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Linear optical properties can be accurately calculated using the Bethe-Salpeter equation. After introducing a
suitable product basis for the electron-hole pairs, the Bethe-Salpeter equation is usually recast into a complex non-
Hermitian eigenvalue problem that is difficult to solve using standard eigenvalue solvers. In solid-state physics, it
is therefore common practice to neglect the problematic coupling between the positive- and negative-frequency
branches, reducing the problem to a Hermitian eigenvalue problem [Tamm-Dancoff approximation (TDA)]. We
use time-inversion symmetry to recast the full problem into a quadratic Hermitian eigenvalue problem, which
can be solved routinely using standard eigenvalue solvers even at a finite wave vector q. This allows us to access
the importance of the coupling between the positive- and negative-frequency branch for prototypical solids. As a
starting point for the Bethe-Salpeter calculations, we use self-consistent Green’s-function methods (GW), making
the present scheme entirely ab initio. We calculate the optical spectra of carbon (C), silicon (Si), lithium fluoride
(LiF), and the cyclic dimer Li2F2 and discuss why the differences between the TDA and the full solution are tiny.
However, at finite momentum transfer q, significant differences between the TDA and our exact treatment are
found. The origin of these differences is explained.
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I. INTRODUCTION

The study of optical properties of condensed matter and
molecular systems is a field of growing interest, not least
because of the emerging importance of renewable energies
and the requirement to accurately predict the optical properties
of novel composite materials and nanostructures. Time-
dependent density functional theory (TDDFT) has certainly
been the most widely used approach to date, although it
is not without problems. In TDDFT, an effective two-point
Dyson-like equation relates the density response function
of the noninteracting Kohn-Sham system χ0(r,r′,t − t ′) to
the (linear) density response function of the interacting
system χTD(r,r′,t − t ′): χTD = χ0 + χ0(v + fxc)χTD [1]. The
“interaction” terms are described by the Coulomb kernel
v and the exchange-correlation kernel fxc. Unfortunately,
though, the interaction kernel does not allow for a systematic
improvable expansion of the microscopic particle-particle
interaction as would be the case, e.g., for Green’s-function
methods. Furthermore, or rather resultantly, only few two-
point kernels, fxc(r,r′,t − t ′), yield a satisfactory description
of excitonic effects [2,3]. Among them, the most successful
approximate kernels are the nanoquanta kernel [4–6], the
bootstrap kernel of Sharma [7], and kernels based on the
jellium with a gap [8]. The nanoquanta kernel requires one
to explicitly calculate the two-electron four-orbital integrals,
making it almost as expensive as the methods discussed below,
whereas the latter two are yet not satisfactorily derived from
first principles and fail to describe bound excitons accurately
[7].

Alternative descriptions rely on the so-called Bethe-
Salpeter equation (BSE). After some manipulation, the
conventional Bethe-Salpeter equation—known from nuclear
theory—can be cast into a Dyson-like equation,

P = P0 + P0IP,

where P (1,2,3,4) is the four-point time-ordered polarization
propagator and I denotes the interaction kernel [9], and we use
the common notation for space and time points 1 = (r1,t1).
This equation resembles the response equation for χTD from
TDDFT, where P can be regarded to be a generalized linear
density matrix response function to a nonlocal perturbation
(cf. Eq. (63) in Ref. [10]).

Obviously, manipulation of such four-point quantities is
much more involved than the simpler TDDFT two-point
quantities. In practice, the polarization propagator P (1,2,3,4)
is expressed in a suitable two-orbital basis made up of all
relevant combinations of electron and hole pairs. Furthermore,
the electron-hole interaction kernel I is approximated by
the Coulomb kernel v and a static (or, more correctly,
instantaneous) screened interaction W . This static approx-
imation is commonly applied to simplify the calculations.
Inclusion of frequency-dependent kernels is possible and,
e.g., important for the description of double excitations,
but computationally much more demanding [11,12]. Also,
it has been shown that quasiparticle (QP) renormalization
effects cancel against dynamical effects in the interac-
tion kernel [11]. Hence, neglecting dynamical effects as
done throughout this work is expected to yield accurate
results.

The excitation energies are determined by calculating the
resolvent of the polarization propagator. This usually requires
the diagonalization of a large matrix, where the matrix
dimension equals the number of occupied states times the
number of unoccupied states. Formally, the solution of this
equation is then entirely equivalent to solving the so-called
Casida equation for time-dependent DFT and time-dependent
Hartree-Fock [13]. For hybrid functionals, the only difference
is that in Casida’s equation, the screened interaction W

between electrons and holes is replaced by the Coulomb kernel
v “screened” by the mixing parameter α. The mixing parameter
α determines how much of the nonlocal exchange is included
(in most cases, α = 1/4).
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In addition to the static approximation W (t,t ′) = W δ(t,t ′),
which is exactly observed for hybrid functionals, since the
Coulomb kernel there is, per construction, instantaneous, a
further approximation is commonly applied. To solve the
BSE/Casida equation, the response functions (be it the two-
point or four-point variants) are usually Fourier transformed
to frequency space, where they are symmetric, Reχ (ω) =
Reχ (−ω). In principle, terms between positive- and negative-
frequency branches exist, describing the annihilation of two
electron-hole pairs against each other, or the creation of two
electron-hole pairs as a result of vacuum fluctuations. These
diagrams and thus the interaction terms between the positive-
and negative-frequency branch are often neglected, an approx-
imation that is commonly referred to as the Tamm-Dancoff
approximation [14,15]. Applying the Tamm-Dancoff approx-
imation simplifies the computations tremendously, since the
original full interaction matrix is not Hermitian and hence
cannot be solved via standard “canned” eigenvalue solvers.
After decoupling the positive- and negative-frequency part,
however, the polarization propagator becomes a Hermitian
matrix, for which the resolvent can be easily calculated. It
is common practice to consider only the resonant part of the
polarization propagator, and we refer to it here as the Tamm-
Dancoff approximation (TDA). In the physics community, the
full solution is usually determined by iterative solvers or time-
evolution algorithms [16,17], whereas in quantum chemistry,
it is common to square the original problem [18,19]. For solid-
state problems, the equivalent path has not yet been explored,
essentially because the involved matrices are complex instead
of symmetric, and it is not immediately obvious how to
generalize the equations used in quantum chemistry to the
complex case. By employing time-inversion symmetry and
mapping Bloch wave vectors k to −k in the negative-frequency
branch, we circumvent this problem and show that a similar
approach as in quantum chemistry can be used. This allows one
to calculate all eigenvalues and eigenvectors of the two-particle
problem with an effort that is only about 2–3 times larger
than that for the Hermitian Tamm-Dancoff approximation.
This opens a route to efficient and convenient calculations
beyond Tamm-Dancoff with full access to all eigenvectors.
We test the present approach for four simple systems, namely
silicon (Si), carbon (C), lithium fluoride (LiF), and cyclic
lithium fluoride dimer (Li2F2). We find essentially no (Si, C,
LiF) or little (Li2F2) difference between the Tamm-Dancoff
approximation and the full approach, except for small errors
in the static dielectric constant. However, the Tamm-Dancoff
approximation clearly fails in the case of finite momentum
transfer, and we give evidence for silicon by calculating the
macroscopic dielectric function within TDA and beyond TDA
at finite q. Before discussing the present theoretical approach
in detail, we present a concise derivation of what is called the
BSE/Casida equation. This includes a brief formal rederivation
and introduction of the squared problem. Our results are
then presented in Sec. IV. The present calculations are based
on an entirely parameter-free description, in particular, the
preceding GW calculations are state of the art. They are
performed self-consistently in the Green’s function G, using
the quasiparticle (QP) GW method [20]. This allows one to
access how well state-of-the-art procedures reproduce the
experiment.

