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We introduce the hybrid functional HSEsol. It is based on PBEsol, a revised Perdew–Burke–
Ernzerhof functional, designed to yield accurate equilibrium properties for solids and their surfaces.
We present lattice constants, bulk moduli, atomization energies, heats of formation, and band gaps
for extended systems, as well as atomization energies for the molecular G2-1 test set. Compared to
HSE, significant improvements are found for lattice constants and atomization energies of solids, but
atomization energies of molecules are slightly worse than for HSE. Additionally, we present zero-
point anharmonic expansion corrections to the lattice constants and bulk moduli, evaluated from
ab initio phonon calculations. © 2011 American Institute of Physics. [doi:10.1063/1.3524336]

I. INTRODUCTION

Density functional theory (DFT) in the formulation of
Kohn and Sham (KS)1 provides an efficient method to evalu-
ate materials properties on a quantum-mechanical level. The
present approximations to the exchange-correlation energy,
however, lead to systematic errors in the description of geo-
metrical properties, atomization energies, heats of formation,
surface energies, and adsorption energies. For example the
widely used local density approximation (LDA) and the gra-
dient corrected Perdew–Burke–Ernzerhof (PBE)2 functional
yield average errors of approximately 1%–2% in the lat-
tice constants; LDA underestimates, while PBE overestimates
them. In addition, PBE lattice constant errors systematically
increase with increasing mass (e.g., along the series C, Si, Ge,
α-Sn). On the other hand, errors in the LDA atomization ener-
gies (compound energy vs. atomic energy) are often exceed-
ing 100 kJ/mol, and although PBE improves the performance
for the atomization energies significantly, for heats of forma-
tion the errors often remain as large as 50 kJ/mol per formula
unit (f.u.).3

An alternative approach is based on a (partial) exact treat-
ment of the exchange energy. In most cases, it is favorable
to mix only a fraction of the non-local exact exchange to
a (semi)-local exchange expression.4 These so called hybrid
functionals (e.g., the PBE05, 6 functional by Perdew, Burke,
and Ernzerhof) also offer a better description of band gaps as
they can be considered as an approximation to the GW quasi-
particle equation assuming a static, fixed dielectric function.

For solids, where the long-range part of the exact ex-
change is screened by correlation effects, faster numerical
convergence of the hybrid functionals with k-points can be
obtained by splitting the Coulomb interaction ν into a short-
range (SR) and long-range (LR) part, e.g., by defining

ν(r ) = 1

r
= Erf(μr )

r︸ ︷︷ ︸ + Erfc(μr )

r︸ ︷︷ ︸,
νL R νSR (1)

a)Author to whom correspondence should be addressed. Electronic mail:
laurids.schimka@univie.ac.at. URL: http://cms.mpi.univie.ac.at.

and by evaluating the long range part using DFT. In the
screened hybrid functional introduced by Heyd, Scuseria,
and Ernzerhof (HSE),7 one quarter of the PBE short-range
exchange is replaced by the exact exchange and the full
PBE correlation energy is added. In the HSE06 functional
(HSE06)8 the range-separation parameter μ is set to μ

= 0.207 Å−1, yielding a well balanced description for many
properties.

Calculations of the lattice constants show that the frac-
tional inclusion of exact exchange provides an improved
description compared to the underlying semi-local PBE
functional.8, 9 However, HSE06 inherits the PBE tendency to
overestimate lattice constants, as well as the increase of the
error for heavier elements. This overestimation can be pro-
nounced for metals (e.g., Ag error 2%), ionic compounds
(LiF, LiCl, NaF, NaCl approx. 1%), and heavier elements (α-
Sn error > 1.2%).10 In addition, for transition metals, the at-
omization energies of solids exhibit significantly increased er-
rors compared to PBE. In this paper, we introduce a hybrid
functional, HSEsol, which has the same form and the same
range-separation parameter as the HSE06 functional, but is
based on the PBEsol11 functional for the semi-local exchange
and correlation part:

EHSEsol
xc = EPBEsol

c + EPBEsol
x − 1

4 E SR,PBEsol
x + 1

4 E SR,EXX
x .

(2)

A more detailed description of HSEsol and results for solids
will be presented in Sec. II A and Secs. III A–III C, respec-
tively. We note that the PBEsol functional yields very similar
results as the AM05 functional suggested by Armiento and
Mattsson in 2005,12, 13 and we could have equally well have
based our new functional on AM05. However, the lack of an
explicit formula for the AM05 exchange hole precluded such
a development.

Moreover, we present ab initio calculations of the zero-
point anharmonic expansion (ZPAE) effect on the lattice
constants. The increase of the theoretical lattice constants
caused by the ZPAE can be as large as 2% for very light
solids such as LiH. The influence on Li is still 0.7% and
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TABLE I. Parameters of the PAW data sets used in the present work, but not
in Ref. 9. ”Valence” indicates which orbitals are treated as valence orbitals;
rl

c are the cutoff radii for the partial waves. If small indices are used, they
indicate which cutoff was used for s-, p-, and d-partial waves. Ecut are the
energy cutoffs used in the present work.

Valence rl
c(a.u.) Ecut (eV)

H 1s 0.8 700
Be 1s2s 1.5s ,1.8pd 310
S 3s3p 1.5 400
Ge 3d4s4p 2.3sp ,2.2d 310
In 4d5s5p 2.5 240
Sn 4d5s5p 2.5 240
Sb 5s5p 2.3 170

0.5–0.9 % for LiF, LiCl, and NaCl. In view of new meth-
ods like PBEsol, AM05,12, 14 revTPSS,15 the random-phase-
approximation (RPA),3, 16 or the second-order screened ex-
change corrected RPA,17 that all yield average lattice constant
errors as small as 0.5%, it is evident that the effect of the
ZPAE must not be neglected. The ZPAE is often accounted
for by semi-empirical formulas as derived in Ref. 18. The
ab initio evaluation of zero-point energies via the phonon den-
sity of states is well established. In the context of ab initio
calculations, such corrections have been first calculated for
BN19 and MgO.20 Nowadays, they can be routinely evaluated
for the materials considered in performance tests of new func-
tionals, however a concise set of zero point vibration correc-
tions is yet not available for solids. The ZPAE evaluated from
ab-initio via the calculation of phonon frequencies is dis-
cussed in Sec. II B. The results will be compared to the
ZPAE corrections calculated using a the semi-empirical for-
mula given in Ref. 18.

