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The ideal tensile and shear strengths of binary β-phase Ti3Nb alloys have been investigated using ab initio
density functional calculations. The binary alloy is considered as an approximant to the multifunctional Ti-Nb-
Ta-Zr-O alloy known as “gum metal,” which displays high strength, low elastic modulus, high yield strain, and
very good ductility. This alloy has been reported to deform elastically until the stress approaches the ideal tensile
strength. Our calculations have been performed for an optimized chemical decoration of the body-centered cubic
(bcc) structure of the β phase. Previous work has demonstrated that this model yields elastic constants in very
good agreement with those measured for gum metal specimens and leads to a reasonably accurate description of
the martensitic transformations between the bcc β, the orthorhombic α′′ and the hexagonal ω phases [Lazar et al.,
Phys. Rev. B 84, 054202 (2011)]. The simulations of the response to tensile and shear loading have been performed
for large supercells which account also for the different orientations of the -Nb-Nb- chains characteristic for the
β-phase structure relative to the direction of the applied load. The energy-strain and stress-strain curves are found
to be very different from those reported for all bcc metals. Under uniaxial 〈100〉 loading we find an ideal tensile
strength of 2.4 GPa, the upper limit to the tensile stress arising from a shear instability of the structure. Under
uniaxial 〈110〉 load we calculate an ideal tensile strength of 2.2 or 2.8 GPa, depending on the orientation of
the -Nb-Nb- chains relative to the loading direction. For a realistic multidomain structure the ideal strength is
expected to correspond to the average of these values. An ideal strength of 2.6 GPa under 〈110〉 loading is roughly
the same as under 〈100〉 load, despite a considerable anisotropy of the tensile moduli. For {211}〈111〉 shear we
calculate an ideal shear strength of 1.6 GPa, again as an average over different possible shearing directions
relative to the Nb-Nb bonds. For the {110}〈110〉 shear system we find a lower strength of 0.9 GPa. The structures
reached at the stress maximum under 〈100〉 uniaxial tension and {211}〈111〉 shear are identical, and since the
maximal shear stress is much lower than the tensile stress, the alloy will fail by shear even under strictly uniaxial
tension. The values of the ideal tensile and shear strengths are significantly low, even in comparison with those
calculated for bcc V and Nb with very small shear moduli and approach the values reported for gum metal alloys.
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I. INTRODUCTION

The phase stability of Ti alloys can be changed by
adding alloying elements such as vanadium,1 niobium,2,3

molybdenum,4 or tantalum,5 which stabilize the body-centered
cubic (bcc) β phase at ambient or elevated temperatures. The
limit of bcc stability is determined by the vanishing of the
elastic shear modulus C ′ = (C11 − C12)/2 and correlated to a
critical electron-per-atom ratio of e/a ∼ 4.15 (Refs. 6 and 7).
The stabilization of the β phase is of practical importance
because it enhances deformation capability and strength of the
alloy.

The name gum metal has been given to a class of Ti-Nb-Ta-
Zr-O alloys developed at the Toyota Central R&D Laboratories
which display high strength, a low elastic modulus, high
yield strain, and a very good ductility.8 These properties are
achieved by adjusting the alloy composition such that the
average electron-per-atom ratio comes close to a critical value
of e/a ∼ 4.24 for which ab initio calculations of the elastic
constants of binary Ti-based alloys have predicted a vanishing
tetragonal shear constant.9 In addition, the alloy requires cold
working. Under tensile loading the material deforms elastically
until the stress approaches a value assumed to come close
to the ideal tensile strength.10–12 An ideal tensile strength of
σmax ∼ 1.5 GPa has been estimated using the semiempirical