II. THEORY

A. Four-point two-particle propagator and
Bethe-Salpeter equation

We consider a nonrelativistic N -electron system with
Hilbert space HN = ∧NH,H = L2 and the standard Hamil-
tonian Ĥ = Ĥ0 + V̂ , where Ĥ0 corresponds to the sum of
a kinetic term and a lattice periodic potential, whereas V̂

denotes the Coulomb interaction. We assume �0 to be the
nondegenerate ground state of Ĥ with energy EN

0 . The four-
point propagator is defined [21,22] as (� is set to 1 throughout
this paper)

iG4(r1t1,r2t2,r3t3,r4t4)

= 〈�0|T [ψ̂(r1t1)ψ̂(r2t2)ψ̂†(r4t4)ψ̂†(r3t3)]|�0〉, (1)

where T denotes the time-ordering operator and ψ̂ (†)(rt)
denotes the field operators, with the time dependence induced
by the Heisenberg picture. The free four-point propagator G4

0

is defined analogously in terms of Ĥ0 and the corresponding
ground state �0 (again supposed to be nondegenerate). The
Wick theorem [21] for the free 2n-point Green’s functions
implies, for the free four-point propagator, the equality

G4
0(1,2,3,4) = G0(1,3)G0(2,4) − G0(1,4)G0(2,3), (2)

where G0(1,2) corresponds to the free propagator. For the full
four-point propagator, one therefore usually makes the ansatz
[22]

G4(1,2,3,4) = G(1,3)G(2,4) − G(1,4)G(2,3)

− i

∫
d(5,6,7,8)G(1,5)G(2,6)

×	(5,6,7,8)G(7,3)G(8,4), (3)

where the so-called scattering amplitude 	 is implicitly defined
by this ansatz. G(1,2) denotes the Green’s function defined by

iG(rt,r′t ′) = 〈�0|T [ψ̂(rt)ψ̂†(r′t ′)]|�0〉. (4)

A Feynman graph analysis shows that the scattering amplitude
	 is the sum over all amputated, skeleton graphs that can be
put between two electron-hole pairs. If one defines a subsum
I which corresponds to all graphs that are irreducible in the
electron-hole channel, then one necessarily has

	 = I + (i)IGGI + (i)2IGGIGGI + · · · ,

implying

	(1,2,3,4) = I (1,2,3,4) + i

∫
d(5,6,7,8)I (1,5,3,6)

×G(6,7)G(8,5)	(7,2,8,4).

This is the well-known Bethe-Salpeter equation [22].

B. Dyson-like equation for two-particle propagator

Introducing

L(1,2,3,4) = G4(1,2,3,4) − G(1,3)G(2,4), (5)
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FIG. 1. Four-point formalism for matrix multiplication:

(AB)(1,2,3,4)
def= ∫

d(5,6) A(1,5,3,6)B(6,2,5,4). The index order
is chosen to yield a convenient order in the two-electron four orbital
integrals.

one shows easily by the Bethe-Salpeter equation for 	 that L

fulfills a Dyson-like equation of the form

L(1,2,3,4) = L0(1,2,3,4) + i

∫
d(5,6,7,8)

×L0(1,5,3,6)I (6,7,5,8)L(8,2,7,4), (6)

where L0 denotes the “free part” −G(1,4)G(2,3). Inherent to
the above four-point matrix notation is the definition of the
matrix product of four-point quantities (see Fig. 1) as

(AB)(1,2,3,4)
def=

∫
d(5,6)A(1,5,3,6)B(6,2,5,4). (7)

As stressed in Ref. [9], the simplest contribution to the
interaction kernel I , which can be written as I = V + Ĩ , is
the Coulomb interaction V . All other interaction diagrams are
then obtained by approximating Ĩ , which means the inclusion
of certain classes of Feynman diagrams. One class of diagrams
is the particle-hole ladder diagrams that includes the so-called
W approximation of Ĩ , where W is the screened interaction
known from Hedin’s equations [23], but given in a four-point
notation:

I (1,2,3,4) ≈ V (1,2,3,4) − W (2,1,3,4), (8)

V (1,2,3,4) := v(1,4+)δ(4,2+)δ(3,1+), (9)

W (1,2,3,4) := w(1,4+)δ(4,2+)δ(3,1+),

v(1,4+) := v(r1 − r4)δ(t1 − t+4 ),
(10)

w(1,4+) ≈ w̃(r1,r4; ω = 0)δ(t1 − t+4 ),

δ(1,2+) = δ(r1 − r2)δ(t1 − t+2 ).

The W approximation is equivalent to the second iteration
of Hedin’s equations [23] with the approximation δ
/δG ≈
W for the (irreducible) vertex function. This approximation
further determines a Bethe-Salpeter equation for the irre-
ducible polarizability (cf. Eq. (13.19c) in Ref. [23]), with W

approximated in the random-phase approximation.
Notice that we assume here and in the following that

both interactions are instantaneous and involve equal times
δ(t1 − t4)δ(t4 − t2)δ(t3 − t1). This allows for a significant
simplification. In particular, integrals of the form∫

d(5,6,7,8)L0(1,5,3,6)I (6,7,5,8)L(8,2,7,4) (11)

simplify to∫
dt ′L0(t1,t

′,t3,t ′+)(v − w̃)L(t ′,t2,t ′+,t4), (12)

where the spatial indices have been dropped for notational
simplicity, and the interaction I possesses no frequency
dependence. The crucial point is that the time limits t3 → t+1
and t4 → t+2 can now be performed under the integral, and
Eq. (12) then reads∫

dt ′L0(t1,t
′,t+1 ,t ′+)(v − w̃)L(t ′,t2,t ′+,t+2 ). (13)

This suggests that two time indices suffice to solve the
BSE/Casida equation, as long as the interaction is entirely
static or more precisely instantaneous.

C. Polarization propagator and density fluctuation
response function

The four-point propagator L is a computationally de-
manding object in that it depends on four arguments involv-
ing three time differences. As discussed above, the static
approximation in terms of V [Eq. (9)] and W [Eq. (10)]
allows one to reduce L to a quantity containing only the
difference between two time arguments t1 and t2 and four
spatial arguments. Henceforth, we will call this quantity
the time-reduced four-point polarization propagator or den-
sity fluctuation response function P (r1,r2,r3,r4; t1 − t2) =
iL(r1t1,r2t2,r3t

+
1 ,r4t

+
2 ) and stick consistently with the nota-

tion of previous publications [24–26], except for a factor i.
The relation to the (time-ordered) density-density fluctuation
response function χ (1,2) is obtained by contraction of spatial
arguments, i.e., r3 → r1 and r4 → r2 or, simply, χ (1,2) =
P (1,2,1+,2+):

χ (rt,r′t ′) = −i〈�0|T [ρ̂1(rt)ρ̂1(r′t′)]|�0〉, (14)

where the density fluctuation operator is defined as

ρ̂1(rt) = ψ̂†(rt)ψ̂(rt) − 〈ψ̂†(rt)ψ̂(rt)〉
= ψ̂†(rt)ψ̂(rt) − n(r), (15)

and n(r) is the ground-state density. The relation between P

and χ can be straightforwardly shown using Eqs. (1), (4), and
(5).

The free four-point polarization propagator P0 is given in
the frequency domain by a Lehmann representation, which
reads

P0(r1,r2,r3,r4,ω) =
∑

a∈unocc
i∈occ

ϕa(r1)ϕ∗
i (r3)ϕi(r2)ϕ∗

a (r4)

ω − (εa − εi) + iη

+
∑

a∈unocc
i∈occ

ϕi(r1)ϕ∗
a (r3)ϕa(r2)ϕ∗

i (r4)

−ω − (εa − εi) + iη
.

