be addressed in the future in
order to make vdW functionals fully competitive.

The RPA results for lattice constants of 4d and 5d metals
are remarkably close to the revTPSS results, but since the
RPA includes dispersion forces, outliers (errors for the alkali
metals) are not present, supporting our claim that the RPA
accounts equally well for all bonding situations. Furthermore,
the RPA results for the 3d metals are in good agreement with
experiment and do not show the peculiar underestimation of
the volume observed for standard density functionals.

For the atomization energies, we find that the RPA and
PBE perform roughly equally, although the RPA trend towards
too weak binding, as for other solids and molecules, prevails.
PBEsol and revTPSS atomization energies are very similar and
significantly too large compared to experiment. Overall, RPA
offers a well-balanced description with mean absolute errors
being smaller than for the density functionals considered here.
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