relation σmax = 0.08 × E100 where E100 = 19 GPa is the
modulus for tension along [100] calculated from the predicted
elastic constants.9 This relation between tensile strength and
tensile modulus is based on the assumption of a sinusoidal
stress-strain curve and a deformation following the tetragonal
Bain path with a face-centered cubic saddle-point structure and
is known to hold for many, but not all bcc metals.13–15 After
yield strong plastic deformation occurs with little evidence
for dislocation glide. Rather, deformation proceeds via the
formation of extended shear bands referred to as “giant faults”
at an applied stress close to the ideal shear strength.11,16,17 The
condition for failure by shear under strict tensile loading is
that the shear strength is significantly lower than the tensile
strength. An ideal shear strength of τmax ∼ 0.9 GPa has been
estimated using the empirical relation τmax = 0.11 × G111 and
a calculated value of the shear modulus of G111 = 12 GPa
(Ref. 9) (but again with the caveat that this empirical relation is
based on the assumption of a sinusoidal stress-strain curve and
does not necessarily hold for all bcc metals and alloys13–15). A
dislocation-free mechanism of deformation has been described
by Kiritani et al. for thin foils of face-centered cubic (fcc)18 and
bcc19 metals, but for polycrystalline coarse-grained or single-
crystalline materials plastic deformation without dislocation
glide seems to be unique for gum metal.
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The response of gum metal specimens (composition Ti-
23Nb-0.7Ta-2Zr-1.2O in at.%) to tensile loading has been
the subject of several experimental studies. Takesue et al.
performed tensile tests along the 〈100〉, 〈110〉, and 〈111〉
directions on single-crystal samples. At the lowest oxygen
content of 0.3 to 0.5 mass % a tensile strength of 0.5–0.6 GPa
was reported for all three loading directions, the strength
increases to up to 1.0 GPa at increased oxygen content.
Crystals loaded in tension along 〈100〉 and 〈111〉 showed
linear stress-strain relations up to yield, but loading along
〈110〉 displayed a sharp “pseudoyield” at a strain of only
0.5%, followed by an extensive “pseudoelastic deformation”
before undergoing plastic yield. Recently, very similar results
have been reported by Morris et al.20 It was demonstrated
that while uniaxial tensile strain along 〈110〉 promotes a
stress-induced transformation from the β (bcc) to the α′′
(orthorhombic) phase stable at low temperatures,21 crystals
grown and strained in the 〈100〉 or 〈111〉 directions did
not transform at all. The initial slopes of the stress-strain
curves also permitted an estimate of the tensile moduli and
it was pointed out that the measured yield strength was only
about half the value of the ideal strengths estimated for the
moduli, using the empirical relations.20 The deformation of
single-grain nanopillars of Gum Metal under compression
has been investigated by Withey et al.22 Under compression
a crystal fails if the resolved stress for the {110}〈111〉,
{112}〈111〉, or {123}〈111〉 slip systems reaches the critical
value. Depending on the processing conditions of the samples
an average value of the shear strength of τmax = 0.85 GPa
was reported, the highest values reaching 1.4 to 1.7 GPa.
These values come very close to the ideal shear strength
estimated from the calculated elastic constants. Martensitic
transformations to the α′′ phase were observed in some,
but not in all samples. Yang et al.23 investigated alloys of
similar composition (Ti-22.4Nb-0.73Ta-2.0Zr-1.34O) under
compression and tension. The samples showed linear elasticity
up to strains of about 2.3% at a low tensile modulus of 55
GPa and a strongly temperature-dependent tensile strength,
decreasing from ∼1.8 GPa at T = −200 ◦C to ∼1.0 GPa at
room temperature. The influence of the oxygen content on the
properties of gum metal alloys was studied very recently by
Besse et al.24 The tensile curve of the alloys without oxygen
shows the double yielding behavior observed in many β-phase
Ti alloys, with a pseudoyield stress of about 0.2 GPa, followed
by a plateau with slowly increasing stress up to a tensile
strength of 0.4 GPa. The alloys containing oxygen showed
a yield strength of 0.83 GPa, the ultimate tensile strength of
0.88 GPa being only slightly higher. It was concluded that
the difference in the mechanical behavior results from the
suppression of the formation of α′′ martensite by the addition
of oxygen.

Hence, one of the central problems in the characterization
of the intrinsic properties of Ti alloys related to gum metal is
the determination of the ideal tensile and shear strengths which
have so far only been estimated from the elastic moduli, using
semiempirical relations. The elastic properties and the ideal
strength can, in principle, be determined with good accuracy
from ab initio density-functional calculations. However, due
to the complexity of the alloys such calculations have been
performed so far only using the most rudimentary models.