II. METHOD OF CALCULATION

All results presented in this paper have been ob-
tained using the projector augmented-wave method21, 22 as
implemented in the Vienna Ab Initio Simulation Package
(VASP).23, 24

The evaluation of the exact exchange energy in VASP as
required for the HSE and the HSEsol functional has been dis-
cussed in Refs. 9 and 25. The PAW potentials used in the
present work are equal to the ones in Ref. 9. Parameters of the
PAW potentials of elements not included in Ref. 9 are sum-
marized in Table I.

A. The HSEsol functional

For the HSEsol functional, one quarter of the short-
range PBEsol exchange is replaced by the exact exchange.
The short-range PBEsol exchange can be calculated by mul-
tiplying the LDA exchange energy density with the en-
hancement factor F SR,PBEsol

x (s, μ/kF ), which depends on the
dimensionless reduced gradient s = |∇n|/(2kF n) and the
reduced range-separation parameter μ/kF , kF = (3π2n)1/3

(see, e.g., Ref. 26):

E SR,PBEsol
x (3)

=
∫

d3r n(r) εLDA
x [n(r)] F SR,PBEsol

x (s(r), μ/kF (r)). (4)

The enhancement factor is determined by an integral
of the range-separated Coulomb kernel νSR = Erfc(μ u)/u
times the spherically-averaged PBEsol exchange hole along
y = kF u:

F SR,PBEsol,μ
x (s, μ/kF )

= −8

9

∫ ∞

0
dy y J PBEsol(s, y) Erfc((μ/kF ) y). (5)

For the PBEsol exchange hole, we use the form recently
proposed by Henderson–Janesko-Scuseria (HJS)27, 28 as for-
mulated for the PBEsol functional. In the HSE functional
as defined in Refs. 7 and 29, the PBE exchange hole by
Perdew et al.26 has been applied. In contrast to that PBE26

hole and the recently proposed PBEsol30 exchange corre-
lation hole by Perdew et al., the HJS exchange hole al-
lows a fully analytical evaluation of the range-separated en-
hancement factor. Additionally, it reproduces the PBE and
PBEsol exchange energy, if the unscreened Coulomb kernel is
used.

The short-range exact exchange energy is obtained by re-
placing the Coulomb kernel in the exact exchange energy ex-
pression. The SR exact exchange is accordingly given as a
double-sum over all occupied (occ) one-electron states ψi (r):

E SR,EXX
x

= −1

2

∑
i j,occ

∫
d3rd3r ′νSR(|r − r′|)

× ψ∗
i (r)ψ j (r)ψ∗

j (r′)ψi (r′). (6)

The one-electron Schrödinger equation is solved with the cor-
responding non-local exchange potential

Vx (r, r′) = −
∑
j,occ

νSR(|r − r′|) × ψ j (r)ψ∗
j (r′).

The convergence with respect to the k-point grid used in
the BZ sampling is the same as for the HSE06 functional
and we therefore refer to the detailed tests shown in Ref. 9.
HSEsol lattice constants are presented in Sec. III A and the
atomization energies and heats of formation are presented
in Sec. III B. �-centered Monkhorst-Pack like k-point grids
were employed: 12 × 12 × 12 k-points for insulators and
20 × 20 × 20 k-points for metals. The reciprocal grid for the
exact-exchange potential has been down sampled by a factor
of two.31

B. Zero-point anharmonic expansion correction from
ab initio

Experimental lattice constants are affected by contribu-
tions from phonon zero point vibration energies, which are
in general not accounted for in zero temperature DFT calcu-
lations. Zero-point vibration energies influence not only the
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TABLE II. PBE lattice constants without (first column) and with (second column) zero-point vibrational energies. The change due to the resulting correction
with respect to experiment is shown in column five and seven. The experimental T = 0 K lattice constants and the experimental lattice constants corrected for
by the semi-empirical ZPAE given in Eq. (9) have been taken from Ref. 32 (third and fourth column). The sixth column shows the experimental lattice constants
corrected for by the PBE ZPAE calculated from ab initio phonon calculations. All lattice constants are given in Å. The Strukturbericht symbols (in parentheses)
are used for the structure as follows: A1-fcc; A2-bcc; A4-diamond; B1-rocksalt; B3-zinc blende.

Exp-ZPAE Exp-ZPAE
Solid PBE PBE+ZPAE corr Exp. (empirical) % to Exp (present) % to Exp

Li(A2) 3.437 3.461 3.477 3.451 0.7 3.453 0.7
Na(A2) 4.197 4.208 4.225 4.209 0.4 4.214 0.3
Al(A1) 4.040 4.054 4.032 4.019 0.3 4.018 0.3
Rh(A1) 3.830 3.835 3.798 3.793 0.1 3.794 0.1
Pd(A1) 3.943 3.948 3.881 3.876 0.1 3.876 0.1
Cu(A1) 3.636 3.643 3.603 3.596 0.2 3.595 0.2
Ag(A1) 4.147 4.154 4.069 4.062 0.2 4.062 0.2
C(A4) 3.573 3.586 3.567 3.544 0.6 3.553 0.4
Si(A4) 5.469 5.478 5.430 5.415 0.3 5.421 0.2
Ge(A4) 5.761 5.769 5.652 5.639 0.2 5.644 0.1
Sn(A4) 6.656 6.664 6.482 6.474 0.1 6.474 0.1
LiH(B1) 4.006 4.090 4.064 3.979 2.1
LiF(B1) 4.064 4.102 4.010 3.960 1.2 3.972 0.9
LiCl(B1) 5.148 5.184 5.106 5.072 0.7 5.070 0.7
NaF(B1) 4.706 4.733 4.609 4.576 0.7 4.582 0.6
NaCl(B1) 5.699 5.724 5.595 5.565 0.5 5.569 0.5
MgO(B1) 4.260 4.278 4.207 4.186 0.5 4.189 0.4
SiC(B3) 4.379 4.391 4.358 4.340 0.4 4.346 0.3
BN(B3) 3.626 3.641 3.607 3.585 0.6 3.592 0.4
BP(B3) 4.547 4.560 4.538 4.520 0.4 4.525 0.3
BAs(B3) 4.808 4.830 4.777 4.760 0.4 4.755 0.5
GaN(B3) 4.546 4.557 4.520 4.509 0.2 4.509 0.2
GaP(B3) 5.506 5.515 5.448 5.435 0.2 5.439 0.2
GaAs(B3) 5.752 5.760 5.648 5.637 0.2 5.640 0.1
AlN(B3) 4.402 4.414 4.380 4.368 0.3
AlP(B3) 5.506 5.516 5.460 5.445 0.3 5.451 0.2
AlAs(B3) 5.735 5.743 5.658 5.646 0.2 5.649 0.2
InP(B3) 5.962 5.971 5.866 5.856 0.2 5.858 0.1
InAs(B3) 6.192 6.199 6.054 6.044 0.2 6.047 0.1
InSb(B3) 6.638 6.644 6.479 6.471 0.1 6.473 0.1