(16)

Here and in the following, we have disregarded the spin: for
the nonmagnetic case, a factor 2 must be added, whereas in the
spin-polarized case, an additional sum over spins needs to be
included. The set of orbitals {ϕi(r)} constitutes an orthogonal
basis and P0 can be reformulated as

P0(r1,r2,r3,r4,ω)

=
∑

k,l,m,n

ϕk(r1)ϕ∗
l (r3)ϕm(r2)ϕ∗

n(r4) P km
0 ln(ω), (17)
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where the sum goes over all states k,l,m,n. The matrix
elements P km

0 ln(ω) take the simple form

P km
0 ln(ω) = nm(1 − nk) − (1 − nm)nk

ω − (εk − εm) + sgn(εk − εm)iη
δn
k δ

m
l , (18)

with the occupation numbers nm,k = ni = 〈�0|n̂i |�0〉 =
〈�0|a†

i ai |�0〉 referring to the noninteracting ground state
�0, i.e., ni = 1 for ϕi ∈ {ϕi1 , . . . ,ϕiN } where �0 =
1/

√
N ! det[ϕik (rl)], and nk,m = na = 0 otherwise. We use an

index notation that takes into account the different transfor-
mation behavior under changes of the basis in the one-particle
Hilbert space [9]. That means if one performs a change of basis
in the one-particle Hilbert space given by a unitary matrix U ,
then the lower indices transform with U and the upper indices
transform with U ∗. For later purposes, we note that the matrix
elements of the Coulomb potential are given (as usual) by

V mn
kl = 〈mn|V |kl〉 = 〈ϕmϕn|V |ϕkϕl〉

=
∫

drdr′ϕ∗
m(r)ϕ∗

n(r′)v(r,r′)ϕk(r)ϕl(r′) (19)

and the exchange terms are correspondingly defined as

Wmn
kl = 〈nm|W |kl〉 = 〈ϕnϕm|W |ϕkϕl〉

=
∫

drdr′ϕ∗
n(r)ϕ∗

m(r′)w(r,r′)ϕk(r)ϕl(r′). (20)

D. Solving the Bethe-Salpeter equation

According to the previous two sections, one needs to solve
the Bethe-Salpeter equation for P in the frequency domain
given by a Dyson-like equation [compare Eq. (6)],

P (ω) = P0(ω) + P0(ω)I P (ω), (21)

where I is given by Eq. (8). It is natural to discretize the
one-particle Hilbert space by restricting it to the span of the
N orbitals occupied in the noninteracting reference ground
state (given by a Slater determinant) and a (finite) number of
M unoccupied orbitals (corresponding to excitations out
of the reference ground state). This induces a discretization
of the fermionic Fock space F+(H) over H. Correspondingly,
P , V , and W turn into finite matrices in the orbital indices. In
particular, P (ω) is now a frequency-dependent matrix. Before
continuing, we note that the Dyson equation implies that P

can be chosen to span the exact same Hilbert space as P0,
which can be shown easily by iterating the Dyson equation
[Eq. (21)]. It is hence convenient to restrict the two-particle
space to a subspace B of products of M unoccupied orbitals a,
and N occupied orbitals i, ϕi ⊗ ϕ∗

a ∈ B0 [first term in Eq. (16)]
and ϕa ⊗ ϕ∗

i ∈ B′
0 [second term in Eq. (16)]. The dimension

of B is 2MN and the subspace can be decomposed in terms of
B = B0 ⊕ B′

0 with dim B0 = dim B′
0 = MN . With this choice,

P (ω) can be simply calculated according to

P (ω) = [P0(ω)−1 − I ]−1. (22)

Introducing the resonant �r
K and antiresonant �a

K two-orbital
states (spanning B0 and B′

0, respectively),

�r
K (r,r′) := ϕi(r)ϕ∗

a (r′),

�a
K (r,r′) := ϕa(r)ϕ∗

i (r′),
(23)

with the superindex K = (i,a) (i ∈ occ,a ∈ unocc), the static
interaction kernel I [cf. Eq. (8)] reduces to coupling matrix
elements, where the resonant-resonant coupling reads

H(r,r)
KJ :=

∫
dr1 . . . dr4 �r

K
∗(r2,r4)I (r1,r2,r3,r4)�r

J (r3,r1).

The other interactions are defined analogously. With the
restriction of Eq. (8) and the definition of Eqs. (19) and (20), we
can write all coupling terms in the following compact manner:

H(r,r)
KJ = 〈bi|V |ja〉 − 〈bi|W |aj 〉, (24)

H(a,a)
KJ = 〈ja|V |bi〉 − 〈ja|W |ib〉, (25)

H(r,a)
KJ = 〈ji|V |ba〉 − 〈ji|W |ab〉, (26)

H(a,r)
KJ = 〈ba|V |ji〉 − 〈ba|W |ij 〉, (27)

with the second superindex J = (j,b) (j ∈ occ,b ∈ unocc).
Using a graphical representation and considering the explicit
time ordering, as commonly adopted for Goldstone diagrams,
the first term in Eq. (24) describes an annihilation process
[Fig. 2(a)] with the subsequent creation of a new e-h pair,
whereas the second term involves the scattering process
between an electron and a hole [Fig. 2(c)]. The same processes
also appear in Eq. (25) and result from the complex-conjugated
pair. The third coupling term [Eq. (26)] involves matrix
elements of the interaction I between resonant and antires-
onant two-orbital states. Here, the first term corresponds to
an annihilation of an e-h pair against a conjugated h-e pair
[Fig. 2(b)], and the second term describes the exchange process
where the electron in the first pair annihilates against the hole in
the second pair (and vice versa) [Fig. 2(d)]. The final equation
describes the same process for the conjugated pairs.

The inverse of P (ω) is rewritten in a matrix form,(
ω1 0
0 −ω1

)
︸ ︷︷ ︸

ω�

+
(

P −1
0 (0) 0

0 P −1
0 (0)

)

−
(
H(r,r) H(r,a)

H(r,a)∗ H(a,a)

)
, (28)

where P0(0) is the frequency-independent part of the previ-
ously defined time-reduced free four-point propagator involv-
ing only energy differences:(

P −1
0

)K

J
(0) = −(εa − εi)δ

a
b δ

i
j . (29)

It is common to define the matrices A and B as(
A B

B∗ A∗

)
=

(
H(r,r) H(r,a)

H(r,a)∗ H(r,r)∗

)
−

(
P −1

0 (0) 0
0 P −1

0 (0)

)
.

(30)

To determine P (ω) in Eq. (22), one needs to determine the
poles of P0(ω)−1 − I , i.e., those frequencies � where the
determinant of Eq. (28) is zero valued [27]. Hence one has
to solve the resultant generalized eigenvalue problem (EVP),(

A B

B∗ A∗

)(
X

Y

)
= ��

(
X

Y

)
. (31)
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FIG. 2. Graphical representation (Goldstone diagrams) for two-particle interactions through the Coulomb potential V (wiggly line) and the
static screened interaction W (double wiggly line) between electron (→) and hole (←), where a/b refers to unoccupied and i/j to occupied
states. (a) + (c) corresponds to the resonant-resonant coupling between incoming e-h pairs (a,i) and outgoing e-h pairs (b,j ). (a) The e-h
pair (a,i) is destroyed at point r, annihilating into a new pair (b,j ) at point r′. (c) Scattering process of (a,i) into (b,j ). (b)+(d) describe the
coupling between resonant and antiresonant e-h pairs. (b) Incoming pair (a,i) with positive frequency annihilates with pair (b,j ) associated
with negative frequency. (d) The e-h pair (a,i) scatters into pair (b,j ) associated with negative frequency.

For real-valued orbitals in the one-particle Hilbert space, the
matrices A and B are real valued and the expression can
be fairly easily recast into a symmetric eigenvalue problem
[18,19]. This is, however, not possible in the present case,
since B and A are complex, albeit Hermitian, matrices.

As we work in a Bloch basis, we can instead proceed along
the following lines. If we are interested in the response function
at the wave vector q = 0, only pairs of states K = (i,a) at the
same wave vectors in the Brillouin zone need to be considered,
K = (ik,ak). The superindex now consists of two orbital
indices i and a and an additional index for the wave vector k.