The calculations of the elastic constants of binary Ti- and
Zr-based alloys of Ikehata et al.9 are based on the assumption
that at a stoichiometry of A3B the alloy forms an ordered
D03-type structure, while for the AB alloys a B2 structure was
assumed. Li et al. calculated the elastic moduli and the ideal
tensile and shear strength of bcc Ti-V alloys in a virtual-crystal
approximation (VCA).25 Within the VCA a binary alloy is
described as an effective one-component system consisting
of atoms with the concentration-averaged pseudopotentials of
the elements composing the alloy. Because the concentration-
averaged pseudopotential can be calculated only for elements
with the same ionic core, instead of gum metal consisting
mainly of Ti (3d) and Nb (4d) the calculations have been per-
formed for Ti-V alloys where both constituents are 3d metals.
Nevertheless, the analysis produces some interesting results.
(i) Two tensile (E100,E110) and two shear moduli (G110,G111)
vanish almost simultaneously at an electron-per-atom ratio
of e/a ∼ 4.1, indicating the incipient instability of the bcc
crystal structure. (ii) The ideal shear strength τmax ∼ 1.2 GPa
derived from the stress-strain curve calculated for simple shear
along (112)[111] conforms rather well with the shear modulus
and the semiempirical relation based on a transformation to
a stress-free body-centered-tetragonal state. (iii) Similarly, an
ideal tensile strength of σmax ∼ 1.8 GPa conforms rather well
with the calculated tensile modulus and a transformation along
a tetragonal Bain path. This last result is a bit surprising
because it has been demonstrated15 that for bcc V and Nb
a bifurcation from the primary tetragonal deformation path
(PTP, the Bain path) to a secondary orthorhombic deformation
path (SOP) occurs before reaching the stress maximum. The
saddle-point structure along the SOP is a “special bct” structure
which is identical to the saddle-point structure under shear
deformation along a {111} plane. For bcc Ta and Mo the stress
maxima along the PTP and the SOP coincide. Because the
stress maximum under tensile loading is reached at a shear
unstable configuration the metals fail by shear even under
tensile loading (as found also for the gum metal alloys).
V-rich VCA Ti-V alloys show the same behavior as V metal,
but for alloys with less than 45 at.% V the bifurcation to
the SOP occurs only at strain larger than corresponding to
the stress-maximum on the PTP. Hence, a Ti75V25 alloy is
predicted to fail in tension and not by shear, in contrast to
gum metal alloys. Li et al.25 have argued, with reference to
the calculations of the elastic constants by Ikehata et al.9 that
Ti-Nb alloys will behave differently from Ti-V alloys because
of a lower value of the C44 shear constant. Indeed C44 = 0
(in a bct reference frame) is the necessary condition for the
bifurcation from the PTP to the SOP under uniaxial loading
along 〈100〉. However, a lower value of the shear constant
at vanishing strain does not necessarily imply that it will be
reduced to zero at increasing strain.

Investigations of ordered intermetallic compounds have
demonstrated that only for a strictly random substitutional
alloy consisting of two very similar elements is it legitimate
to expect that the deformation under large strains follows
the same scenario as for pure metals with the same crystal
symmetry. For the B2(CsCl)-type aluminides of Fe, Co, and
Ni it has been demonstrated26–28 that under uniaxial tension
along 〈111〉 the crystal follows a trigonal deformation path and
the structure finally becomes B1(NaCl) at a strain of ∼0.68.
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By symmetry, the B1 structure is stress free; it corresponds
to an energy-maximum along the deformation path. Under
these circumstances, the theoretical strength of bcc B2-type
intermetallic compounds under 〈111〉 tension is determined
by an fcc (B1) saddle-point structure, as for most metals.
However, the situation is entirely different for uniaxial tension
along 〈100〉 or 〈110〉. Under 〈110〉 loading a B2 crystal
follows a monoclinic deformation path along which no other
high-symmetry or stress-free structure is encountered. Under
〈100〉 tension the crystal follows a tetragonal deformation path
leading to a transformation to a L10 (CuAu) structure. Since
the L10 structure has reduced symmetry compared to B2 it is
not stress free. Also, no other high-symmetry structure is found
along the deformation path. Hence, under 〈100〉 and 〈110〉
tension the theoretical strength of B2-type compounds is not
symmetry-dictated as for bcc metals along the Bain path for
the bcc → fcc transformation under 〈100〉 tension. In addition,
the calculations28 have demonstrated that unlike for NiAl and
CoAl, where 〈100〉 is the hard direction under uniaxial tension,
for FeAl a local stress maximum is found at relatively low
strain. Although this stress maximum is much lower than the
global maximum (which is of comparable magnitude for all
three aluminides), it determines the theoretical tensile strength
of FeAl. Li et al.28 have also investigated the response of
the three B2-type compounds to {112}〈111〉 and {110}〈111〉
shear loading. It was demonstrated that the B2 crystals do not
have the bct saddle-point structure characteristic for the shear
deformation paths of the bcc metals. Again the energy-strain
and stress-strain curves of NiAl and FeAl were found to be very
different, leading to the conclusion that the instabilities under
〈111〉 shearing and 〈100〉 tension can be attributed to the same
mechanism for FeAl, but not for NiAl. Jahnatek et al.29,30 have
demonstrated that the chemical decoration of the fcc lattice in
L12 and D022-type trialuminides of Sc, Ti, and V determines
similarities and differences in the response to 〈110〉 and 〈100〉
uniaxial loading compared to fcc Al.

