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We show how continuous matrix product states of quantum fields can be described in terms of the

dissipative nonequilibrium dynamics of a lower-dimensional auxiliary boundary field by demonstrating

that the spatial correlation functions of the bulk field correspond to the temporal statistics of the boundary

field. This equivalence (1) illustrates an intimate connection between the theory of continuous quantum

measurement and quantum field theory, (2) gives an explicit construction of the boundary field allowing

the extension of real-space renormalization group methods to arbitrary dimensional quantum field theories

without the introduction of a lattice parameter, and (3) yields a novel interpretation of recent cavity QED

experiments in terms of quantum field theory, and hence paves the way toward observing genuine

quantum phase transitions in such zero-dimensional driven quantum systems.
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In recent years we have witnessed tremendous success in
the calculation of physical properties of quantum many-
body systems from their wave functions. These develop-
ments have spurred the study of the quantum entanglement
in these models, resulting in the realization that natural
states of quantum lattice systems are only slightly entangled,
and hence obey an entropy area law [1–4]. As a conse-
quence, we now understand that physical lattice states are
well-captured by matrix product states (MPS) [5].

These developments have also allowed the interpretation
of the renormalization methods of Wilson [6] and White
[7,8] as applications of the variational principle to matrix
product states, and have led to natural generalizations of
these renormalization group schemes to higher dimensions
[9–12]. In these schemes the quantum correlation proper-
ties of natural lattice states are encoded in the variational
parameters of an auxiliary zero-dimensional system.

A natural next step is then to develop a similar approach
for quantum fields, and this is exactly the subject of this
paper. However, capturing the manifold of low-energy
wave functionals is much more challenging due to the
continuous infinity of degrees of freedom. The most natural
way to proceed is to discretize the continuous degrees of
freedom via a lattice cutoff and truncate the local Hilbert
spaces at each site [13–15], like in lattice gauge theory
which, so far, provides essentially the only systematic way
to understand nonperturbative effects. Recently, however,
it was established that there is no need to impose a lattice
cutoff because continuum limits of matrix product states
can be directly defined, and these states, termed continuous
matrix product states (cMPS), can represent the physics of
nonrelativistic field theories accurately [16,17].

The first result of this work is a procedure
to generate cMPS, providing a natural physical interpreta-
tion of this variational class. Our procedure is based on
the paradigm of continuous measurement [18] and is a

generalization of the sequential preparation scheme for
MPS proposed in [19] to the continuous setting. This
perspective allows one to easily design more flexible varia-
tional classes of states, including quantum states for bo-
sonic systems at arbitrary filling. Our approach also
suggests a natural and powerful generalization to arbitrary
dimensions, yielding our second main result: a variational
class for (2þ 1)-dimensional quantum field theories. The
boundary field here provides a local parametrization of the
bulk field realizing one of the major prerequisites identified
by Feynman for the successful application of the varia-
tional principle to quantum field theory [20].
Surprisingly, the bulk and boundary fields have a direct

interpretation in the context of cavity electrodynamics
[19,21–23]: the role of the auxiliary system is played by
the cavity modes and the quantum field describes the
photons leaking from the cavity. An atom with a fairly
low number of internal addressable levels (e.g., D ¼ 6),
would already allow the reproduction of all static correla-
tions functions in, e.g., the Lieb-Liniger model [24]. This is
achieved by observing the temporal counting statistics of
the photons leaking from the cavity. The present paper also
sheds new light on the recently discovered phase transi-
tions of the quantum trajectories obtained in dissipative
systems [25]: such dynamical phase transitions are in
correspondence with static quantum phase transitions of
a quantum field theory in one dimension higher.
We begin by modeling the measurement of some physi-

cal observable M on a D-level quantum system, which we
initially call the ‘‘system.’’ Our model, known as
von Neumann’s prescription [26], is defined as follows.
We attach a quantum system with a continuous degree of
freedom, called the meter, in a fiducial state vector j0i and
couple it with the system for some time t according to
the interaction HI ¼ M � p. Supposing the system is ini-
tially in j�i, then after the interaction the state is
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e�itHI j�ij0i ¼ P
D
j¼1 �jjmjijx ¼ mjti, where jmji are the

eigenvectors of M with corresponding eigenvalues mj and

j�i ¼ P
D
j¼1 �jjmji. We never actually perform a projec-

tive measurement of the meter; i.e., the measurement
record is discarded.

The core of our proposal is to turn von Neumann’s
measurement prescription on its head and regard the meter
(attached as an ancillary system) as the fundamental sys-
tem A and the system as an auxiliary ancilla B. In this
way we can think of it as a state generation device: we
obtain a variety of physical quantum states of the meterA
alone by exploiting the measurement prescription and then
tracing out, or perhaps measuring, the system B. We thus
have a way to generate states of a quantum system with a
continuous degree of freedom. The challenge remains,
however, to exploit this procedure to obtain quantum states
of a continuous infinity of such continuous degrees of
freedom.