Time-inversion symmetry implies that for a Bloch eigen-
state ϕnk of a one-particle Hamiltonian with eigenvalue εn(k),
the orbital ϕn,−k(r) = ϕ∗

nk(r) is also an eigenfunction with the
same eigenvalue. We use this property to replace orbitals at k
by those at −k in the antiresonant two-particle basis. As a first
simple example, we consider the independent particle case P0

[Eq. (16)],∑
k

a∈unocc
i∈occ

wk
ϕak(r1)ϕ∗

ik(r3)ϕik(r2)ϕ∗
ak(r4)

ω − (εak − εik) + iη

+
∑

k′
a∈unocc
i∈occ

wk′
ϕik′(r1)ϕ∗

ak′(r3)ϕak′(r2)ϕ∗
ik′(r4)

−ω − (εak′ − εik′) + iη
,

where wk are k-point weights summing to 1. By replacing
ϕn,k′ (r) = ϕ∗

n−k′ (r) = ϕ∗
nk(r), one immediately obtains, for the

antiresonant part,∑
k

a∈unocc
i∈occ

wk
ϕ∗

ik(r1)ϕak(r3)ϕ∗
ak(r2)ϕik(r4)

−ω − (εak′ − εik′) + iη
,

which is the resonant term with the position coordinates
exchanged. A convenient choice, for the resonant basis and

the antiresonant basis, is therefore given by

�r
K (r,r′) := ϕik(r)ϕ∗

ak(r′),

�a
K (r,r′) := ϕ∗

ak(r)ϕik(r′).
(32)

It is then easy to show that in this basis, H is of the form(
A B

B A

)
, (33)

where A and B are still Hermitian matrices. For instance, the
Hartree term in the antiresonant-antiresonant block becomes
(commas are introduced to separate the two bra and two ket
states)

H(a,a)
KJ = 〈j−k,a−k′|v|b−k,i−k′〉

= 〈bk,ik′|v|jk,ak′〉 = H(r,r)
KJ .

Similar relations apply to the exchange term involving W , as
well as the coupling terms between resonant and antiresonant
contributions. For the Hartree term, even the antiresonant-
resonant block becomes identical to the resonant-resonant
block,

〈j−k,ik′|v|b−k,ak′〉 = H(r,r)
KJ ,

i.e., as in TDA, a single calculation suffices to set up all terms
involving the bare Coulomb operator V , and the A and B

matrices only differ by the diagonal matrix A = B + P0(0)−1.
For the random-phase approximation (RPA) and TDDFT case,
the setup of the matrices is therefore not more expensive than
for TDA calculations. Only for the exchange term involving
W additional matrix elements corresponding to Fig. 2(d) need
to be calculated.

The solution to the generalized eigenvalue problem
[Eq. (31)] can be performed by a method discussed, e.g., by
Stratman et al. [18] and in great detail by Furche [19,28]. We
summarize some aspects briefly.

Introducing a partition of the eigenvector � in B as(
X�

Y�

)
, (34)
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where X� ∈ B0 and Y� ∈ B′
0, the generalized EVP reads(

A B

B A

)(
X�

Y�

)
= ��

(
1 0
0 −1

)(
X�

Y�

)
. (35)

This is equivalent to the system of equations

AX� + BY� = ��X�,

−BX� − AY� = ��Y�,
(36)

or

(A − B)(X� − Y�) = ��(X� + Y�), (37)

(A + B)(X� + Y�) = ��(X� − Y�). (38)

From Eqs. (37) and (38), one obtains the relation

(A − B)(A + B)1(X� + Y�) = �2
� (X� + Y�). (39)

The advantage of Eq. (39) is that it is formulated in B0 ex-
clusively; however, it still does not correspond to a Hermitian
eigenvalue problem. This can be cured by introducing the
identify 1 = (A − B)

1
2 (A − B)−

1
2 in Eq. (39) and defining

S = (A − B)
1
2 (A + B)(A − B)

1
2 , (40)

z� = (A − B)−
1
2 (X� + Y�), (41)

such that

S z� = �2
� z�. (42)

Note that all eigenvalues come in pairs, with positive and
negative frequencies ±�� corresponding to the resonant and
antiresonant part of the response function. On the other hand,
from Eqs. (37) and (41), it follows

(X� − Y�) = (A − B)−
1
2 �� z�. (43)

This equation and Eq. (41) allow one to determine X� and
Y�. However, the “super” vector (X�,Y�) is not necessarily
normalized [i.e., (X�,Y�)�(X�,Y�)∗ �= 1], since the eigen-
vectors of Eq. (42) are only defined but for a scaling constant.
Correct normalization can be achieved by multiplying each
eigenvector z� of the squared problem with a suitable scaling
factor z� → |��|− 1

2 z� before solving the two linear equations
[Eqs. (41) and (43)]:

(X� + Y�) = (A − B)
1
2 |��|− 1

2︸ ︷︷ ︸
C

z�, (44)

(X� − Y�) = ± (A − B)−
1
2 |��| 1

2︸ ︷︷ ︸
C ′

z�, (45)

where the plus sign applies to positive eigenvalues +�� and
the minus sign applies to the negative eigenvalues −��. It is
then simple to prove that [28]

(X� + Y�) · (X� − Y�)∗ = 1, (46)

X�Y ∗
� − Y�X∗

� = 0, (47)

and eventually (X�,Y�)�(X�,Y�)∗ = 1, if the vectors z�

form an orthonormal set. The solution of the squared EVP

[Eq. (42)] yields two frequencies ±��, and the two corre-
sponding eigenvectors (X±

�,Y±
� ) read(

X±
�

Y±
�

)
= 1

2

(
(C ± C ′)z�

(C ∓ C ′)z�

)
. (48)

We note, however, that in most cases, it suffices to calculate
X+

� + Y+
� as shown below for the polarizability. This sum of

the eigenvectors can be trivially obtained from Eq. (44).
A few points need to be emphasized here. (i) The matrices

A and B are both Hermitian. (ii) To determine (A − B)1/2

[Eq. (42)], (A − B) needs to be positive definite to make its
square roots well defined and single valued. Since A and B

are Hermitian, so is (A − B). Furthermore, the eigenvalues
of (A − B) are not only real, but also positive, because
positive definiteness of (A ± B) guarantees the stability of the
reference state |�0〉 from which excitations are considered
[28–30]. For TDDFT, if |�0〉 is the (stable) ground state,
(A ± B) is positive definite and thus the excitation energies ��

are positive. Of course for GW+BSE, the positive definiteness
is not guaranteed as the ground state is not determined fully
consistently with the subsequent BSE calculations. However,
in all cases considered here, the solutions were well defined
and eigenvalues of (A − B) are checked to be positive.

A final comment on the RPA and TDDFT case is appro-
priate here. As emphasized before, for RPA and TDDFT,
the difference matrix (A − B) is a simple diagonal matrix
with the eigenvalue differences between the conduction- and
valence-band energies in the diagonal [compare Eq. (29)].
This shows that the matrix is always positive definite, and the
calculation of (A − B)1/2 can be done at essentially no extra
cost. Hence, RPA and TDDFT calculations using Casida’s
equation beyond TDA can be done at no extra cost compared
to TDA.