Hence, the chemical decoration of the bcc lattice is of
decisive importance in determining the mechanical properties
of β-type Ti-based alloys. Originally, the intention of the
present work was to extend the work of Ikehata et al.9 on
the elastic properties of binary gum metal approximants to a
calculation of their ideal shear and tensile strengths. However,
difficulties arose already at a lower level. New calculations of
the elastic constants of D03-type Ti-(V, Nb, Ta) alloys with

FIG. 1. (Color online) Comparison of the D03 (a) and G1
(b) structures for a Ti3Nb alloy. The atomic positions within the
irreducible rhombohedral unit cell are labeled with the chemical
symbols of the constituents. Ti atoms are shown in blue (light gray),
Nb atoms in red (dark gray) (cf. text).

improved all-electron methods found Ti3V and Ti3Nb to be
elastically unstable (negative values of C44), calculations of
formation energies for point defects also produced negative
values for antisite defects in Ti3Nb if a full relaxation in a
large supercell was permitted.31 Hence, the assumption that
an ordered D03 structure provides a realistic model for the
structure of the alloy turned out to be invalid, leading to the
necessity to construct a better structural model. Very recently,
Lazar et al.31 have presented detailed investigations of the
stability and phase transitions of β-, α′-, α′′-, and ω-type
Ti3Nb alloys. The optimal configuration of the β-phase was
derived from supercell calculations comparing the energies
of all possible chemical decorations of a large 16-atom cell,
as well as by cluster-expansion calculations. Both approaches
lead to the same optimal decoration of the bcc lattice called
the G1 structure. In contrast to the D03 structure where each
Nb atom is coordinated by Ti only, in the G1 structure the Nb
atoms occupy the sites along the body diagonal of a 2 × 2 × 2
bcc supercell with direct Nb-Nb neighbors (see Fig. 1). It
should be noted that the structure shown in the figure is only
one of 16 symmetry-equivalent decorations of the supercell.31

For the G1 structure ab initio calculations yield elastic
constants in agreement with experiments on gum metal
alloys.32–34 Because of their importance for the following
discussions the results, together with the tensile and shear
moduli for the principal symmetry directions, are summarized
in Table I. If the empirical relations between the elastic moduli
and the ideal strengths are used, we calculate an ideal tensile
strength of σ 100

max = 4.3 (4.0) GPa and an ideal shear strength

TABLE I. Elastic constants and tensile and shear moduli (in GPa) calculated for bcc G1-type Ti3Nb alloys, compared with experimental
results measured on gum metal specimens of slightly different compositions (cf. text).

Alloy C11 C12 C44 C ′ E100 E110 E111 G100 G110 G111 Reference

Ti3Nb (G1) 148.8 111.4 37.5 18.7 53.4 83.2 101.8 37.5 18.7 22.4 31
Ti-23Nb-0.7Ta-2Zr-Oa 28.5–36.6 12.3–17.8 40.0 12.3–13.7 15.1 32
Ti-33Nb-0.7Ta-2Zr-Oa

EPb 125 93 28 16 49.7 71.8 16 18.7 33
HPc 125 90 31 17.5 45.7 65.8 17.5 20.5 33

aComposition given in at.% (cf. text).
bProduced from elemental powders and cold pressing.
cProduced by plasma spraying and hot pressing.
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of τ 111
max = 2.5 (2.3) GPa from the theoretical (experimental)

elastic constants.
Calculations of the phonon dispersion relations for the G1

structure have shown that in the harmonic approximation the
G1 structure is dynamically unstable, with imaginary optical
phonon modes extending over most of the Brillouin zone.
However, the G1 structure is stabilized already at temperatures
around 200 K by anharmonic phonon-phonon interaction
(treated in a self-consistent phonon approximation35,36), in
contrast to the D03 structure where imaginary phonon modes
were found to persist even at very high temperature.31

