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Time evolution of projected entangled pair states in the single-layer picture
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We propose an efficient algorithm for simulating quantum many-body systems in two spatial dimensions using
projected entangled pair states. This is done by approximating the environment, arising in the context of updating
tensors in the process of time evolution, using a single-layered tensor network structure. This significantly
reduces the computational costs and allows simulations in a larger submanifold of the Hilbert space as bounded
by the bond dimension of the tensor network. We present numerical evidence for stability of the method on an
antiferromagnetic isotropic Heisenberg model where good agreement is found with the available accurate results.
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I. INTRODUCTION

Tensor network formalisms have been very successful in
describing quantum many-body systems, and their theoretical
study is expected to play a crucial role for the understanding of
strongly correlated phenomena in condensed matter physics.
Despite the huge Hilbert space associated to the many-body
system, scaling exponentially with the number of particles, the
introduction of the density matrix renormalization group [1,2]
and matrix product states algorithms to simulate ground states
of one-dimensional quantum many-body systems [3,4] have
given strong evidence for the fact that physically interesting
states are confined to reside in a small submanifold of
the full Hilbert space. This observation was later proven
in the context of quantum information theory in terms of
entanglement properties of ground states. More specifically,
it was shown that ground states of one-dimensional systems
whose Hamiltonian is gapped are only weakly entangled
(they obey the area law) and can as such be faithfully and
efficiently simulated in terms of matrix product states [5].
The main point of the tensor network formalism is that
many-body quantum states are described in terms of local
tensors (or matrices) where the number of parameters scales
polynomially with the system size, and this in turn makes
the classical simulations tractable. The matrix product state
formalism was later generalized to two spatial dimensions
by the introduction of two different methods: the multiscale
entanglement renormalization ansatz (MERA) [6–8] and the
projected entangled pair states (PEPSs) [9,10], both of which
have later also been extended to fermionic systems [11–17].
Tensor network methods have a great potential in describing
two-dimensional quantum systems as they do not suffer from
the notorious “sign problem,” which makes frustrated spin
systems and fermionic spin systems essentially untractable by
quantum Monte Carlo methods. However, both the MERA and
PEPS suffer from relatively high computational complexity.
The performance of PEPS algorithms is furthermore hindered
by the instabilities that arise due to the lack of a normal form of
the PEPS structure; this has to be opposed to the optimization
using matrix product states in one dimension, where such
a normal form makes the environment essentially disappear
from the local optimization procedure.

The environment plays an important role in the context
of both density matrix renormalization group and tensor
network methods as it is responsible for a faithful projection of

quantum states to a bounded submanifold of the Hilbert space,
technically known as truncation. Still, the complexity of the
PEPS algorithm scales as O(D12) for open boundary con-
ditions, which essentially restricts the computations to small
bond dimensions of D � 5 for finite-size PEPS algorithms
(but D � 8 for infinite PEPS algorithms), which is much
smaller than in the one-dimensional systems, where one can
reach bond dimensions of a few thousands. Note, however,
that that much smaller bond dimensions should give already
reasonable results; this follows from the monogamy properties
of entanglement. Another crucial difficulty in simulating
two-dimensional many-body systems in terms of PEPSs is,
however, not only the computational complexity itself but
also instabilities that occur due to the lack of the normal
PEPS structure as is the case in one-dimensional systems.
It turns out that the objects in the PEPS algorithm become
less and less conditioned with increasing bond dimension, and
cutting ill-defined components immediately induces effective
reduction of the bond dimension. This requires drastic changes
to the PEPS simulation techniques, not so much in terms of
complexity but rather in terms of stability, calling for the
elimination of the double-layer structure, which is the root
of both stability and complexity issues. The first step in this
direction was made by not calculating the environment at all
but letting it evolve in the process of imaginary time evolution
[18]. Such an approach allows one to achieve very large bond
dimensions [19] but nevertheless seems to require a good initial
approximation and works best for translation-invariant PEPSs.