absolute energy but also the equation of state (energy ver-
sus volume curve), because the phonon frequencies decrease
with increasing volume. This zero-point anharmonic expan-
sion (ZPAE) has to be taken into account for an accurate com-
parison of theoretical and experimental lattice constants. To
estimate the ZPAE, the PBE lattice constants of the materi-
als presented in Table II are evaluated as the minimum of the
internal energy U (V ) versus volume V curves

U (V ) = E0(V ) + Uzero(V ) (7)

and as the minimum of the electronic contribution E0(V )
only. The zero-point vibrational energy is calculated as a
frequency integration over the vibrational density of states
g(V, ω):

Uzero(V ) = 1

2

∫
¯ω g(V, ω) dω. (8)

We use a direct approach employing the force constant
method as outlined in Ref. 33 to calculate the phonon
dispersion relation and vibrational density of states g(V, ω)
from ab initio. In this work, ab initio calculations were

performed using 2 × 2 × 2 conventional unit cells and a
plane-wave energy cutoff approximately 30 % above the de-
fault value. Convergence is reached at 4 × 4 × 4 k-points for
insulators and semi-conductors and at 8 × 8 × 8 k-points for
metals, with the exception of Li, which requires a 12 × 12
× 12 k-point grid. Figure 1 visualizes the effect of the zero-
point vibrations for the case of C. The energy versus volume
curve resulting from electronic contributions only as well as
the zero-point corrected curve are shown. Beside shifting the
energy-volume curve to smaller binding energies, the addition
of the zero-point vibrational energies leads to an increase of
the lattice constants resulting from the anharmonic potential.
The effect of the specific functional (e.g. LDA versus PBE)
on the zero-point vibrational effect is found to be negligible.
To show this, we evaluated the zero-point energies applying
the LDA functional for some selected materials. For the vi-
brational frequencies, the deviations from PBE are typically
only about 5%, and the resultant change of the ZPAE cor-
rected lattice constants is typically only 0.05 % (5% of 1%).
This suggests that it is irrelevant whether the ZPAE are cal-
culated using the PBE functional or using a more accurate
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FIG. 1. Energy vs volume for C-diamond including the zero-point vibra-
tional energy (bold line) and neglecting zero-point vibrational effects (dashed
line).

functional. Before commenting on the results in more detail,
we would like to compare our results with existing literature
data. Grabowski et al. have also calculated zero point vibra-
tional energies for few non magnetic fcc metals34 using DFT
within the quasi harmonic approximation. Their corrections
for Al, Cu, Rh, Pd, Ag and Pt are essentially identical to
our corrections. This is not astonishing, since similar codes
and procedures were used, but it indicates that the authors of
Ref. 34 and we have both reached technical convergence. The
more interesting comparison is with the widely used semi em-
pirical ZPAE corrections derived in Ref. 18:

	a0

a0
= 	V0

3 V0
= 3

16
(B1 − 1)

kB
D

B0V0
. (9)

In this equation, the lattice constants a0, the bulk moduli B0,
and the Debye temperatures 
D are usually obtained from
experiment, whereas the pressure derivative of the bulk mod-
ulus B1 is usually calculated and thus depends on the applied
functional. It is immediately obvious, that the semi empirical
formula is remarkably accurate (see Table II), a posteriori val-
idating its use. In particular for metals, our present values are
practically identical to the simpler empirical correction. For
semiconductors and insulators, however, the empirical ZPAE
corrections are slightly too large, specifically for C, BN, LiF
or MgO the empirical formula overestimates the ZPAE by
about 30%. This is most likely related to optical modes, which
can not be properly described in the simple Debye model un-
derlying Eq. (9).

In Table II corrected and uncorrected PBE lattice con-
stants are summarized for our test set of materials. As already
mentioned above LDA ZPAE corrections would be almost
identical to PBE ZPAE corrections. It seems therefore rea-
sonable to correct the experimental lattice constants directly,
and to compare with those corrected experimental lattice con-
stants from now on, instead of applying the corrections to the
theoretical energy-volume curves. This is the route we will

InSb
InAs
InP

LiCl
LiF

GaAs
GaP
GaN

NaF

LiH
Sn
Ge
Si
C

Ag
Cu
Pd
Rh
Al

Na
Li

0-0.5-1.0-1.5 0.5 1.0 1.5 2.0 3.0

-1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0

Li
Na
Al
Rh
Pd
Cu
Ag
C
Si
Ge
Sn

BAs
GaN
GaP
GaAs
AlN
AlP
AlAs
InP
InAs
InSb

2.5

2.5 3.0

deviation from experiment (%)

x Δ• +HSEsol PBEsol PBEHSE06

AlAs
AlP
AlN

BAs
BP
BN
SiC

MgO
NaCl

LiH
LiF
LiCl
NaF
NaCl
MgO
SiC
BN
BP

FIG. 2. Lattice constant errors (%) compared to the ZPAE corrected experi-
mental lattice constant (see Sec. II B).

take from now on (see Table III for the corrected experimen-
tal lattice constants).