Hence, the choice of an appropriate chemical decoration
of the basic bcc lattice is essential for achieving a dynamical
stability of the β phase at elevated temperatures.31 Three kinds
of phase transformations (β → α′,α′′,ω) have been reported
for β-Ti-based alloys. α′ martensite is hexagonal as the α

phase of pure Ti, α′′ martensite is orthorhombic, and the ω

phase is hexagonal. The α′′ and ω phases can be formed from
the β phase by cooling or isothermal aging at intermediate
temperatures. A β → α′′ transformation can also be induced
by applying uniaxial strain. While a D03-type superstructure of
the bcc lattice (and many other possible chemical decorations)
lead to an elastic instability and soft optical and acoustic modes
which cannot be stabilized by anharmonic phonon-phonon
interactions, the optimized G1 structure is stable against shear
deformations and the soft optical modes are stabilized already
at moderate temperature. The necessity to create an ordered
distribution of the Ti and Nb atoms on the bcc lattice has
also significant consequences for the phase transformations.
Both the orthorhombic α′′ and the hexagonal ω structures can
be created by a continuous deformation of the bcc lattice.
However, whereas the deformation of the G1 structure leads
to a stable ω structure, the transition to the α′′ structure also
has to involve a change in the chemical decoration—which is
possible at elevated temperature, but not in quenched samples.
This provides a rationale for the observed competition between
the formation of ω and α′′ precipitates.

In the present work we have used the G1 model structure
for the β-type Ti3Nb alloy to calculate the ideal tensile
and shear strengths of this gum metal approximant using
first-principles density functional techniques. Our paper is
organized as follows: Section II describes the computational
setup, Sec. III describes the structural model for the β-phase,
and Secs. IV and V report our results for the ideal tensile and
shear strength for loading along different symmetry directions.
We summarize in Sec. VI.

II. COMPUTATIONAL METHODS

Our ab initio total-energy and force calculations are based
on density-functional theory (DFT) as implemented in the
Vienna ab initio simulation package (VASP).37,38 A gradient-
corrected functional has been used to describe electronic ex-
change and correlations.39 Electron-ion interactions are treated
within the projector-augmented-wave (PAW) method.40,41 The
plane-wave basis set contained components with kinetic
energies up to 350 eV.

The response of the crystal to tensile or shear deformations
was calculated by increasing the strain along the chosen
directions in small steps. A quasireversible deformation

process at zero absolute temperature was considered. The
crystal structure was fully relaxed at each deformation step
until all lateral stresses vanished. This has been done by
very efficient external optimizer GADGET developed by Bučko
et al.42 GADGET performs a relaxation in terms of generalized
coordinates which allow a better control of lateral stresses.
The forces acting on the atoms were computed via the
Hellmann-Feynman theorem,43 the stress tensor acting on the
unit cell was computed via the generalized virial theorem.44

The use of a high cutoff energy makes it possible to achieve a
high accuracy of the components of the stress tensor.

The energy-strain and stress-strain curves were calculated
for large supercells adapted to the guiding symmetry along the
deformation path. The Brillouin zone (BZ) was sampled using
various types of meshes according to the size and symmetry of
the computational cells. Very fine k-point meshes are required
to calculate the elastic shear constants and the stress-strain
relations (details are given below together with the information
on the supercells used for the simulations). All integration
meshes were constructed according to the Monkhorst-Pack
scheme.45 The integration over the BZ used the Hermite-
Gaussian smearing method with a smearing parameter of
0.2 eV.46 The total energy was calculated with high precision,
converged to 10−8 eV/atom. The structural relaxation was
stopped when all forces acting on the atoms were converged
to within 10−3 eV/Å and all components of the stress tensor
except that conjugate to the imposed strain were converged to
within 0.05 GPa.

III. STRUCTURE MODEL FOR THE β PHASE
OF TI3NB ALLOYS

The energetically most favorable chemical decoration of a
bcc supercell with 16 atoms is achieved by the G1 structure.
This structure has space-group symmetry R3̄m with a lattice
constant of a0 = 6.524 Å of the cubic unit cell containing 16
atoms. A schematic representation of the unit cell is shown
in Fig. 1, where it is confronted with the D03 structure.
The essential difference between the two alloy models is
evident: Whereas in the D03 lattice each minority atom
has only majority atoms in the first coordination shell, in
the G1 structure the minority atoms are arranged along
the room-diagonal of the unit cell. Similar arrangements of
nearest-neighbor Nb-Nb bonds in zig-zag or spiral chain
form are also characteristic for other low-energy structures,
emphasizing the importance of strong Nb-Nb interactions for
the structural stability.31 Like for the D03 structure, the G1
structure may also be described by a smaller rhombohedral
unit cell with only four atoms. In Fig. 1 the atomic positions
in the irreducible unit cell of both structures are labeled with
the chemical symbols of the constituents.