In this paper we provide answers to both questions con-
cerning the complexity and stability of the PEPS algorithms.
We propose a method to simulate the time evolution of the
PEPS using an approximate effective environment, avoiding
manipulations with the double-layer tensor network. The
approach is justified by the fact that the effective environment
indeed exists and reproduces the effect of the full environment
on the system exactly. Similarly as in the density matrix
renormalization group method, the environment is approx-
imated by a system of particles of an effective physical
dimension that faithfully describe the effect of the environment
to the system. The approach allows for high bond dimensions
D = 10 or more, although the calculation of energy and
other observables still requires the full calculation with the
double-layer tensor network structure. Alternatively, quantum
Monte Carlo sampling can be used to calculate the energy
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and expectation values of tensor networks with a large bond
dimension [19–21].

II. METHOD

A projected entangled pair state (PEPS) on a rectangular
m × n lattice of qubits is parametrized in terms of local tensors
A[i,j ] si,j for sites (i,j ) ∈ {1, . . . ,m} × {1, . . . ,n} with local
physical configurations si,j as

|�〉 =
∑

{si,j }
Tr(A[1,1]s1,1 . . . A[m,n]sm,n )|s1,1 . . . sm,n〉, (1)

where tensors are contracted along the corresponding hor-
izontal and vertical bonds between neighboring sites. The
bonds connecting tensors across horizontal and vertical bonds
between the sites are of dimension D such that A[i,j ] si,j ∈
CD×D×D×D . The symbol Tr denotes the “tensorial trace” and
implies contraction along the boundaries of the square. We
shall assume open boundary conditions such that Tr will refer
only to a map from a high-rank tensorial object (of unit size)
resulting from the contraction of the square to a scalar.

Let us consider a bipartite splitting of the m × n system
of qubits to a part consisting of a contiguous block of M

qubits and a part containing the remaining (mn − M) qubits.
The first part we shall call the subsystem S and the second
part the environment E. If the subsystem S is subject to
a local transformation resulting from, e.g., a Suzuki-Trotter
decomposition of the evolution operator, the internal bond
dimension between the qubits in the subsystem S will increase.
In order to keep the tensor network description (1) manageable,
the tensors A[i,j ] si,j for (i,j ) ∈ S must be truncated such that
no bond dimension exceeds the chosen bond dimension D.
This is where the environment E comes into play due to the
entanglement with the subsystem S.

In this section we shall first show how the environment can
be efficiently approximated by an effective environment that
has approximately the same effect on the subsystem S. In the
following we shall use the effective environment to manipulate
the subsystem S to lower the internal bond dimension. This is
the core element in the temporal evolution of PEPSs where
the evolution operator is decomposed using the Suzuki-Trotter
decomposition into a product of local gates.

For concreteness (and without lose of generality) let us
consider a bipartition of the system where the subsystem
S contains only two neighboring qubits in the horizontal
direction, let us call them µ ≡ (I,J ) and µ′ ≡ (I,J + 1),
which are for simplicity assumed not to be lying on the system
boundary. If the subsystem S had been subject to a nontrivial
local transformation, then the bond dimension between sites µ

and µ′ has increased which calls for a truncation with the help
of the environment consisting of all other sites. Let us contract
the tensor network of the environment tensors {A[ν]sν ,ν ∈ E},
which results in a joint environment tensor E[µ,µ′]sE where sE ≡
(sν,ν ∈ E) denotes the physical (many-body) configuration of
the environment sites. The PEPS (1) is now rewritten to a
compact form

|�〉 =
∑

s,s ′,sE

Tr(A[µ]sA[µ′] s ′
E[µ,µ′],sE )|s,s ′〉|sE〉. (2)

Despite exponentially large physical dimension of the envi-
ronment, sE ∈ {1,2, . . . ,2mn−2}, it is connected to the system
S only through six virtual bonds of dimension D, adding
up to a polynomially scaling bond dimension D6. Let us
now decompose the state of the whole system to two parts
by introducing an over complete set of states spanning the
subsystem S,

∣∣ψS
(luu′dd ′r)