The macroscopic dielectric function (DF) εM is finally
obtained from the polarizability P [31],

εM(q,ω) = 1 − lim
q→0

[
v(q)

∫
dr1dr2e

−iq(r1−r2)

×P (r1,r2,r1,r2,ω)

]
. (49)

By exploiting the orbital representation [Eq. (17)] and the
spectral representation (cf. (A18) in Ref. [28]) of P (ω), the
DF [31] reads, in terms of the eigenvectors (X+

�,Y+
� ),

εM(q,ω) = 1 + lim
q→0

v(q)
∑
�

(
1

�� − ω
+ 1

�� + ω

)

×
{∑

k

wk

∑
a,i

〈ak|eiq·r|ik〉X+(i,a)k
�

+ 〈i −k|eiq·r|a −k〉Y+(a,i)−k
�

}
{c.c.}. (50)

Using time-inversion symmetry, the transition probabilities
(term in curly brackets) simplify to∑

k

wk

∑
a,i

〈ak|eiq·r|ik〉[X+(i,a)k
� + Y

+(a,i)−k
�

]
. (51)
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Equation (50) assumes that the q = 0 component of Coulomb
kernel v has been set to zero, when evaluating the matrix
elements of V in Eqs. (24)–(27), as discussed in detail in
Ref. [31]. One can derive this result by observing that the
relation between the reducible (two-point) polarizability χ and
independent particle polarizability χ0 is given by

χ−1 = χ−1
0 − v̄︸ ︷︷ ︸

χ̄−1

−v0. (52)

Here, v0 is the (usually diverging) Coulomb kernel at the wave
vector q = 0, and v̄ is the rest. The standard equation for the
macroscopic dielectric constant is

ε−1
M = (1 + vχ )00 (53)

= (1 + v0(χ̄−1 − v0)−1)00, (54)

where the subindex 00 implies evaluation of the matrix
elements at q = 0. Straightforward algebraic manipulation of
the term after the second equation sign yields

εM = 1 − v0χ̄ , (55)

which corresponds to Eq. (50). This equation is most likely
used in most solid-state BSE codes to evaluate the dielectric
constant. It is important to note that the summation is over
positive- and negative-frequency branches, thus restoring the
sum of the resonant and antiresonant part, even in the TDA
case. Strictly speaking, such an implementation goes beyond
what the TDA does (entirely neglecting one frequency branch).

E. Dielectric function at finite q vectors

For finite momentum transfer q, the two-orbital basis reads

�r
Kq

(r,r′) := ϕi,k(r)ϕ∗
a,k+q(r′),

�a
Kq

(r,r′) := ϕa,k′(r)ϕ∗
i,k′+q(r′) = ϕ∗

a,k+q(r)ϕi,k(r′),
(56)

where we have used time-inversion symmetry in the second
line. With the definition given by Eq. (56), matrix elements
of H are set up in a similar manner as in Eqs. (24)–(27).
For the sake of clarity, we will show the relation for the
antiresonant-antiresonant coupling pair for the Hartree kernel
V . At finite momentum transfer, the resonant-resonant matrix
element reads

H(r,r)
KqJq

= 〈bk + q,ik′|vq|jk,ak′ + q〉. (57)

Replacing the momenta in the antiresonant two-orbital state
�a

Kq
with k → −k and k + q → −k − q, we find

H(a,a)
KqJq

= 〈j−k − q,a−k′|v−q|b−k,i−k′ − q〉
= 〈bk,ik′ + q|v−q|jk + q,ak′〉
= 〈bk + q,ik′|vq|jk,ak′ + q〉
= H(r,r)

KqJq
.

The same relation also holds for matrix elements involving W ,
and the entire matrix H has the same algebraic structure as
in the case of vanishing q vectors [Eq. (33)]. The dielectric

function is finally evaluated as

ε−1
M (q,ω) = 1 − v(q)

∑
�

(
1

�� − ω
− 1

�� + ω

)

×
{∑

k

wk

∑
a,i

〈ak + q|eiq·r|ik〉

×(
X

+(i,a)k+q
� + Y

+(a,i)−k−q
�

)}{c.c.}. (58)

Note that at finite q, the full Coulomb kernel is used without
disregarding any component; we thus rely on the standard
expression for the macroscopic dielectric function (53). If the
q = 0 component of Coulomb kernel v had not been set to
zero in the previous section, one would have to use Eq. (58)
as well (compare Eqs. (2.7) and (2.9) in [31]). The divergence
of the Coulomb kernel is then canceled by the orthogonality
relation between occupied and unoccupied states, and k·p
perturbation theory must be used to obtain the long-wavelength
contributions to the two-electron four-orbital integrals of the
Coulomb kernel (for the projector augmented-wave (PAW)
method, see, e.g., [32]). Our RPA-GW implementation, for
instance, uses Eqs. (53) and (58) to determine the dielectric
matrix, whereas the BSE code relies on the simpler-to-
implement relation (50). Both yield exactly identical results as
both relations are algebraically equivalent (compare previous
section). As a matter of fact, at any momentum transfer q,
both codes (GW and BSE) yield exactly identical results for
the RPA (the GW code uses two-point polarizabilities and can
be applied only to the RPA).

A subtle point, however, needs to be considered. In the TDA
case, Eqs. (50) and (58) are no longer equivalent, with the first
equation yielding significantly more accurate results. Equation
(50) disregards the coupling at all wave vectors different from
q = 0, but reintroduces the antiresonant contribution exactly
in the final evaluation of the macroscopic dielectric constant;
furthermore, the equation is additive in dielectric constant.
Equation (58) is additive in the inverse of the dielectric
constant, and if εM needs to be determined, it is not obvious
whether the antiresonant part should be added before or after
inversion. In both cases, TDA results differ from Eq. (50) as
well as from the full treatment. As to why Eq. (50) is more
accurate, we return to the derivation at the end of the previous
section. Using (55), one first calculates χ̄−1 = χ−1

0 − v̄,
neglecting the resonant-antiresonant coupling. However, when
determining εM, the fully restored χ̄ is used, implying that the
resonant-antiresonant coupling at q = 0 is exactly accounted
for. Equations (53) and (58) are fundamentally different; they
include the self-consistent response of the electrons to their
own field from the outset, as Eq. (52) can be rephrased as

χ = χ0 + χ0vχ0 + χ0vχ0vχ0 + · · · .

If only the resonant part is included in χ0, the self-consistent
response to the incorrect (resonant only) part is included in the
evaluation of the polarization propagator. There is no way to
restore the correct response including the antiresonant part
a posteriori. Thus, Eq. (50) is preferable to Eq. (58) and
goes beyond TDA, since it correctly includes beyond-TDA
contributions at q = 0. To resolve this issue at finite q, one
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TABLE I. PAW potentials used in the present work. The columns
rs,p,d specify the core radii for each angular quantum number in
a.u. The “default” plane-wave cutoff energy E

pw
cut for the orbitals

is specified in eV. Column “local” specifies the chosen local
potential. This is usually the all-electron potential replaced by a soft
approximation inside the specified core radius.

rs rp rd local E
pw
cut

C 1.20 1.20 1.50 d 413
Si 1.90 1.90 1.90 d 245
Li 1.40 1.40 1.40 d 498
F 1.20 1.52 1.50 d 400

should clear the Coulomb kernel at the considered wave vector
q and apply Eq. (50), an approach we might want to test in
future work.

This line of thought also implies that many solid-state
TDDFT and BSE codes yield results much superior to what the
TDA should yield. It also explains why errors in the TDA are
often substantial in quantum chemistry codes, which cannot
easily single out the most relevant wave vector q = 0, and
often rely on Eq. (58) to determine the response function.

III. COMPUTATIONAL METHODS

A. PAW method and potential parameters

The ab initio calculations presented here employ a plane-
wave basis set and are performed using the VASP code [33,34].
The potentials are generated using the projector augmented-
wave (PAW) method [35] to describe interactions between
valence electrons and ionic cores (for details see Table I). We
use the PAW implementation of Kresse and Joubert [36].

The computational procedure is the following. For each
system, we perform a standard DFT calculation to obtain the
Kohn-Sham orbitals and Kohn-Sham one-electron energies.
The exchange-correlation part is approximated by the func-
tional of Perdew, Burke, and Ernzerhof (PBE) [37] for silicon,
whereas the local density approximation (LDA) is employed
for lithium fluoride and carbon. The results are, however,
independent of the starting point for the materials considered
here. The subsequently calculated quasiparticle (QP) energies
and orbitals are calculated within a self-consistent (sc) QP
GW0 approach [20,38,39]. The QP energies and QP orbitals
are updated iteratively. The screened interaction W0 is kept
fixed at the RPA level using the original Kohn-Sham orbitals
and one-electron energies. Within the sc-QP GW0 calculations,
a Hermitian eigenvalue problem is solved (cf. Eq. (3) in
Ref. [39]),

S̄−1/2H̄ S̄−1/2Ū = Ū�̄. (59)

Initially, the QP Hamiltonian H̄ (cf. Eq. (2) in Ref. [39]) is
expressed in the basis set {φ(1)

n }, for which we use DFT orbitals.
In iteration i, the solution of Eq. (59) yields the diagonal
matrix �̄ with the eigenvalues E(i+1)

n and the unitary matrix Ū

holds the corresponding eigenvectors of H̄ ({E(i)
n },{φ(i)

n }). After
that, the QP Hamiltonian H̄ ({E(i+1)

n },{φ(i+1)
n }) is set up with

the new eigenvalues and eigenfunctions φ(i+1)
n = ∑

m Umnφ
(i)
m .