Alternatively, the G1 structure may also be represented by a
face-centered monoclinic unit cell (space group C2/m, No. 12)
with eight atoms. This may be achieved in three different
ways. The b direction of the monoclinic cell is always along a
face diagonal of the large cubic cell, the c direction along the
body diagonal; different orientations may be chosen for the a

direction. Therefore, the lattice constants are b = a0 × √
2 =

9.222 Å and c = a0 × √
3/4 = 2.828 Å for all three variants.

In the case of MC1 the a direction is along another body
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FIG. 2. (Color online) Possible face-centered monoclinic unit cells for the G1 structure of a Ti3Nb alloy: MC1 (a), MC2 (b), and MC3 (c).
The vectors a0, b0, and c0 indicate the primitive lattice vectors of the G1 structure, respectively (cf. text).

diagonal, a = ao × √
3/2 = 5.648 Å, β = 109.5◦. For variant

MC2, the a direction is along one of the cube edges, a = a0,
β = 125.3◦. Finally, in the case of MC3 the a direction is along
the [113̄] direction, a = a0 × √

11/4 = 5.407 Å, β = 100.0◦.
All three monoclinic cells are shown in Fig. 2. The monoclinic
representations have been found to be very helpful for the
identification of the guiding symmetry under tensile or shear
loading and of the structures at the stress maxima.

In the following, the G1 structure has been used to compute
the ideal tensile and shear strengths of β-phase Ti3Nb alloys at
zero temperature. However, this does not mean that we claim
that the β phase is an ordered intermetallic compound. First,
the G1 structure is only one among 16 symmetry-equivalent
and energetically degenerate configurations with the same 16-
atom bcc supercell.31 A real alloy will consist of a disordered
arrangement of domains consisting of these 16 configurations.
Second, the energy differences between the various ordered
structures are sufficiently small such that low-energy con-
figurations can be realized at a local level, the increase in
internal energy being compensated by a gain in configurational
entropy. One should also not forget that at low temperatures
the β phase is only metastable. Indeed, a similar analysis has
shown that lower total energies can be achieved for hexagonal
structures and for orthorhombic lattices related to the structure
of the α′′ phase. Calculations of the martensitic transition
temperature, using the G1 model structure, have shown that
the β phase is stable above about 700 K and transforms to the
orthorhombic α′′ phase below. Below 200 K the hexagonal ω

phase also has a lower energy than the G1 structure. Above

200 K the G1 structure is dynamically at least metastable;
below this temperature imaginary optical phonons appear, but
the structure remains stable against elastic deformations.

Hence, in the discussion of the simulations of tensile and
shear loading one has to remember the following. (i) The
G1 structure is only metastable. Although it is elastically
stable at zero strain, imaginary phonon modes exist and shear
instabilities may appear at finite strain. (ii) For a multidomain
phase consisting of symmetry-equivalent realizations of the
G1 structure simulations of tensile and shear deformations
along directions equivalent under bcc symmetry yield identical
results. However, this is not necessarily so for cells consisting
of a single variant of the G1-type configurations. For tensile
loading along a 〈100〉 direction strains applied in the [100],
[010], or the [001] direction act in the same way on the
Nb-Nb chains oriented along a 〈111〉 direction. However, for
strains along a 〈110〉 direction this is not the case, because
the (110) plane containing the Nb-Nb chains characteristic for
the G1 structure can be either parallel or perpendicular to the
direction of loading. The differences arising from the different
orientations of the Nb-Nb chains relative to the direction
of the applied load have been considered by using different
supercells, as described in detail below.

IV. RESPONSE TO UNIAXIAL TENSILE LOADING

A. [100] uniaxial loading

Uniaxial tension along 〈100〉 transforms the bcc to the fcc
crystal structure along the tetragonal “Bain path” (the primary
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FIG. 3. (Color online) Supercell used for calculating the energy-
strain and stress-strain relations of G1-type Ti3Nb to [100] tensile
loading along an orthorhombic deformation path.