〉 =
∑

s,s ′,c

A
[µ]s
l,c,u,dA

[µ′]s ′
c,r,u′,d ′ |s,s ′〉, (3)

whereas the environment is written as a superposition of
configuration states in the environment as |ψE

(luu′dd ′r)〉 =
∑

sE
E

[µ,µ′]sE
lruu′dd ′ |sE〉. The PEPS (2) now takes a simple form:

|�〉 =
D6∑

j=1

∣∣ψS
j

〉∣∣ψE
j

〉
with j ≡ (luu′dd ′r). (4)

Due to the entanglement between the subsystem S and the
environment, the former is in a mixed state given by the
reduced density matrix ρS = trE|�〉〈�|, which reads (up to
a normalization factor)

ρS ∝
∑

j,k

〈
ψE

k

∣∣ψE
j

〉∣∣ψS
j

〉 〈
ψS

k

∣∣. (5)

If one is to apply a local transformation to the subsystem S,
such as a Trotter gate, the only relevant quantity to consider is
the reduced density operator ρS , which in turn only depends
on the environment through inner products 〈ψE

k |ψE
j 〉 and not

the state of the environment itself. This leads to the conclusion
that, for a fixed set of basis states for the system S, there
exists an effective environment of physical dimension D6 that
exactly reproduces these inner products and is given by

∣∣ψE
j

〉 =
D6∑

sE=1

Ẽ
[µ,µ′]s̃E
j |s̃E〉, (6)

where Ẽ
[µ,µ′]

is obtained by an orthogonal factorization, e.g.,
E = QR where [E](sE),(lruu′dd ′) ≡ E

[µ,µ′]sE
lruu′dd ′ and Ẽ

[µ,µ′]s̃E
(lruu′dd ′) =

[R](s̃E),(lruu′dd ′); the unitary matrix Q is thus irrelevant. Such
an effective environment suggests that the approximate con-
traction of the tensor network should be done already on the
level of quantum states, i.e., in the single-layer picture, by
truncating not only the virtual but also the physical degrees of
freedom of lesser importance.

A. Single-layer contraction

Let us show how the effective environment Ẽ
[µ,µ′]

can be
determined efficiently as depicted in Fig. 1. The contraction
takes place on the single layer with a bond dimension D (as
compared to D2 for a double-layer structure) and results in
an effective environment consisting of particles with a chosen
effective physical dimension d̃ connected by virtual bonds of
dimension D̃. The tensor network is contracted row by row
(or column by column) starting from above and from below
such that the I th row is surrounded by a single row of effective
particles on both sides.

The first step in the contraction scheme is well known [22]
in the framework of tensor networks and involves contraction
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(a)

(b)

(c)

(d)

FIG. 1. Single-layer contraction of PEPS structure (a): Contrac-
tion of two rows over vertical bonds (b) is followed by the truncation
of the physical bond (c) resulting in the last graphic (d).

of two rows into a single row with an enlarged horizontal
dimension and essentially squared physical bond dimension.
In order to make the method efficient, the resulting row must
be truncated to a row with a bounded bond dimension D̃ and a
bounded physical dimension d̃ . Let us consider a single-layer
contraction where rows are merged row by row starting from
both upper and lowermost row. The result of contracting over
vertical virtual bonds connecting two rows results in a matrix
product state

|�〉 =
∑

sj ,vj

tr(R[1]s1v1 · · · R[m]smvm )|s1,v1, . . . ,sm,vm〉 (7)

with a threefold external bond dimension (sj ,vj ) ≡ (sj ,s
′
j ,vj ),

where sj and s ′
j are physical bonds at sites (1,j ) and (2,j ),

respectively, and vj is the vertical bond connecting site (2,j )
to site (3,j ). The matrix product state (7) with large matrices
R[j ]sj vj ∈ CD̃D×D̃D can easily be approximated by a matrix
product state |�̃〉

|�̃〉 =
∑

sj ,vj

tr(R̃[1]s1v1 · · · R̃[m]smvm )|s1,v1, . . . ,sm,vm〉 (8)

with smaller matrices R̃[j ]sj vj ∈ CD̃×D̃ such that the Euclid
distance ‖|�〉 − |�̃〉‖2 is minimal.