The corresponding new eigenvalue problem is solved in the

TABLE II. The column L specifies the number of irreducible
k points obtained from an ordinary n × n × n k mesh, which is 	

centered or Monkhorst-Pack (MP) (shifted off 	). Calculations are
then performed on L new k grids (Mp=1...L) obtained by shifting a
m × m × m k grid along each irreducible k point k̃n

p=1...L.

k mesh n L k mesh (Mp) m

Si 	 3 4 	 16
LiF 	 4 8 	 6
C MP 4 10 	 8

new basis set. This procedure is iterated until self-consistency
is reached. We perform seven self-consistency steps, which
gives QP energies converged to about 1 meV. After the final
step, the optical matrix elements are recalculated using the
final sc-QP GW0 orbitals, and the screened Coulomb kernels
W0 are stored. In the final step, the BSE matrix is set up and
the EVP given by Eq. (35) is solved.

B. Symmetry-reduced k-point meshes

To reduce the computational demand, we apply a method
that was first introduced in Ref. [40]. A similar approach was
later also discussed in Ref. [41].

In order to reach an accurate sampling of the Brillouin
zone, we perform independent calculations for many k-point
grids systematically shifted off 	. The systematic shifts are
calculated from a symmetry-reduced n × n × n k mesh. The
procedure is as follows:

(i) Generate all irreducible k points k̃n
p=1...L with weight

wp=1...L from a 	-centered or Monkhorst-Pack [42] n × n × n

k mesh.
(ii) Generate L, m × m × m k-point grids shifted off 	 by

the previously calculated shifts k̃n
p=1...L; this creates L sets

Mp=1...L. Calculations are performed independently for each
of these sets. The results of each shifted mesh are then weighted
by the previously determined weight wp and summed up.

It is easy to see that the set ∪pMp includes all k points of
a regular (n · m) × (n · m) × (n · m) k mesh with the proper
weights. Using this trick, the computational time reduces
roughly by a factor (n3)2 in the GW calculations and (n3)3 in
the Bethe-Salpeter calculations, at the expense of truncating
the long-range part of the Coulomb kernel at roughly m times
the unit cell size. Since the exciton is well localized in LiF, m

can be small for LiF without causing sizable errors, whereas
larger values m are required for C and Si. The used k-point
sets are summarized in Table II.

The dielectric functions of Si, C, and LiF shown in Figs. 3,
6, and 7 are averaged over theL-independent calculations. The
average is calculated as

X = 1

W

L∑
p=1

wp Xp and W =
L∑

p=1

wp, (60)

where Xp denotes the dielectric function calculated on the k
mesh Mp shifted by an irreducible k point k̃n

p.
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FIG. 3. (Color online) Real and imaginary part of dielectric func-
tion εM (Re εM/Im εM) of silicon predicted using sc-QP GW0+BSE
using the Tamm-Dancoff approximation (black dashed and black
solid lines) and full BSE (turquoise dashed and turquoise solid lines)
compared to the experimental spectrum (red dashed line and red
dots) [62]. Theoretical spectra are smoothened by a Lorenzian using
a complex shift of 0.1 eV. Inset: Comparison of the imaginary part
of the dielectric function calculated using (i) LDA (dashed line)
and PBE (double-dot-dashed line) orbitals and quasiparticle energies
calculated at the G0W0 level, and (ii) using self-consistently iterated
quasiparticle energies and orbitals (blue dot-dashed line) based on
PBE orbitals and eigenvalues.

IV. RESULTS AT VANISHING MOMENTUM TRANSFER

Previous ab initio calculations for silicon [31,43–51],
carbon [47], and lithium fluoride [49,52,53] usually included
only the resonant part of the BSE-Hamiltonian. Although it is
common consensus that the effects of the coupling between
the resonant and antiresonant part are small [44,54–57], optical
spectra explicitly including the coupling term have rarely been
published [57–60].

A. Residual basis-set errors

The calculation of the frequency-dependent dielectric
function [Eq. (50)] requires the summation over all possible
transition pairs between occupied and unoccupied states. By
imposing a cutoff for the transition states (compare Table III),
high-energy excitations are neglected. This yields a residual
error for the dielectric function at each frequency point. In
order to estimate the total residual error for the dielectric
constant (Table IV), we first calculate Re εM(ω = 0) on a
single nonshifted 	-centered m × m × m k mesh, including
12 unoccupied bands for Si, C, and LiF. This calculation
is repeated now including only seven (Si) or eight (C, LiF)

TABLE III. Number of occupied and unoccupied (virtual) bands
included in the calculation of the optical transition matrix elements.

occupied virtual

Si 4 7
LiF 4 8
C 4 8

TABLE IV. Static dielectric constant Re εM(ω = 0) from the
solution of Eq. (50) in the Tamm-Dancoff approximation (TDA) and
beyond TDA. The values in parentheses are the corrected dielectric
constants, where the estimated residual basis-set error is taken into
account, i.e., Re εM(ω = 0) + ε̂ (see Sec. IV A). Experimental data
are taken from Ref. [61].

Re εM(ω = 0) Si C LiF

TDA 11.82 (11.87) 5.31 (5.81) 1.76 (1.96)
Beyond TDA 11.42 (11.49) 5.25 (5.65) 1.75 (1.89)
Expt. 11.90 5.70

unoccupied bands, with four valence bands taken into account
in both cases. The residual error ε̂ for the dielectric constant
on this k mesh is the difference of both calculations, i.e., ε̂ =
Re εM(ω = 0; 12 CB) − Re εM(ω = 0; 7/8 CB), where CB de-
notes conduction bands. In Table IV, the dielectric constants
are given without and with these basis-set corrections.

B. Silicon

Figure 3 shows the real and imaginary part of the dielectric
function (DF) of silicon. Electron-hole pairs from the four
valence bands and the lowest seven conduction bands were
included to compute the dielectric function [cf. Eq. (50)]. The
turquoise (solid) curve represents the results of a calculation
where the full BSE-Hamiltonian is used. First of all, the present
spectrum agrees very well with the experimental spectrum for
the peak positions, although we have not applied any empirical
shifts in the preceding quasiparticle calculations to fit the
spectrum. Most notably, the position of the pronounced E1

peak differs only by about 110 meV from experiment (at room
temperature [62]) and by about 80 meV compared to measure-
ments at 20 K [65]. The E2 peak position agrees perfectly with
the measured spectrum. According to Refs. [65,66], interband
transitions exhibit a temperature dependence with respect to
energy shifts and broadening [67]. In particular, the E1 peak
position is renormalized due to electron-phonon interactions.
Even at zero temperature, zero-point vibrations are suggested
to give rise to a shift of about 100 meV [66]. The effect of
lattice vibrations has also been calculated entirely ab initio
[51], indicating a redshift of about 80 meV for the E1 and E2

peaks at T = 0 K. This compares favorably to our calculated
spectrum which does not include any phonon contributions.