III. RESULTS

A. HSEsol lattice constants and bulk moduli

Lattice constants obtained from the HSEsol functional
are summarized in Table III and are compared to PBE,
PBEsol, and HSE06 values, whereas detailed results for the
bulk moduli can be found in the supplementary material.35

The lattice constant errors (%) with respect to the ZPAE
corrected experimental values are visualized in Fig. 2 (see
also the supplementary material for alternative representa-
tions of the same data).35 While the PBE functional pre-
dicts overall too large lattice constants (with the exception of
Na and Li), both HSE06 and PBEsol reduce the lattice con-
stants and improve agreement with experiment. Compared to
ZPAE corrected experimental lattice constants, the PBEsol
and the HSE06 lattice constants are however still too large.
The HSEsol functional provides smaller mean relative errors
than the three other functionals, and only for Rh and GaN the
error in the HSEsol lattice constants is larger than 1%. The
bulk moduli are predicted to be slightly too large for HSEsol,
but again, the HSEsol functional yields the smallest deviation
from experiment (MARE: PBE 12.6%, PBEsol 6.6%, HSE
6.7%, HSEsol 4.0%). We note that the comparison was done
with zero-point corrected bulk moduli by subtracting the zero-
point corrections calculated for the PBE functional from the
experimental values. This is certainly an approximation, but
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TABLE III. Theoretical lattice constants (Å) using the PBE, PBEsol, HSE, and the HSEsol functional. The PBE and HSE06 lattice constants equal the ones
given in Ref. 9. The experimental lattice constants are taken from Ref. 32 and ab initio ZPAE corrections have been subtracted (see Table II).

Lattice constant (Å)
Solid PBE % PBEsol % HSE06 % HSEsol % Exp

Li (A2) 3.437 −0.46 3.436 −0.48 3.460 0.22 3.453 0.00 3.453
Na (A2) 4.197 −0.40 4.171 −1.02 4.225 0.27 4.206 −0.18 4.214
Al (A1) 4.040 0.54 4.015 −0.07 4.022 0.10 4.003 −0.38 4.018
Rh (A1) 3.830 0.97 3.780 −0.37 3.783 −0.28 3.753 −1.08 3.794
Pd (A1) 3.943 1.73 3.876 0.01 3.921 1.17 3.869 −0.17 3.876
Cu (A1) 3.636 1.12 3.570 −0.72 3.638 1.19 3.587 −0.23 3.595
Ag (A1) 4.147 2.09 4.053 −0.23 4.142 1.96 4.073 0.27 4.062
C (A4) 3.573 0.54 3.556 0.07 3.549 −0.12 3.538 −0.42 3.553
Si (A4) 5.469 0.89 5.436 0.27 5.435 0.26 5.415 −0.11 5.421
Ge (A4) 5.761 2.07 5.674 0.53 5.682 0.68 5.633 −0.19 5.644
Sn (A4) 6.656 2.81 6.541 1.04 6.561 1.35 6.489 0.24 6.473
LiH(B1) 4.006 0.66 3.983 0.08 3.988 0.21 3.972 −0.18 3.979
LiF (B1) 4.064 2.31 4.009 0.92 4.018 1.15 3.974 0.04 3.972
LiCl (B1) 5.148 1.54 5.066 −0.07 5.115 0.89 5.052 −0.34 5.070
NaF (B1) 4.706 2.70 4.638 1.21 4.650 1.47 4.599 0.37 4.582
NaCl (B1) 5.699 2.32 5.608 0.70 5.659 1.61 5.592 0.40 5.569
MgO(B1) 4.260 1.70 4.222 0.77 4.210 0.50 4.184 −0.13 4.189
SiC(B3) 4.379 0.76 4.359 0.30 4.347 0.01 4.334 −0.28 4.346
BN(B3) 3.626 0.95 3.608 0.45 3.598 0.18 3.587 −0.13 3.592
BP(B3) 4.547 0.49 4.521 −0.07 4.519 −0.12 4.504 −0.46 4.525
BAs(B3) 4.808 1.11 4.767 0.26 4.769 0.29 4.745 −0.21 4.755
GaN (B3) 4.546 0.83 4.494 −0.32 4.494 −0.33 4.464 −1.01 4.509
GaP (B3) 5.506 1.23 5.438 −0.02 5.462 0.42 5.420 −0.35 5.439
GaAs (B3) 5.752 1.98 5.665 0.44 5.687 0.83 5.635 −0.10 5.640
AlN(B3) 4.402 0.79 4.378 0.25 4.366 −0.04 4.351 −0.38 4.368
AlP(B3) 5.506 1.02 5.472 0.39 5.472 0.39 5.450 0.00 5.451
AlAs(B3) 5.735 1.51 5.683 0.60 5.687 0.67 5.656 0.12 5.649
InP (B3) 5.962 1.79 5.882 0.42 5.904 0.79 5.854 −0.07 5.858
InAs (B3) 6.192 2.40 6.094 0.78 6.114 1.11 6.055 0.13 6.047
InSb (B3) 6.638 2.55 6.524 0.79 6.561 1.36 6.493 0.31 6.473
ME 0.068 0.013 0.031 −0.006
MRE 1.35% 0.23% 0.61% −0.15%
MAE 0.071 0.022 0.033 0.013
MARE 1.41% 0.46% 0.67% 0.28%

such corrected bulk moduli are convenient to evaluate the per-
formance of other functionals.

A characteristic feature of the PBE functional is the in-
crease of the error in the lattice constants for heavier solids.
This can be seen, e.g., along the series: C-Si-Ge-α−Sn, GaN-
GaP-GaAs or InP-InAs-InSb. The PBEsol and HSE06 func-
tionals follow this trend as well, but with a reduced slope in
the lattice constant error. HSEsol reduces the slope for the C-
Si-Ge-α−Sn even further. For GaN-GaP-GaAs, it performs
slightly worse than PBEsol (but better than HSE06), whereas
for InP-InAs-InSb, the slope is similar to PBEsol (and smaller
than for HSE06).