However, the physical bond dimension remains d̃d instead
of the initial d̃, and continuing the procedure would result in an
exponentially growing physical bond dimension. Therefore,
the physical bond dimension must be truncated as well as
depicted in Fig. 1(c). If the matrix product state (8) is written
in an equilibrated form [3], i.e., such that any given site in a
row is connected to unitary environments on both sides with
the Schmidt coefficients explicitly given on the corresponding
bonds, a very good approximation to the optimal splitting
(which is a quartic problem) can be found by truncating
the physical dimension at each site j independently by
finding matrices B̃[j ]s̃v for which

∑
s̃ B̃[j ]s̃v ⊗ B̃[j ]s̃v′∗ best

approximates
∑

s R̃[j ]sv ⊗ R̃[j ]sv′∗ according to the Frobenius
norm. Such matrices are easily found from the singular value
decomposition R̃,

R̃
[j ]sv
lr =

∑

s̃

U
[j ]vs̃

lr �
[j ]
s̃ V

[j ]
ss̃ , (9)

as B̃[j ]s̃v = U[j ]vs̃�
[j ]
s̃ . If all singular vectors of U were

retained where [U](lrv),s = U
[j ]vs

lr , such transformation would
be exact, while a good approximation to the environment
is obtained taking d̃ leading singular vectors of U in the
singular value decomposition (9). In the end, the two rows
are described as a single matrix product state with a physical

(b)(a) (c)

FIG. 2. Effective PEPS after the single-layer contraction (a).
Effective environmental sites on corner are absorbed in neighboring
sites (b). The environment is approximated by two disconnected
parts (c).

dimension d̃ and a vertical external bond dimension D̃, which
guarantees bounded matrices and thus makes the algorithm
efficient. While such approximation is not strictly optimal, it
nevertheless provides a very good approximation in practice.
The idea of truncating the physical degrees of freedom is not
new but it is intrinsic to, e.g., MERA [6] and also appears in
other renormalization algorithms [23].

The procedure from the previous paragraph is repeated for
all rows i < I and i > I starting from the upper (i = 1) and
the lower (i = m) boundary row, respectively, such that the
structure depicted in Fig. 1(d) is obtained. Eventually, the same
procedure is applied in the horizontal direction such that the
two sites of interest are surrounded by ten (or less for boundary
sites) effective environmental sites as shown in Fig. 2(a).
An effective PEPS structure obtained by this procedure
[Fig. 2(a)] can be further simplified by absorbing corner sites
to their neighbors [Fig. 2(b)], which is done in a trivial way
followed by an exact reduction of the effective physical bond
[Fig. 1(c)].

This way an effective environment Ẽ
[µ,µ′] sE is obtained

which is in a straightforward way related to the effective
double-layer norm operator N [µ,µ′] as

N [µ,µ′] =
∑

sE

E[µ,µ′]sE∗ ⊗ E[µ,µ′]sE , (10)

where its matrix elements represent the inner products
N [µ,µ′]

ij ≡ 〈ψE
i |ψE

j 〉 as defined previously. In the context of
the usual time evolution, the effective operator N is used to
determine a new set of tensor {A[µ],A[µ′]} after a Trotter step
has been applied on sites (µ,µ′).

Similarly to the double-layer contraction, the single-layer
contraction becomes exact for sufficiently large truncation
parameters D̃ and d̃, whereas good approximations can be
obtained already with d̃ = D̃ = D. On the other hand, this way
of calculating the environment is in many ways advantageous
to the conventional contraction of the double-layer tensor
network. The first advantage is the computational cost. While
the complexity of the conventional double-layer contraction
scales as O(D12), the costs of the single-layer truncation
only scale as O(D7). The second advantage is that by doing
the single-layer truncation, good estimates can be obtained
of how to perform gauge transformations on the original
environment sites connected to the subsystem S, that the
effective environment norm N becomes better conditioned,
which is of crucial importance for the stability of the algorithm.
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Let us now consider a Trotter gate T [µ,µ′] acting on two
neighboring sites (µ,µ′) and find a matrix product state �̃