tetragonal path, PTP). As shown by Hill and Milstein,47

a branching from the PTP to a secondary orthorhombic
deformation path (SOP) can occur at a “special invariant state”
characterized by C44 = 0 in a body-centered tetragonal (bct)
reference frame. The bct saddle-point structure along the SOP
is isostructural to the metastable bct structure reached along
the PTP via the fcc saddle-point structure. Among the bcc
metals, a bifurcation to an SOP has been found for V and
Nb, limiting the yield strain and the ideal tensile strength to
ε100
c = 0.10(0.11) and σ 100

max/E100 = 0.07(0.09) for V(Nb).15

The bct saddle-point configuration reached on the SOP under
uniaxial 〈100〉 loading is identical to that reached under shear
along a 〈111〉 axis. Hence, V and Nb fail by shear even under
purely uniaxial 〈100〉 loading. Ta is a special case, because
the bifurcation to the SOP coincides with the stress maximum
along the PTP; hence, Ta will also fail by shear.

To investigate the behavior of a Ti3Nb alloy under [100]
tensile strain we have used two different supercells: (i) the
cubic unit cell of the G1 structure shown in Fig. 1 with
tension applied along one of the cube edges, and (ii) a doubled
orthorhombic supercell containing 32 atoms, rotated by 45◦
such that the -Nb-Nb- chains are directed along one of the face
diagonals, in a plane containing the direction of the applied
tensile load (see Fig. 3). Brillouin-zone integrations have
been performed using a 8 × 8 × 8 mesh for the tetragonally
deformed cell and a 5 × 4 × 4 mesh for the orthorhombic
cell. We have carefully verified that this is largely sufficient

for achieving k-point convergence. The lattice parameters and
k-point meshes for all supercells used in our simulations are
summarized in Table II.

1. Simulations using the cubic unit cell

Figures 4(a) and 4(b) show the energy-strain and stress-
strain curves under uniaxial loading along [100], calculated
using the cubic unit cell of G1-type Ti3Nb. We compare the
results of two different simulations differing in the guiding
symmetry and in the strain increment added at each new
step of the simulation. In case 1 the applied uniaxial tensile
strain reduces the symmetry of the computational cell to
tetragonal. From the initial slope of the stress-strain curve
we derive a tensile modulus of E100 = 53.64 GPa, in excellent
agreement with the value of 53.4 GPa derived from the elastic
constants. A stress maximum is reached along this tetragonal
deformation path at a critical strain of ε100

c = 0.08, resulting
in an ideal tensile strength (ITS) of σ 100

max = 2.45 GPa. Beyond
the stress maximum the system continues along the tetragonal
deformation path up to a strain of ε = 0.1 where a monoclinic
deformation in the plane perpendicular to the applied load sets
in [see Fig. 4(c)].

The dimensionless ITS is σ 100
max/E100 = 0.046. Both the

critical strain and the dimensionless ITS are much lower than
the values characteristic for tensile deformation of bcc metals
along the tetragonal Bain path. For bcc V and Nb (which both
have a very low value of E100), the dimensionless ITS is about
0.11 to 0.12, for the “normal” bcc metals Mo and W a lower
value of 0.07 to 0.08 has been calculated. The low value of the
ITS found for the gum metal approximant is associated with
an asymmetric stress-strain curve differing from that of any of
the bcc metals.

In case 2 the symmetry of the computational cell is initially
broken such that bSC 	= cSC, facilitating a tensile deformation
along an orthorhombic deformation path. In addition, the strain
has been carefully increased by smaller increments. For strains
up to ε ∼ 0.06 both simulations produce identical results. An
orthorhombic shear instability appears at a strain of ε = 0.06,
just before reaching the stress maximum along the tetragonal
deformation path. The instability limits the ITS along 〈100〉 to
2.4 GPa. The energy-strain curve shows only a slight inflection,
but the stress collapses to a lower value. In the plane perpendic-
ular to the applied load, the structure is tetragonally distorted,
bsc 	= csc. Under further increased load, the orthorhombic dis-
tortion decreases again until at a strain of ε = 0.17 it disappears
completely. At already slightly lower strain, a monoclinic
deformation in the (100) plane appears [see Fig. 4(d)].

TABLE II. Supercells used for the simulations of the response to tensile loading (cf. text).