B. HSEsol atomization energies and heats of
formation

Ideally, a functional should provide reasonable atomiza-
tion energies for molecules and extended systems. This goal
is very difficult to achive using density or hybrid function-
als. Generally, the PBE functional overestimates the stability

of molecules, and it underestimates the stability of solids. By
changing the density functional, one can either increase or de-
crease the atomization energies, but it is not possible to get
solids and molecules right simultaneous using simple gradi-
ent corrected functionals. As we will see, replacing part of
the density functional theory exchange by exact exchange also
reduces the atomization energies (to a large extent this is re-
lated to an increased spin-polarization energy of the atoms),
but again it is not possible to improve the description of solids
and molecules simultaneously.

In this section, we present atomization energies for
molecules (G2-1 set at PBE0 geometries for 55 molecules) in
Table VI and for extended systems in Table V using the PBE,
PBEsol, HSE and HSEsol functionals. Heats of formations
with respect to the components under ambient conditions are
summarized in Table IV.

The two semi-local functionals, PBE and PBEsol, signif-
icantly overbind molecules in the G2-1 test set (Table VI).
The average PBE atomization energies are closer to experi-
ment (ME 27 kJ/mol) than the PBEsol atomization energies
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TABLE IV. Heats of formation at T = 0 K in kJ/mol (per formula unit; 1
kJ/mol = 10.364 meV) with respect to the elemental phases in their normal
state under ambient conditions. Experimental values are collected in Ref. 36
and have been corrected for zero-point vibrations (ZPV, experimental values
without corrections are in parentheses). The ZPV have been evaluated using
harmonic ab initio phonon calculations.

Solid PBE PBEsol HSE06 HSEsol RPA Exp.

LiF 569 573 591 599 609 619 (614)
NaF 522 522 540 546 567 577 (573)
NaCl 355 355 371 374 405 413 (411)
SiC 52 53 60 60 64 69 (72)
AlN 260 280 286 303 291 321 (313)

MgH2 52 60 64 72 72 78 (68)
MgO 517 533 541 558 577 604 (597)
ME −51 −44 −33 −24 −14

(ME 70 kJ/mol). Adding exact exchange reduces the mean
error for both functionals to −5 kJ/mol (HSE) and 29 kJ/mol
(HSEsol). We note that the reduction of the binding energy
is pretty similar for both functionals amounting to about
30 kJ/mol, and it is clear that the HSE06 functional performs
significantly better than the HSEsol functional.

For the extended systems (Table V), on the other hand,
the PBE functional performs already quite well (ME -12
kJ/mol). Contrary to small molecules, solids are underbound
on average. In this case, adding non-local exchange can make
the situation only worse, resulting in significant underbinding
(ME -22 kJ/mol). For metals, the performance of the HSE06
functional is, in fact, particularly bad with the worst cases
being transition metals. While PBE provides a very reason-
able atomization energy for them (6 and 22 kJ/mol for Rh
and Pd), the error for the HSE06 hybrid functional is about
100 kJ/mol. As for molecules, PBEsol increases the atomiza-
tion energies significantly with respect to the PBE values (ME
26 kJ/mol). In this case, adding non-local exchange helps to
reduce the atomization energies back to very reasonable val-
ues (ME 4 kJ/mol) but unfortunately the mean absolute error
remains large and very similar to the PBE case (HSEsol MAE
18 kJ/mol, PBE MAE 15 kJ/mol). A major reason for this
is that HSEsol tends to underbind metals (ME -20 kJ/mol),
but overbinds insulators and semiconductors (ME 11 kJ/mol).
This reduces the mean error but also increases the mean abso-
lute error.

Assessments based on atomization energies only are
sometimes criticized for depending too much on the qual-
ity of the description of the atoms. We have thus selected a
few gas phase/metal and and solid/solid state reactions. To
this end, the heats of formation of eight solid compounds are
summarized in Table IV. Although PBE performs reasonably
well for the atomization energies of solids, heats of formation
are shockingly inaccurate (ME −51 kJ/mol). The likely and
common explanation for this error is that the binding energy
of dimers, O2, N2, F2 etc. are overestimated (compare Table
VI) but this does not explain the error for MgH2 or SiC. For
this particular test set, PBEsol performs slightly better than
PBE, but it reduces the overbinding only by a few kJ (ME
−44 kJ/mol). The two hybrid functionals perform better than
the parent semi-local functionals (HSE06 ME −33 kJ/mol,
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FIG. 3. Theoretical versus experimental band gaps for selected semiconduc-
tors. PBE and PBEsol band gaps are “negative” (inverted band characters at
�) for InSb, InAs,Sn and Ge.

HSEsol ME −24 kJ/mol). The likely explanation for this ob-
servation is that hybrid functionals make the binding in met-
als weaker compared to the binding of the final (ionic) com-
pounds. Simultaneously the bond-strength of the dimers is
reduced by admixing non-local exchange, bringing the heats
of formation in better agreement with experiment. However,
none of the semi local or hybrid functionals perform as well as
the RPA3, 16 (RPA ME −14 kJ/mol), suggesting that the RPA
is presently the best choice for predicting the thermo chem-
istry of solids, but matter of fact, the RPA is orders of magni-
tude more expensive than local or even hybrid functionals.

Overall, the atomization energies and heats of forma-
tion presented in this subsection suggest that HSEsol pro-
vides quite reasonable atomization energies (although far
from chemical accuracy) for both molecules and extended
systems, as well as, the best heats of formation (disregarding
RPA) among the functionals presented in this work.

C. Band gaps

It is often argued that KS one electron band gaps do not
need to match the experimental QP band gaps. This is cer-
tainly true from a fundamental point of view. For instance, it
has been shown that even very accurate Kohn-Sham poten-
tials yield one-electron (Kohn-Sham) band gaps that do not
match the QP energies.39 However, the exact KS energy func-
tional and the exact KS exchange-correlation potential pos-
sess an integer discontinuity upon adding or removing elec-
trons, which would allow to calculate the exact QP gap by
adding and removing electrons from large supercells and tak-
ing appropriate energy differences.40, 41 For local and semi-
local density functionals, as well as, hybrid functionals, on the
other hand, energy differences encountered upon adding elec-
trons to or removing electrons from Bloch states are exactly
equivalent to the one-electron energies of the Bloch states to
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TABLE V. Atomization energies in kJ/mol/atom for solids applying the PBE, PBEsol, HSE06, and HSEsol functional. The last two columns summarize the
experimental atomization energies (including the ZPE) and the ZPE corrected atomization energies, respectively. Experimental atomization energies for InP,
InAs, InSb have been taken from Ref. 37, for Ge and Sn from Ref. 38, all other experimental atomization energies are from Ref. 36. Relative errors are calculated
with respect to the ZPE corrected experimental atomization energies.

exp
PBE % PBEsol % HSE % HSEsol % exp ZPE corr.