defined as

|�̃〉 =
∑

s,s ′,sE

Tr(Ã
[µ]s

Ã
[µ′] s ′

E[µ,µ′],sE )|s,s ′〉|sE〉, (11)

which best approximates T µ,µ′ |�〉 such that the bond dimen-
sion between the tensors on sites (µ,µ′) is upper bounded by
D. In the conventional update scheme, the tensors {Ã[µ],Ã[µ′]}
are obtained by solving a multiquadratic optimization problem
in an iterative way which involves solving a linear system
of equations N

[µ]
eff A[µ] = bµ, where the N

[µ]
eff is an effective

norm operator for the site µ, obtained by contracting N [µ,µ′]

and tensors at the site µ′ (and similarly for site µ′) [24].
While the gauge transformations allow us to make N

[µ]
eff equal

to the identity in the case of matrix product states, this is
not possible in the case of PEPSs. Furthermore, the linear
system of equations in consideration is typically ill conditioned
due to emergence of very small eigenvalues in the effective
norm operator Neff leading to instabilities, especially for
large bond dimensions D = 3, 4, which become more and
more pronounced in the process of simulation, as we shall
show later. In the usual PEPS time evolution, this problem
is evaded by the projection to the “well” defined subspace
spanned by the singular vectors of Neff with respect to a cutoff
parameter ε determining the ratio between the smallest kept
and the maximal singular value. If the parameter is set too high,
the effective bond dimension is largely reduced, whereas in the
case of too low of a setting some ill-conditioned components
are also retained resulting in instabilities. While one could use
E[µ,µ′] obtained by the single-layer contraction to calculate
the effective norm operator (10) and then use the conventional
update scheme, that would still not solve the stability issues.

B. Environment splitting

In order to eliminate the stability problems, we will show
how to avoid calculations with the double-layer tensors such
as N defined (10). The core of the problems is that the
environment appears as a cyclic matrix product operator [see
Fig. 2(b)] and as such does not permit the standard way of

finding the optimal tensors {Ã[µ]s
,Ã

[µ′]s} using the singular
value decomposition. We know empirically, however, that the
environment of two sites in sufficiently large lattices can
be fairly well approximated by a product of two separate
environments [Fig. 2(c)], which is the idea we will pursue
in the following.

Let us rewrite the PEPS (2) as a matrix product state with
periodic boundaries (see Fig. 3) as

|�〉 =
∑

s

Tr(LsLA[µ]sA[µ′]s ′
RsR )|sL,s,s ′,sR〉, (12)

where [A[µ]s](lud)r = A
[µ]s
lrud , [A[µ′]s]l(udr) = A

[µ′]s
lrud , whereas Ls

and Rs correspond to the contraction of tensors belonging to
the left and right three sites in Fig. 2(b).

There is no way known to us how to found the optimal matri-
ces Ã[µ]s and A[µ′]s ′

exactly without employing the sweeping
optimization mechanism described in the previous section.
However, there are several ways to split the environment

(a) (b)

FIG. 3. A PEPS with an effective environment (a) [identical to
Fig. 2(b)] can be understood as a matrix product state with periodic
boundaries (b).

approximately, assuming that the internal correlations between
the two parts of the environment decay sufficiently fast. The
first possibility, which gives remarkably good results, is to
do the singular value decomposition of both parts of the
environment,

Lγ,sL,l =
∑

s̃

U
[L]
(γ,s),s̃�

[L]
s̃ V

[L]∗
l,s̃ , (13)

and then take the left approximate environment as

L̃s̃
l = �

[L]
s̃ V

[L]∗
l,s̃ . (14)

The right part of the environment is transformed in a similar
way. In practice, the singular value is done separately for values
of the internal environment bond γ , followed by the singular
value decomposition of the concatenated and weighted right
singular vectors, which is numerically favorable.