The way we do this here is to model a continuous
measurement process. Our model, which generalizes
Ref. [18], is defined by a family of D�D complex ma-
trices RðxÞ, x 2 ½0; L�, which we instantaneously and infi-
nitely weakly measure on B at time t ¼ x, which is
additionally evolving according to some free
Hamiltonian KðxÞ. We do this by introducing a collection
A of n meters, labeled by r ¼ 1; 2; . . . ; n. The total
Hamiltonian is given by

HðtÞ ¼ KðtÞ � IA þHIðtÞ; (1)

where HIðtÞ ¼
ffiffiffi
�

p P
n
r¼1 �ðt� r�Þ½iRðr�Þ � ayr� þ H:c:�.

We are interested in the limit where n ! 1 and � ! 0
with n� ¼ L fixed. (For finite n, this approach includes the
scheme of Ref. [13].) The choice of the coefficient

ffiffiffi
�

p
in

the definition ofHI can be understood on physical grounds:
any other scaling would lead to trivial dynamics, thanks to
the quantum Zeno effect, or to the situation where the
meters and system do not interact [18].

We now supply a physical interpretation of the cMPS of
[16] based on the sequential preparation prescription of
[19] and a continuous measurement scenario. Integrating
the Schrödinger equation for Eq. (1) and making the stan-
dard definition of the discretized quantum field operator as
�ðr�Þ ¼ ar�=

ffiffiffi
�

p
we find, in the limit � ! 0, that

UðLÞ ¼ T e�i
R

L

0
½KðsÞ�IAþiRðsÞ��yðsÞ�iRyðsÞ��ðsÞ�ds: (2)

In our continuum limit the collectionA of the meters may
be regarded as a geometrically one-dimensional bosonic
quantum field. The auxiliary systemB may be regarded as
a geometrically zero-dimensional bosonic quantum field.

We now learn that the evolution Eq. (2) prepares
cMPS. Indeed, if we initialize the metersA in the vacuum
j�iA we can, for each r, exploit the Baker-Hausdorff

formula to see that e
ffiffi
�

p ½Rðr�Þ�ayr��Ryðr�Þ�ar��ðIB � j0iAÞ ¼
e�ð�=2ÞRyðr�ÞRðr�Þe

ffiffi
�

p
Rðr�Þ�ayr�ðIB � j0iAÞ is valid to Oð�Þ to

rewrite the limit Eq. (2) for UðLÞðIB � j�iAÞ as

T e
R

L

0
½QðsÞ�IAþRðsÞ��yðsÞ�dsðIB � j�iAÞ;

where QðsÞ ¼ �iKðsÞ � 1
2R

yðsÞRðsÞ. This is equivalent to
the definition of a cMPS [16].
Thus, a cMPS is a state of the quantum field A prepar-

able via continuous measurement; i.e., we initialize the
quantum field A in some (known) prespecified quantum
state !A ¼ j�iAh�j and adjoin an auxiliary zero-
dimensional quantum field B initialized in some (possibly
mixed) fiducial state �. We then interactA andB accord-
ing to the manifestly unitary continuous measurement
dynamics UðLÞ. We then discard the auxiliary system.
We pause here to emphasize an important point: when

the initial state !A of the quantum field A is taken to be
the vacuum then the states generated by our procedure are
states on Fock space built from the single-particle space
L2ð½0; L�Þ. (Physically this can be explained as follows: the
interaction HI between A and B can only transport �
bosons to A in a time �. Thus the interaction can never
achieve superpositions of terms with more than a constant
number of bosons per unit length.) However, our construc-
tion is much more flexible as all we require is that the
initial field state arises from the continuum limit of a
product state !r � � � � �!1 of the meters r ¼ 1; . . . ; n.
Thus, crucially, we can allow for initial field states with a
high density of bosons and superpositions of bosons; in this
case the states generated by the sequential preparation
procedure will no longer be elements of Fock space. This
will be important in a variety of contexts, particularly those
pertaining to dense systems with nonlinear interactions,
where a cMPS defined using the empty vacuum will be
insufficient.
We now investigate the dynamics of the auxiliary system

throughout the continuous measurement process. Again,
we first consider the discrete setting and take the contin-
uum limit. We set �ð0Þ ¼ �B and �ðr�Þ ¼ trA½Uðr�Þ�
ð�ð0Þ �!AÞUyðr�Þ�; where now Uðr�Þ ¼ T e�i