Li (A2) 155 −3 162 1 151 −6 156 −2 157 160
Na (A2) 104 −4 111 3 99 −8 105 −3 107 108
Al (A1) 331 0 368 11 331 0 354 7 327 331
Rh (A1) 552 −1 645 16 443 −21 475 −15 555 558
Pd (A1) 358 −6 427 12 285 −25 334 −12 377 380
Cu (A1) 336 −1 389 14 297 −13 334 −2 337 340
Ag (A1) 243 −15 297 3 229 −20 268 −7 286 288
ME Metals −12 33 −47 −20
MAE Metals 12 33 47 26
MARE Metals 4.3% 8.7% 13.2% 6.8%
C (A4) 744 2 797 9 734 1 775 6 711 728
Si (A4) 440 −3 479 6 442 −2 467 3 446 452
Ge (A4) 360 −5 400 6 360 −5 390 3 374 378
Sn (A4) 306 1 343 13 306 1 334 10 301 303
LiH (B1) 227 −5 236 −2 228 −5 236 −2 230 240
LiF (B1) 418 −3 432 0 408 −5 421 −2 425 430
LiCl (B1) 324 −6 340 −2 324 −6 338 −3 343 346
NaF (B1) 369 −4 382 0 358 −7 370 −4 379 383
NaCl (B1) 298 −7 311 −4 298 −7 309 −4 319 322
MgO (B1) 481 −4 513 2 473 −6 498 −1 497 502
SiC (B3) 618 −1 663 6 619 −1 650 4 612 625
BN (B3) 669 3 714 9 660 1 692 6 637 652
BP (B3) 511 3 552 11 509 3 538 8 486 496
BAs (B3) 447 490 443 474
GaN (B3) 424 −4 467 6 418 −5 450 2 432 439
GaP (B3) 337 −3 376 8 340 −2 368 6 343 348
GaAs (B3) 304 −6 343 7 304 −6 334 4 319 322
AlN (B3) 551 −2 586 4 544 −4 570 1 556 564
AlP (B3) 395 −5 427 3 398 −5 421 1 411 417
AlAs (B3) 356 −3 390 6 357 −3 382 4 365 369
InP (B3) 304 −9 371 11 306 −9 332 −1 331 335
InAs (B3) 279 −6 316 6 278 −6 307 3 294 297
InSb (B3) 255 −6 289 7 253 −7 280 3 269 271
ME Ins/sem. −12 23 −14 11
MAE Ins/sem 16 25 17 16
MARE Ins/sem 4.2% 5.8% 4.4% 3.7%
ME all −12 26 −22 4
MAE all 15 27 24 18
MARE all 4.2% 6.5% 6.5% 4.4%

which the electron is added or removed. For a more detailed
discussion we refer to Cohen, Mori-Sanchez and Yang.41

From a fundamental point of view, one might argue that the
flaw of the present KS-functionals is the lack of this integer
discontinuity, but from a practical point of view, the origin of
the flaw matters rather little. As long as the exchange corre-
lation functional does not possess an integer discontinuity, it
is a sensible test to compare KS one-electron energies with
the fundamental band gap.42, 43 If the KS one-electron energy
differences do not match the experimental band gaps, the ap-
plied functional needs to be used with some care, in particular
if defect states are modeled.44–47

While, fundamental band gaps obtained from the one-
electron energies of local and semi-local functionals are con-

sistently too small, the admixture of exact exchange leads to
an opening of the gap yielding good agreement with experi-
ment. In Table VII, fundamental band gaps evaluated using
the PBE, PBEsol, HSE06, and HSEsol functional are pre-
sented. For each functional, the lattice constant was set to
the respective theoretical equilibrium lattice constant. As the
PBE and PBEsol functionals predict similar band gaps, it can
be expected that the HSE06 and the HSEsol band gaps are
close to each other as well. This is in fact the case, as can be
seen from the very similar average errors provided by the two
hybrid functionals, HSE06 and HSEsol. Both hybrid func-
tionals perform significantly better than the semi-local PBE
and PBEsol functionals. Only for large gap insulators, hy-
brid functionals do not yield satisfactory results, essentially
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TABLE VI. Atomization energies in kJ/mol/ formula unit for a small subset of molecules from the G2-1 test (+H2) set. The mean errors have been calculated
for the full G2-1 test set, which can be found in the supplementary material (Ref. 35).

PBE Deviation PBEsol Deviation HSE06 Deviation HSEsol Deviation exp

H2 438 −18 446 −10 437 −19 446 −10 456
C2H2 1735 45 1798 107 1694 4 1744 53 1690
C2H4 2390 39 2477 125 2361 10 2431 79 2351
C2H6 2997 22 3109 134 2981 6 3071 96 2975
CO 1124 32 1167 75 1070 −22 1103 11 1092
CO2 1737 97 1825 184 1639 −2 1703 63 1640
Cl2 275 36 309 70 252 14 276 38 238
ClF 301 42 340 81 257 −2 286 27 259
F2 218 59 260 101 147 −12 179 20 159
Li2 83 −25 86 −23 81 −28 84 −24 109
LiF 579 −2 598 17 549 −33 566 −16 582
LiH 224 −19 230 −13 221 −22 228 −15 243
N2 1019 69 1046 97 945 −5 967 17 950
Na2 74 −6 74 −6 66 −14 67 −12 79
NaCl 392 −22 410 −4 387 −27 401 −14 414
O2 598 104 650 156 521 27 559 65 494
P2 508 22 539 54 467 −18 491 6 485
SO 591 80 633 123 535 25 566 55 510
SO2 1173 115 1260 202 1066 8 1130 71 1059
Si2 340 30 361 51 322 12 338 28 310
SiO 822 23 861 62 765 −34 795 −4 799
ME 27 70 −5 29
MAE 36 71 15 32

TABLE VII. Theoretical and experimental fundamental band gaps in eV. Theoretical band gaps are evaluated at the equilibrium lattice constant determined
with the corresponding functional. Except for LiF, LiCl, NaF, and NaCl, experimental band gaps have been taken from Ref. 48.