The agreement for the intensities is not entirely satisfactory.
In particular, the E1 peak is slightly overestimated and the ratio
of intensities (E2/E1) is nearly one. The present calculations
correspond to an exceedingly accurate k-point sampling of
48 × 48 × 48 points and seem to be reasonably converged
with respect to the number of k points. However, the interaction
range of the exciton is still limited by the 16 × 16 × 16 subset
that we used in each individual GW and BSE calculation. In
fact, the spectrum is rather sensitive to the selected k points,
as shown in Fig. 4. For instance, if the the sampling is reduced
from 48 × 48 × 48 to 40 × 40 × 40 (and 10 × 10 × 10 for
the exciton interaction range), the E1 and E2 peaks are less
pronounced. This underlines the fact that the exciton in silicon
has a rather large spatial extent in real space and a dense
k-point sampling is necessary.
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FIG. 4. (Color online) Imaginary part of the dielectric function
εM(ω) of silicon for previous calculations compared to our results
(turquoise solid and blue dash-dotted lines) with regard to k-
point sampling. In sequence of appearance in figure: (i) Ref. [63]
(double-dot-dashed line), (ii) Ref. [49] (dashed line), (iii) Ref. [64]
(dotted line), (iv) Ref. [44] (double-dash-dotted line). Experimental
measurement (red dots) [62].

To determine how much the starting point influences the
results, the inset of Fig. 3 shows a comparison of BSE
calculations based on G0W0 calculations using either PBE
or LDA orbitals. The shape of the curves agrees almost
perfectly with the sc-QP GW0+BSE calculations; however,
sc-QP GW0+BSE slightly decreases the amplitudes and shifts
the spectrum to the right, thereby improving the agreement
with experiment.

In Fig. 4, we compare our results with previous calculations.
We suspect that the main reason for discrepancies to previous
calculations are the different k-point sets. None of the previous
calculations seems to be very well converged with respect to
the number of k points. Some k-point sets enhance certain
features such as the E1 or E2 peak. Overall, it is obvious that
the present calculations match the experimental results much
better than previous data.

C. Dielectric function of silicon at a finite q vector

The dielectric function at finite momentum transfer has
previously been calculated mainly to investigate the dynamic
structure factor [68–70] or electron energy-loss spectra [4].
However, the explicit q dependence of the dielectric function
has been little explored [55,56], and results from the solution
of the full excitonic Hamiltonian appear to have not been
published.

In Fig. 5, we show the dielectric function of silicon at a
finite wave vector |q| = 0.795 a.u. along the [111] direction
at different levels of approximations of the polarizability. The
calculations are based on the same k-point grid as above, but
since differences between different shifts are tiny, we have
calculated the dielectric function only for a single set of shifted
16 × 16 × 16 k points. The highest considered excitation
energy was 24 eV, resulting in a BSE-Hamiltonian of roughly
200.000 × 200.000 if the Tamm-Dancoff approximation is
not applied. Results for time-dependent DFT were previously
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FIG. 5. (Color online) Imaginary part of the dielectric function
εM(q,ω) for silicon at |q| = 0.795 a.u. along the [111] direction at
the level of (i) beyond TDA (black solid line), (ii) TDA [without
the negative-frequency branch in Eq. (58)] (dotted line), (iii) RPA
(turquoise solid line). Reference spectra for TDLDA (black dashed
line) and RPA (turquoise dashed line) are taken from Ref. [55].

published by Weissker et al. [55]. The important point of that
study was that (i) the independent-particle (IP) approximation
yields very unsatisfactory results, independent of whether the
results are based on DFT or GW one-electron energies (not
shown). (ii) Time-dependent DFT yields excellent agreement
with experiment. On the level of the RPA, our present data
are similar to the previous results, although our present
calculations yield less intensity for the peak at 19 eV. The
GW+BSE data follow the TDDFT and, thus, experiments
well, although the amplitude is reduced compared to the
TDDFT data. For the TDA, the peak around 17 eV clearly
disappears, an effect that was also observed for TDDFT in
Ref. [55] (Fig. 4). Note that in our TDA calculations, we
have entirely neglected the antiresonant part, i.e., disregarded
the negative-frequency branch in Eq. (58). The inclusion of it
yields even worse agreement with the beyond-TDA spectrum.
We can therefore conclude that GW+BSE describes excitonic
features at zero wavelength and finite wavelength almost
equally well, whereas TDDFT works well at finite momentum
transfer but fails at zero wavelength, as it is not able to resolve
the E1 peak in Si.

D. Carbon

The optical spectrum of carbon is shown in Fig. 6(b).
Transition energies are considered up to 36 eV including up to
four valence and eight conduction bands. As before, the various
characteristic positions are reproduced remarkably well, for
instance the onset of absorption around 7 eV, the main peak
around 12.2 eV, or the “kink” around 13 eV. However, for
carbon, the peak intensity in the BSE calculations is signifi-
cantly overestimated compared to the experimental values. A
similar, albeit not as pronounced, overestimation was observed
in a previous BSE calculation [4]. This overestimation is most
likely caused by exclusion of any temperature effects on the
spectrum; as shown in Ref. [51] (only for silicon), there is a
gradual redshift of the peak position as well as an increase
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FIG. 6. (Color online) Dielectric function εM(ω) of carbon. Color
coding as in Fig. 3. Experimental spectrum (red dots) [71].

of the peak width as the temperature increases. As for Si, the
difference between TDA and the full BSE is almost entirely
negligible. The intensity of the main peak differs only by about
2%, so as for Si, it is safe to neglect effects beyond the TDA.

E. Lithium fluoride

The optical spectrum of LiF (Fig. 7) is obtained including
the highest four valence bands and the lowest eight conduction
bands. Comparison to experiment suggests again that the
sc-QP GW0+BSE yields excellent results. The first peak
is slightly blueshifted compared to the experiment (about
16 meV). At first glance, the first minimum—in the experiment
located around 13.6 eV—seems to be redshifted in the
calculations. However, this could well be a result of the finite
experimental resolution or finite-temperature broadening of
the measured spectrum. As in most previous calculations, we
also observe an additional sharp peak around 22.2 eV, which is
absent in experiment. This peak was also present in all previous
BSE calculations [4,52] and might be an artifact of either the
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FIG. 7. (Color online) Dielectric function εM(ω) of lithium flu-
oride. Color coding as in Fig. 3. Experimental spectrum (red dots)
[72].
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FIG. 8. (Color online) Frequency-dependent dielectric function
[Re ε(ω)/Im ε(ω)] for Li2F2 obtained from a HF+TD-HF calculation,
applying the TDA (black lines) and beyond TDA (turquoise lines).
The latter ones are compared to the dielectric function obtained from
a real-time propagation of the orbitals on a Hartree-Fock level (red
dots). Transition pairs with an energy difference up to 16 eV are
included. Structural data are taken from Ref. [76].

static W kernel or the simplified QP picture used as the starting
point for the BSE calculations.

In comparison to Si and C, LiF shows almost no differences
for the DF calculated within the TDA or solving the full
BSE. This is in line with simple perturbation theory, which
suggests that the coupling strength between the resonant and
antiresonant part will be inversely proportional to the energy
difference between the most prominent peaks in the resonant
and antiresonant part. Therefore, as the excitation energies
increase, beyond-TDA effects become less important, which
is entirely in line with our observations.