R
r�

0
HðsÞds

.
We then consider 1

� f�½ðrþ 1Þ�� � �ðr�Þg and expand

Uðr�Þ to second order (cf. [27]). In our case this is neces-
sary because the field operators contain a factor of

ffiffiffi
�

p
. In

the continuum limit where n ! 1 and " ! 0, we arrive at
a differential equation for �ðxÞ with x 2 ½0; L�,

d�

dx
¼ �i½K; �� � 1

2

X4
j¼1

ð½My
j Mj; ��þ � 2Mj�M

y
j Þ;

where in this expression all operators are evaluated at
position x, i.e., K ¼ KðxÞ, � ¼ �ðxÞ, etc., This is an
example of a generator of dissipative dynamics which are
manifestly completely positive. Here, the Lindblad opera-
tors are identified asM1 ¼ iaR� bRy,M2 ¼ iaRþ bRy,
M3 ¼ cRy, and M4 ¼ dR, where a2 ¼ hð�yÞ2i=2, b2 ¼
hð�Þ2i=2, c2 ¼ h�y�i, and d2 ¼ h��yi. We write this
equation as �0ðxÞ ¼ Lx½�ðxÞ�.
We now describe a key feature of cMPS, shared by MPS

[28], namely, their holographic property: expectation
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values of field operators may be obtained in terms of the
dissipative dynamics of the boundary zero-dimensional
field B alone. This is strongly reminiscent of the holo-
graphic principle [29]. This is easy to establish using the
following calculational principles (cf. [16]). Let A be any
observable on A which is some product of the field
operators and their derivatives at locations x1; . . . ; xn 2
½0; L�. The first step is to put the observable into normal
order with all field annihilation operators on the right.
Now we must calculate hAi ¼ trfðA � IBÞUðLÞ�
½�ð0Þ �!A�UyðLÞg. To eliminate the field operators we
exploit the formula ½�ðxÞ; UðLÞ� ¼ �i

R
L
0 UðL� sÞ�

½�ðxÞ; FðsÞ�UðsÞds; where FðsÞ ¼ QðsÞ þ RðsÞ ��yðsÞ,
to commute all field annihilation operators past UðLÞ. In
the case that (similar results apply in the finite filling case)
�ðxÞj�iA ¼ 0 we thus learn that �ðxÞUðLÞj�iA ¼
UðL� xÞRðxÞ �UðxÞj�iA. Similarly, to evaluate deriva-
tives of�we follow the same procedure with an additional
integration by parts to eliminate the derivative of the delta
function. We find �0ðxÞUðLÞj�iA ¼ UðL� xÞ�
f�½QðxÞ; RðxÞ� þ R0ðxÞgUðxÞj�iA. To proceed, it is expe-
dient to employ the representation where operators M ¼P

j;kmj;kjjihkj are identified with quantum state vectors via

jMi ¼ P
j;kmj;kjj; ki. In this way, e.g., Eq. (3), with

h�y2i ¼ h�2i ¼ h�y�i ¼ 0, and h��yi ¼ 1, is written
as d

dx j�ðxÞi ¼ LðxÞj�ðxÞi, where LðxÞ ¼ �iK � Iþ iI �
KT � 1

2 ðRyR � I� 2R � �Rþ I � RT �RÞ. Thus, to evaluate

a correlation function tr½A�A� we simply have to integrate
Eq. (3)with additional insertions of the operatorsRðxÞ � I at
the locations of �, I � �RðxÞ at the locations of �y,
f�½QðxÞ; RðxÞ� þ R0ðxÞg � I at the locations of �0, etc. We
have thus completely eliminated the field A.

To simulate the dynamics of a system within the cMPS
class we need to accommodate the time dimension. This is
straightforwardly achieved by allowing K and R to depend
on t. This gives rise to a one-parameter family of a cMPS
�AðtÞ parametrized by KðtÞ and RðtÞ. However, in order to
solve the Schrödinger equation it is necessary to calculate
the derivative with respect to time. This is easily achieved
using d

dt UðL; tÞ ¼ R
L
0 UðL� sÞ½@@t Fðs; tÞ�UðsÞds, which

implies that tr½A�0
AðtÞ� can also be evaluated in terms (of

an integral) of the solution of the Lindblad equation with an
insertion of ½ @@t Fðs; tÞ� � Iþ I � ½ @@t FTðs; tÞ� at s ¼ t.

So far our states have been restricted to many particle
quantum mechanics in a box of length L. To connect our
discussion with (nonrelativistic) quantum field theory we
have to show how to define quantum states of quantum
fields on the real line R. This turns out to be straightfor-
ward: all local observable quantities acquire a well-defined
limit as L ! 1; all that changes is that �ðxÞ is replaced by
the fixed point �1 of the Liouvillian.