PBE Error PBEsol Error HSE Error HSEsol Error exp
C (A4) 4.12 −1.36 4.03 −1.45 5.31 −0.17 5.27 −0.21 5.48
Si (A4) 0.61 −0.56 0.46 −0.71 1.14 −0.03 1.04 −0.13 1.17
Ge (A4) – – 0.72 −0.02 0.78 0.04 0.74
Sn (A4) – – 0.2 0.22
LiH (B1) 2.98 −1.96 2.73 −2.21 3.97 −0.97 3.8 −1.14 4.94
LiF (B1) 8.85 −5.65 9.05 −5.45 11.47 −3.03 11.64 −2.86 14.5
LiCl (B1) 6.27 −3.13 6.34 −3.06 7.78 −1.62 7.70 −1.70 9.4
NaF (B1) 6.06 −5.44 6.16 −5.34 8.37 −3.13 8.46 −3.04 11.5
NaCl (B1) 4.98 −4.53 4.99 −4.51 6.41 −3.09 6.40 −3.10 9.5
MgO (B1) 4.42 −2.80 4.58 −2.64 6.51 −0.71 6.64 −0.58 7.22
SiC (B3) 1.37 −1.05 1.23 −1.19 2.23 −0.19 2.16 −0.26 2.42
BN (B3) 4.45 −1.77 4.28 −1.94 5.79 −0.43 5.7 −0.52 6.22
BP (B3) 1.24 −1.16 1.11 −1.29 1.94 −0.46 1.86 −0.54 2.4
BAs (B3) 1.22 −0.24 1.09 −0.37 1.85 0.39 1.77 0.31 1.46
GaN (B3) 1.57 −1.73 1.75 −1.55 3.05 −0.25 3.15 −0.15 3.30
GaP (B3) 1.59 −0.76 1.58 −0.77 2.28 −0.07 2.15 −0.20 2.35
GaAs (B3) 0.18 −1.34 0.45 −1.07 1.29 −0.23 1.44 −0.08 1.52
AlN (B3) 3.3 −2.83 3.18 −2.95 4.55 −1.58 4.48 −1.65 6.13
AlP (B3) 1.63 −0.88 1.45 −1.06 2.29 −0.22 2.16 −0.35 2.51
AlAs (B3) 1.5 −0.73 1.34 −0.89 2.08 −0.15 1.97 −0.26 2.23
InP (B3) 0.45 −0.97 0.57 −0.85 1.39 −0.03 1.43 0.01 1.42
InAs (B3) – – 0.38 −0.03 0.44 0.03 0.41
InSb (B3) – – 0.27 0.04 0.40 0.17 0.23
ME −1.83 −1.85 −0.69 −0.70
MAE 1.83 1.85 0.74 0.76
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because one quarter of the exact exchange is insufficient to re-
cover the correct band gap. In this case, half-half functionals
yield somewhat better agreement with experiment, e.g. LiF
(12.95 eV), NaF (9.47 eV) and NaCl (6.71 eV). However, the
screening parameter μ is too large to allow for a better agree-
ment with experiment.

IV. DISCUSSION

Figure 4 summarizes the energetics we have determined
in the present work for PBE, HSE, PBEsol and HSEsol for sp
elements in the first, second and third row. The plot is based
on the atomization energy errors for molecules and solids
shown in Tables VI and VII but restricts the statistics to sim-
ple metals (Na, Li, Al), ionic and covalent compounds (NaF,
NaCl, AlN, . . .) and diatomic molecules (O2, F2, N2, P2, . . .).
All energies are specified in kJ/mol per atom so that the graph
essentially conveys the same content as the heats of formation
shown in Table IV.

Since all functionals describe the energy of the free elec-
tron gas exactly, all four functionals fall onto a single line
for this case (zero error in the total energy). The energies
of atoms are more problematic, and, ideally, we would have
liked to indicate the mean energy error for atoms for each
functional in our plot. However, determining this error turned
out to be rather cumbersome, since accurate atomic reference
data are not available, in particular, if we want to assess the
valence electron error only. We therefore aligned the atomic
energies at zero, as well. Therefore, the y-position of each bar
reflects the atomization energy error for metals, ionic and co-
valent solids and molecules, respectively. For each bonding
situation we show 4 bars, corresponding to the error of the
PBE, PBEsol, HSE and HSEsol functional. The presentation
has been chosen such that negative values correspond to over-
binding (different sign than in the tables).

Let us first concentrate on the PBE results (black bars).
Clearly, PBE overestimates the atomization energies of small
molecules significantly but slightly underestimates the atom-
ization energies for metals, semiconductors and insulators.
We note that real metals show a behavior in-between cova-
lent solids and the free electron gas, which is sensible, since
bonding in real metals is a mixture of covalent and free elec-
tron like bonding. One issue that is visible in the plot is that
PBE significantly underestimates the heats of formation upon
forming a compound from a metal and a gas phase molecule.
As we have already discussed, the origin of the problem is
the PBE overbinding for molecules. As a result, the heats of
formation for the reaction

metal + molecule → compound (10)

is underestimated, as indicated by the black arrow in Fig. 4.
With respect to atoms, PBEsol (blue bars) somewhat

overbinds solids and strongly overbinds molecules. This is
a result of aligning the energies for atoms at zero. In fact,
the PBEsol functional yields smaller gradient corrections and
thus less negative exchange correlation energies, but since
the effect is strongest for atoms, molecules and solids are
energetically overbound compared to atoms. Concerning the
heats of formation of compounds w.r.t. metals and gas phase
molecules, a slightly smaller error is observed for PBEsol than
for PBE (blue arrow).