F. Benchmarking the BSE code—lithium fluoride (dimer)

The previous results for the bulk systems show that solving
the full excitonic BSE-Hamiltonian makes only little (Si,
C) or almost no (LiF) contribution to the DF compared to
the TDA at q = 0. However, for low-dimensional systems
such as molecules, exclusion of the coupling terms of res-
onant/antiresonant electron-hole (e-h) pairs leads to larger
errors in the optical spectrum [57]. We choose the cyclic
lithium fluoride dimer (Li2F2) to demonstrate that the TDA
is less satisfactory in describing the dielectric function of
low-dimensional systems. Moreover, to give evidence that our
BSE code works correctly, we compare our results obtained
from time-dependent Hartree-Fock (TD-HF) calculations [on
top of Hartree-Fock (HF)] against the results from a real-time
propagation of the orbitals. Solving the polarizability within
the TD-HF approximation requires one to solve an eigenvalue
problem that is algebraically equivalent to the solution of the
excitonic BSE-Hamiltonian. In the framework of TDDFT, this
is known as the Casida equation [13]. Computationally, one
has to calculate the same matrix elements as given in Eqs. (24)–
(27). However, the screened Coulomb potential W is replaced
by the bare Coulomb exchange kernel. This allows us to use the
same routines to calculate the polarizability as in the case of the
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excitonic BSE-Hamiltonian. On the other hand, propagating
orbitals in real time for the HF-Hamiltonian allows one to
calculate the polarizability for TD-HF beyond TDA without
any further approximations [73–75]. We have implemented
this time-propagation method in the VASP code and used it
to evaluate our results for the DF beyond TDA (obtained
from matrix diagonalization). The cyclic dimer Li2F2 shows a
distinct difference between the dielectric function calculated
within the TDA and beyond TDA (Fig. 8). Compared to
the TDA, the entire spectrum is slightly redshifted and less
pronounced at higher energies, clearly showing that coupling
of resonant/antiresonant electron-hole pairs contributes to the
polarizability. Similar features in the absorption spectrum have
been observed for the trans-azobenzene molecule [57]. The
overall perfect agreement of the DF using the diagonalization
of the TD-HF equation and the time-propagation method
confirms the correctness of the exchange terms in the beyond-
TDA code.

G. Summary and conclusion

The purpose of the present paper is twofold. First we
have discussed a simple and efficient method to calculate
all eigenvalues and eigenvectors of the full BSE and Casida
equation for solids (in the absence of spin-orbit coupling). To
achieve this goal, we have replaced the orbitals at the k points
k by orbitals at the k points −k in the antiresonant part of
the BSE matrix. This approach allows one to apply methods
previously used in the quantum chemistry community: the BSE
can then be reformulated into a quadratic equation involving
the square of the original eigenfrequencies. At the same time,
the dimension of the matrix is reduced from 2N to N , where
N is the number of particle-hole pairs. Instead of a single
2N non-Hermitian eigenvalue problem, now two diagonal-
izations of Hermitian matrices are required. This results in
significant savings in computation time. All in all, the present
approach is about two times more expensive than a standard
Tamm-Dancoff calculation, a fairly modest computational
increase. Furthermore, for time-dependent DFT, the present
approach is as efficient as the Tamm-Dancoff approxima-
tion (requiring only few trivial additional calculation steps),
and the required modifications of existing codes should be
straightforward.

To ascertain the correctness of the implementation, we
have compared the present results against a time-evolution
code and found that the present approach yields exactly
identical results for the Li2F2 dimer. Likewise, for the RPA
(i.e., neglecting exchange terms), the code yields identical
frequency-dependent dielectric constants as our GW-RPA
implementation at q = 0, as well as at finite momentum
transfer q �= 0. Compared to the time-evolution approach, the
present method in combination with scaLAPACK is competitive

for matrix sizes of up to 100.000–150.000. Most importantly,
it allows one to calculate all eigenvectors and eigenvalues,
which is difficult for time-evolution and Lanczos algorithms
that often only yield the “optical” density of states.

In the present studies, we find that the difference between
TDA and beyond-TDA results is tiny in most considered
simple solids. This observation is in agreement with the
literature, where many authors have claimed that they have not
observed any difference between TDA and beyond TDA (albeit
almost always without showing the actual results). A visible
change of the dielectric function is only observed for Si at
finite wave vectors and for the cyclic dimer Li2F2. In Sec. II E,
we have argued why the effects beyond TDA are so small. Our
implementation, as well as all BSE implementations following
Onida et al. [31], include beyond-TDA effects (we are not
certain, though, whether all BSE codes follow this recipe).
They do so by first disregarding the resonant-antiresonant
coupling but at the same time disregarding the response at
q = 0. However, in the final calculation step determining
the macroscopic dielectric constants, the response at the
wave vector q = 0 is exactly included beyond TDA. Strictly
speaking, the calculated response functions go beyond the
TDA. As to why this approach is less effective for molecules
or larger supercells is also clear: as the cell size increases, the
spacing of the reciprocal lattice vectors decreases and singling
out one of the densely spaced wave vectors (e.g., q = 0) and
treating it exactly becomes less accurate. Hence, for a molecule
in a box, results are less accurate for what is commonly called
the “TDA” approximation.

The second purpose of this paper is an evaluation of
state-of-the-art GW+BSE calculations in comparison to ex-
periment. To date, many BSE calculations are based on DFT
orbitals and DFT one-electron energies, where the unoccupied
eigenenergies are shifted to higher energies prior to the BSE
calculation. Often the shift is determined by preceding GW
calculations or even chosen to reproduce the peak positions
in the experimental optical spectrum. Here we have instead
performed self-consistent quasiparticle GW calculations (sc-
QP GW0), where the screening in W0 was determined at
the level of density functional theory and the random-phase
approximation. The predicted spectra are all in excellent
agreement with experiment as far as the peak positions are
concerned; it is impressive how well parameter-free methods
perform nowadays.
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edited by P. O. Löwdin (Academic, New York, 1990), pp. 255–
291.

[2] G. Adragna, R. Del Sole, and A. Marini, Phys. Rev. B 68, 165108
(2003).

[3] F. Bruneval, F. Sottile, V. Olevano, R. Del Sole, and L. Reining,
Phys. Rev. Lett. 94, 186402 (2005).

045209-12

http://dx.doi.org/10.1103/PhysRevB.68.165108
http://dx.doi.org/10.1103/PhysRevB.68.165108
http://dx.doi.org/10.1103/PhysRevB.68.165108
http://dx.doi.org/10.1103/PhysRevB.68.165108
http://dx.doi.org/10.1103/PhysRevLett.94.186402
http://dx.doi.org/10.1103/PhysRevLett.94.186402
http://dx.doi.org/10.1103/PhysRevLett.94.186402
http://dx.doi.org/10.1103/PhysRevLett.94.186402


BEYOND THE TAMM-DANCOFF APPROXIMATION FOR . . . PHYSICAL REVIEW B 92, 045209 (2015)

[4] A. Marini, R. Del Sole, and A. Rubio, Phys. Rev. Lett. 91,
256402 (2003).

[5] L. Reining, V. Olevano, A. Rubio, and G. Onida, Phys. Rev.
Lett. 88, 066404 (2002).

[6] F. Sottile, V. Olevano, and L. Reining, Phys. Rev. Lett. 91,
056402 (2003).

[7] S. Sharma, J. K. Dewhurst, A. Sanna, and E. K. U. Gross, Phys.
Rev. Lett. 107, 186401 (2011).

[8] P. E. Trevisanutto, A. Terentjevs, L. A. Constantin, V. Olevano,
and F. D. Sala, Phys. Rev. B 87, 205143 (2013).

[9] R. Starke and G. Kresse, Phys. Rev. B 85, 075119 (2012).
[10] G. Csanak, H. Taylor, and R. Yaris, in Green’s Function

Technique in Atomic and Molecular Physics, Advances in
Atomic and Molecular Physics, Vol. 7, edited by D. Bates and
I. Esterman (Academic, New York, 1971), pp. 287–361.

[11] A. Marini and R. Del Sole, Phys. Rev. Lett. 91, 176402
(2003).

[12] D. Sangalli, P. Romaniello, G. Onida, and A. Marini, J. Chem.
Phys. 134, 034115 (2011).

[13] M. E. Casida, in Recent Developments and Applications of Mod-
ern Density Functional Theory, Theoretical and Computational
Chemistry, Vol. 4, edited by J. Seminario (Elsevier, New York,
1996), pp. 391–439.

[14] I. Tamm, in Selected Papers, edited by B. Bolotovskii, V.
Frenkel, and R. Peierls (Springer, Berlin Heidelberg, 1991),
pp. 157–174.

[15] S. M. Dancoff, Phys. Rev. 78, 382 (1950).
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[30] J. Čižek and J. Paldus, J. Chem. Phys. 47, 3976 (1967).
[31] G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys. 74, 601

(2002).
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