For finiteD, and in the translation invariant setting where
R and K do not depend on x, generically, all correlation
functions decay exponentially. Let us assume that the gen-
eratorL has a unique zero eigenvalue and the real part of any
other eigenvalue is bounded from above by ��, �> 0

being a gap. Since for �ðxÞj�iA ¼ 0 we have that
h�yðx1Þ�ðx2Þi ¼ trA½UðL� x2ÞRUðx2Þð!A �
�BÞUyðx1ÞRyUyðL� x1Þ�, we can apply the above rule for
integrating the master equation, using techniques to com-
pute two-point correlation functions for dynamical semi-
groups [27], to see that there exists a suitable c > 0 with

jh�yðx1Þ�ðx2Þij � ce��ðx2�x1Þ. Similarly, all other spatial
correlators of our original fieldA are clustering.
The perspective offered here from the viewpoint of

continuous measurement and the holographic principle
allows us to easily generalize the cMPS ansatz class to
(2þ 1)-dimensional fields (such a generalization was an-
ticipated in [16]). Suppose we have a two-dimensional
(spatial) bosonic field A with field operator �ðx; yÞ, x,
y 2 ½0; L�. We introduce an auxiliary (1þ 1)-dimensional
field B described by a tuple of field operators ��ðyÞ, � ¼
1; 2; . . . ; D, which we think of as living vertically ‘‘at the
boundary’’ of A. To prepare a quantum state for A we
work entirely analogously as to before: we initialize A in
some fiducial state, say the vacuum j�i. We then interact
an ‘‘infinitesimally thin’’ vertical strip ofA andB accord-
ing to some spatially local interaction Rð0Þ, where

R ðxÞ ¼ i
Z L

0
dyRxð��ðyÞ;�0

�ðyÞÞ ��yðx; yÞ þ H:c:;

(3)

and where Rxð��ðyÞ;�0
�ðyÞÞ, which may depend on the

position x, is some polynomial in the field operators��ðyÞ
and their derivatives. We then proceed by interacting in-
finitesimal vertical strips at locations x of A and B
sequentially at times t ¼ x. Interleaved between each in-
teraction between the strip at x and B is an evolution of B
according to

K ðxÞ ¼
Z L

0
dyKxð��ðyÞ;�0

�ðyÞÞ; (4)

where Kxð��ðyÞ;�0
�ðyÞÞ is some local Hermitian operator

written in terms of the field operators ��ðyÞ and their
derivatives. This unitary process, illustrated in Fig. 1, is
described by the propagator

UðL; LÞ ¼ T e�i
R

L

0
dxKðxÞþ½iRðxÞþH:c:�: (5)

The previous analysis establishes the holographic property
of the states generated by UðL;LÞ. A central role is again
played by the Lindblad equation

d�

dx
¼ �i½K; �� � 1

2

Z L

0
dy½RyðyÞ; RðyÞ�� þ H:c::

This describes a local dissipative field theory for B; ex-
pectation values of physical operators may be recovered by
integrating this equation with the appropriate insertions.
In this work we discussed a physical interpretation of a

recently introduced variational class, continuous matrix
product states, for quantum fields. We have explained how
this class arises naturally from the procedure of continuous
measurement, and used this observation to explain the key

PRL 105, 260401 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

31 DECEMBER 2010

260401-3



physical properties of cMPS, including the clustering of
correlations. We also discovered a fundamental holographic
property possessed by cMPS: they can be understood in
terms of a boundary field theory of one dimension lower.
It is worth noting that our boundary field theory does not
arise from a simple restriction of the bulk fields to the
boundary, rather, it emerges in a more sophisticated way:
the quantum correlations of any contiguous region in the
bulk with the rest of the system will be concentrated at
the boundary of the region; the boundary theory arises as
the theory which parametrizes the system external to the
boundary and which captures these correlations in the most
parsimonious fashion possible. We have also pointed out
that the zero-dimensional boundary field corresponds to the
internal degrees of freedom of an atom in cavity QED
experiments; this opens up the possibility of simulating
quantum field theories with simple dissipative dynamics.

We believe that the interpretation of cMPS discussed
here offers several advantages, particularly with respect to
higher-dimensional generalizations: the manifest unitary
nature of our process allows one to straightforwardly cope
with superselection rules and other physical constraints
and our higher-dimensional generalization can be used to
apply the variational principle to, e.g., strongly interacting
field theories beyond the reach of perturbation theory.

A great many future directions present themselves at this
point: one can explore the utility of cMPS as a variational
ansatz for numerical calculations. Finally, the relationship
of the regulator that cMPS provides with other standard
renormalization prescriptions remains to be elucidated.
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FIG. 1 (color online). Here we illustrate the physical process
underlying the construction of a (2þ 1)-dimensional general-
ization. The system A is initialized in the vacuum state j�i and
then infinitesimally thin vertical strips at horizontal location x
are sequentially interacted with B at time t ¼ x.
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