Hybrid functionals generally increase the stability of the
spin polarized atom that we use as reference, and hence re-
duce the binding energy resulting in less negative atomization
energies (red and pink bars). Remarkably, the changes in the
atomization energies are largest for molecules, small for in-
sulators and semiconductors, and fairly small for metals. This
reflects a systematic difference between the local (DFT) and
non-local (HF) exchange energy in extended and localized
systems: whereas the difference is expected to be zero for
the uniform electron gas, since all DFT functionals exactly
reproduce the exchange energy of jellium, the difference is
rather large for systems with localized electrons. We note that
changes from PBEsol to HSEsol are larger than from PBE to
HSE, suggesting that PBE models the exact exchange energy
more precisely than PBEsol. In fact, functionals with even
stronger gradient corrections, such as revPBE49 and RPBE,50

would be even better suited for molecules, but obviously such
functionals would introduce too strong gradient corrections
for extended systems, increasing their atomization energy er-
ror and lattice constant error even further beyond that of PBE.

An important question at this point is to what extent the
diagram is biased by the restriction to a small set of the ele-
ments. This certainly is a difficult question that can be only
addressed by increasing the test set further, but we believe
that the general behaviour will not be affected by this choice:
the stability of molecules is overestimated compared to bulk
systems, regardless of the chosen (semi-local) density func-
tional and test set. For instance, for Si (not included in the con-
struction of the diagram) our PBE data show that the stability
of the Si2 dimer is overestimated by 30 kJ/mol, whereas the
solid is underbound by 12 kJ/mol in rough agreement with our
schematic energy plot. We thus conclude that the schematic
diagram captures a true shortcoming of the presently
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available semi-local and hybrid functionals, that is encoun-
tered when one moves from a uniform system to open struc-
tures with spatially confined electrons.

Which one is the best functional: The diagram suggests
that there is no “best” functional. PBEsol is ideally suited
for simple metals. For insulators and semiconductors, errors
in the atomization energies are roughly similar but of oppo-
site sign for PBE and PBEsol, and one would need a func-
tional with intermediate gradient corrections. For molecules,
even the PBE gradient corrections do not suffice to recover
a reasonable energetics, and in fact, revPBE and RPBE with
even stronger gradient corrections are known to achieve the
best molecular energetics.49 As Perdew has already pointed
out, the strength of the gradient correction needs to be chose
system dependent, something that can be only achieved by
including additional information as done in the TPSS or
revTPSS functional.15

For hybrid functionals, the HSE functional does the best
overall job for atomization energies of molecules, but HSEsol
is best suited for solids. Again, none of the functionals is ideal.
Tentatively, we believe that the proper physics can be only re-
covered by functionals that use the correct amount of the non-
local exchange interaction, but the required fraction is system
dependent: a sizeable amount of exact non-local exchange in
molecules and atoms, and very little non-local exchange in
solids would produce about the right energetics.

V. CONCLUSIONS

In this work, we have presented an improved hybrid func-
tional for solids. In this functional, one quarter of the short-
range semi-local exchange is replaced by exact exchange,
analogous to HSE. In contrast to HSE, it relies on the PBEsol
instead of the PBE functional for presenting the semi-local
exchange part and the correlation energy. We note that simi-
lar functionals have been proposed for the modeling of ferro-
electric materials, however, a careful evaluation of the perfor-
mance of such functionals has not been presented yet.51

Our motivation to introduce a hybrid functional based on
PBEsol is to improve the performance of hybrid functionals
for solids. Although HSE06 yields very good atomization en-
ergies for molecular systems, errors in the lattice constants
of solids can be sizable (e.g. 2% and 1.6% for Ag and NaCl,
respectively, mean absolute relative error 0.7%). Accurate lat-
tice constants are important for ab initio modeling since most
physical quantities need to be evaluated at the theoretical ge-
ometry, if consistency is aimed at. Furthermore, in contrast to
molecular systems, HSE06 atomization energies of solids are
not improved compared to PBE.

The ideal hybrid functional for solids should yield bet-
ter lattice constants (and bulk moduli) than HSE06, and it
should improve the atomization energies for solids. At the
same time, molecular atomization energies should not be sig-
nificantly worsened, and the description of band gaps should
remain similar to HSE06. The HSEsol functional provides all
this: the mean absolute error in the lattice constants is re-
duced from 0.67% (HSE06) to 0.28%. For the systems stud-
ied in the present work, the largest lattice constant error is
1.1% (Rh) compared to the largest HSE06 error of 2.0 %

(Ag). For molecular atomization energies, the improvement
provided by the HSEsol functional compared to the underly-
ing PBEsol functional is of the same order as from PBE to
the HSE06 functional. But because PBEsol performs signifi-
cantly worse than PBE for molecules, the HSEsol results are
not on par with the HSE06 results. This disadvantage of the
HSEsol functional is, however, compensated by the improved
HSEsol atomization energies of solids. For metallic systems,
the HSE06 error is almost halved (from MARE 13.2% to
6.8%) and for insulators and semiconductors HSEsol per-
forms also slightly better (HSE06: MARE 4.4%, HSEsol:
MARE 3.7%). Additionally, HSEsol heats of formation (with
respect to the constituents in their groundstate at ambient con-
ditions) are closer to experiment than the HSE06 values. For
the energetics of solids, HSEsol is thus seemingly a better
choice than HSE06. Finally, bands gaps are of comparable
quality as for the HSE06 functional.

In summary, we believe that HSEsol provides an im-
proved description of solids compared to HSE06. Specifically,
the prediction of lattice constants and heats of formations is
much improved.

A second issue discussed in this work is the ab initio
calculation of the zero-point vibrational effects on the atom-
ization energies and of the zero-point anharmonic expansion
contributions to the lattice constants and bulk moduli. In first
principles calculations, these effects are a priori not taken into
account for the calculation lattice constants and atomization
energies, hence, it would be most convenient to correct the ex-
perimental values for zero-point effects in order to precisely
determine the accuracy of a functional. The zero-point effect
on the lattice constants is on average about 0.3 % (LiH ex-
cluded) and is therefore in the range of error of accurate meth-
ods such as the HSEsol functional. In this work, we presented
zero-point anharmonic expansion effects calculated from
ab initio phonon calculations based on the quasi harmonic ap-
proximation. Although the evaluation of zero-point energies
is straightforward, to the best of our knowledge zero-point
anharmonic expansion effects have not yet been presented for
a larger set of solids. The values presented in this work can
be used as a generic correction for the experimental lattice
constants and bulk moduli.
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