The approach in the previous paragraph is rather expensive
in our case due to the large physical dimension of the
environment sites (d̃3). For that reason, we will pursue in
an even simpler way by simply self-contracting the internal
environment bond for each part of the environment

L̃s̃
l =

∑

γ

Ls
γ,l, R̃s̃

r =
∑

γ

Rs
r,γ . (15)

The result is a single matrix product state with open boundary
conditions for which the optimal matrices Ã[µ]s and Ã[µ′]s ′

are
determined exactly by the singular value decomposition. From
numerical tests we observe that this approach is only slightly
less accurate than the one presented earlier. The total cost of
this step scales as O(D9), all coming from the singular-value
decomposition, but it is in practice negligible for relatively
small dimensions D ∼ 10 when compared to the single-layer
contraction part of the method involving fairly many steps
scaling as O(D7).

III. RESULTS

To illustrate the validity of the method we consider an
antiferromagnetic Heisenberg model on a square lattice

H =
∑

〈µν〉

(
σ x

µσ x
ν + σ y

µσ y
ν + σ z

µσ z
ν

)
(16)

for which the ground-state properties are accurately described
by the stochastic series expansion quantum Monte Carlo
method [25]. We perform the imaginary time evolution
|�(β)〉 = e−βH |�0〉 using the second-order Suzuki-Trotter
expansion where two-site local gates are applied to the PEPS,
followed by the truncation of the corresponding tensors.
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FIG. 4. (Color online) Imaginary time evolution of a random
initial state with bond dimension D = 2 under Hamiltonian (16) on
a 6 × 6 system using the usual PEPS time evolution algorithm (ITE)
and the single-layer time PEPS algorithm (SLTE). The Trotter time
step was set to 10−3. The D̃ = d̃ for the SLTE is given in the legends,
whereas D̃ = 64 for the ITE. The exact ground-state energy equals
E0 = −86.9.

First, we compare the proposed method to the usual imag-
inary time evolution of a PEPS [10] with a bond dimension
D = 2 on a system of 6 × 6 qubits. In the single-layer method
we choose D̃ = d̃ = 4,6, whereas the cutoff parameter in the
usual PEPS time evolution is set to Dcut = 64. In the latter, ill-
conditioned linear systems require another cutoff parameter,
which is chosen as ε = 10−10,10−6. The results in Fig. 4
confirm that the usual time evolution results in instabilities due
to the ill-conditioned linear problems, which are being solved
in the simulation. Increasing the cutoff parameter ε from 10−10

to 10−6 suppresses the nonphysical solutions and pushes the
simulation forward, although the accuracy of simulation steps
is reduced. Since the determination of the cutoff parameter
is heuristic procedure and inevitably results in either cutting
relevant degrees of freedom or keeping nonphysical ones, the
simulation eventually becomes unstable. This phenomenon is
even more pronounced with larger bond dimensions, where
the linear problems are of larger dimension, and it is even
more difficult to make a sensible compromise for ε. From the
technical point of view, the PEPS tensors are always rescaled
such that their two-norm is the same for all tensors. Increasing
the cutoff parameter D̃ to 128 did not help significantly for
ε = 10−10.

The single-layer time evolution, on the other hand, produces
no instabilities for arbitrarily long times, although the results
do oscillate slightly (not noticeable in the figure). Choosing
a larger effective bond dimensions D̃ and d̃ makes the
convergence faster but nevertheless results in an comparably
good final state. We note, however, that the single-layer time
evolution involves approximations, and slightly more accurate
results can be achieved (note a few points for ITE, ε = 10−6)
using the usual time evolution. The time needed to obtain the
results by the usual time evolution is by a factor of hundred
larger than the single-layer time evolution. Both approaches
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FIG. 5. (Color online) Absolute error of the energy per site for the
antiferromagnetic Heisenberg model (16) as a function of iteration
step and lattice sizes L × L. The results for D = 6 were obtained by
sampling.

were done using the same equally (non-)optimized code and
starting from the same random initial state. For smaller bond
dimensions, the single-layer approach can thus be used to
quickly obtain a very good initial approximation, which could
be further refined by some double-layer technique such as
minimizing the energy by sweeping [9].

Second, we test the method on larger systems and larger
bond dimensions. For a given bond dimension, the simulation
was running as long as the energy decay rate was sufficiently
high, and the results were used as the initial state for
simulations with a larger bond dimension D + 1. The growth
from D to D + 1 is intrinsic to the time evolution and does not
require any zero padding.

In Fig. 5 we present the results for the absolute error of the
energy per site for the antiferromagnetic Heisenberg model
(16) compared to the results obtained by the stochastic series
expansion, which we take as exact. We consider three system
sizes and bond dimensions up to D = 6. The single-layer
truncation parameters were in all cases chosen as D̃ = d̃ = D.
Note that this model is critical and is among fairly difficult
models to simulate using tensor network methods. From
the results for D � 5 where the energy is calculated by
the approximate contraction of the PEPS tensor network, it
is clearly visible that the energy decreases monotonically
until the plateau is reached, which justifies the single-
layer contraction scheme and the approximate environment
splitting.

We can easily simulate PEPS systems of 10 × 10 sites
with bond dimensions D = 10 or even more; however, the
extraction of expectation values such as the energy is nontrivial
unless we also transform the Hamiltonian itself by the
isometries generated in the single-layer contraction procedure
as known in the context of the density-matrix renormalization
group. For purposes of this study we rely on the double-layer
contraction scheme to calculate the energy, which, much more
than in the translation invariant infinite PEPS algorithm, is
computationally very costly and at present sensible only for

052321-5
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bond dimensions D ∼ 5. For that reason, the energies of the
PEPS with a large bond dimension D = 6 are calculated
by sampling using the Metropolis algorithm following the
fact [20,21] that

E =
∑

µ pµ
〈µ|H |�〉
〈µ|�〉∑

µ pµ

where pµ = |〈µ|�〉|2. (17)

Metropolis algorithm also allows us to sample not |�〉 but
rather P |Sz=0|�〉, where P |Sz=0 is a projection operator to
the zero total spin subsector. The benefit of the Metropolis
sampling is again the single-layer picture of the problem,
which avoids doubling the virtual bond dimension and thus
reduces the contraction cost. The downside, however, is that
one has to carefully choose the Metropolis updates; otherwise
the variance decays relatively slowly, as is visible from Fig. 5,
where the variance is still large. However, the results obtained
by sampling for D = 6 are consistent with the results for
D = 5 obtained by the approximate contraction of the tensor
network.

IV. CONCLUSION

We have presented an approximate method to simulate
quantum many-body systems on finite two-dimensional lat-
tices using PEPSs, where the contractions are only done on
the level of quantum states (single-layer tensor network).
This contrasts with the conventional PEPS simulation scheme,
where the simulations involve contractions on the level of
expectation values given by a double-layer tensor network with
a squared bond dimension, leading to a high computational

cost. The single-layer approach eliminates the stability issues
present in both the time evolution of PEPSs and the variational
PEPS algorithm to simulate ground states, which in both cases
originate from the ill-conditioned double-layer effective norm
operator. Unlike the usual time evolution, which is exact for
sufficiently large cutoff parameters and arbitrary precision
arithmetics, the single-layer time evolution is approximate due
to its simplified treatment of the environment. We compared
the single-layer time evolution to the usual time evolution for
PEPSs and observed comparable results in accuracy, whereas
the stability of the simulation is better in the single-layer
approach. We tested the method for larger bond dimensions on
an isotropic antiferromagnetic Heisenberg model on a square
lattice, where we again observed monotonic decrease of the
energy for bond dimensions D � 5, where it can be calculated
by contracting the PEPS approximately. We presented sampled
results for D = 6 that are consistent with the results for lower
bond dimensions. While we presented the results only for a
conceptually simple model, the method can easily be applied
to any spin or fermionic system in two spatial dimensions.
The extension of the single-layer contraction technique to the
latter case is straightforward where all arising sign factors can
be absorbed locally due to the well-defined parity of tensors
of the fermionic PEPS [11].
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