Tensile loading

[100] (Type 1) [100] (Type 2) [110] (Type 1) [110] (Type 2)

x axis [100],a0 = 6.524 Å [100],aSC = a0 [110],aSC = √
2 × a0 [11̄0],aSC = √

2 × a0

y axis [010],b = a0 [011],bSC = √
2 × a0 [1̄10],bSC = √

2 × a0 [110],bSC = √
2 × a0

z axis [001],c = a0 [01̄1],cSC = √
2 × a0 [001],cSC = a0 [001],cSC = a0

N atoms 16 32 32 32
k mesh 8 × 8 × 8 5 × 4 × 4 5 × 5 × 7 5 × 5 × 7
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FIG. 4. (Color online) Variation of the total energy (a), the stress (b), and the lattice constants (c),(d) of G1-type Ti3Nb under [100] tension
as a function of the applied strain, calculated using the cubic unit cell of the G1 structure. The two simulations shown in the diagram (case 1
and case 2) differ by a shear instability at a strain of ε11 = 0.06, just before reaching the stress maximum, in case 2. In case 3, calculations are
performed with the angle αSC of the supercell fixed at 90◦ (cf. text).

The instabilities along the tetragonal deformation path are
correlated to the variation of the elastic constants of the
tetragonal structure under increasing strain. The conditions
for the stability of the tetragonal structure are that the
subdeterminants of the elastic tensor are all positive; that is,

C11 > 0, (1)

C11 · C22 − C2
12 > 0, (2)

C11 · (
C2

22 − C2
23

) + 2C2
12 · (C23 − C22) > 0, (3)

C44 > 0. (4)

Figure 5 shows the variation of the elastic constants of
body-centered tetragonal Ti3Nb under uniaxial strain along the
[100] direction. At a strain of ε = 0.06 we find C11 = C12 and
C22 = C23, violating condition (3). The tetragonal structure
becomes unstable against an orthorhombic deformation, as
observed in case (2). It must be emphasized, however, that the
instability differs from that observed for uniaxially strained
bcc metals at the bifurcation to an orthorhombic deformation
path, which is driven by the vanishing of the shear constant
C44.15 For the Ti3Nb alloy C44 vanishes only at a much
larger strain of ε ∼ 0.18. At a strain of ε = 0.1 we find
C12 = C22, coincident with the instability of the tetragonal
structure against monoclinic shear found in case (1). The
comparison of the two simulations shows that for a system
with a rather flat energy landscape weak instabilities are easily

bypassed if the strain is increased by too-large increments. At
a given strain the energies calculated for case 1 and case 2
differ by more than 3 meV/atom.

The structure at the stress maximum along the tetragonal
deformation path at ε = 0.08 is best described as a deformation
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FIG. 5. (Color online) Variation of the elastic constants C11, C12,
C22, C23, C44, and C55 (related to a body-centered tetragonal lattice)
of G1-type Ti3Nb along the tetragonal deformation path as a function
of uniaxial [100] strain. The elastic constants reduce to C11, C12, and
C44 in the bcc limit.
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FIG. 6. (Color online) Variation of the total energy (a), the stress (b), and the lattice constants (c) of G1-type Ti3Nb under [100] tension as
a function of the applied strain, calculated for the doubled, rotated supercell shown in Fig. 3 (cf. text).

of the monoclinic unit cell MC1, with lattice constants
a = 5.70 Å, b = 8.89 Å, c = 2.85 Å, and β = 103.66◦. This
structure differs only slightly from that at ε = 0.06, where
the bifurcation to an orthorhombic structure has been found
in case (2), with a = 5.69 Å, b = 8.98 Å, c = 2.84 Å, and
β = 105.1◦.

At larger strains, no stress-free high-symmetry structure
could be identified. Between ε = 0.20 and ε = 0.24 the stress
is reduced to very low values. At this point the monoclinic
lattice parameters are a = 5.98 Å, b = 7.77 Å, c = 3.04 Å,
and β = 95.7◦. To investigate whether the stress maximum
along the tetragonal path could be related to a high-symmetry
saddle-point structure which has been bypassed in the other
simulations because of the monoclinic shear distortion, we
have performed a third run with the angle αSC of the supercell
fixed at 90◦. The results are included in Fig. 4 as case (3). In this
case the energy-strain curve has a maximum at ε = 0.26 at an
energy which is 32.8 meV/atom higher than the G1 structure,
followed by a flat energy minimum at ε = 0.375. Within the
monoclinic lattice, the stress-free structure has lattice constants
a = 5.83 Å, b = 8.29 Å, c = 2.93 Å, and β = 90.5◦. If the
angle becomes exactly 90◦ the space group symmetry is
Cmmm, No. 65.

2. Simulations using a doubled unit cell

The variation of energy and stress under [100] tensile
loading, calculated using the doubled unit cell rotated by 45◦

(see Fig. 3), is shown in Fig. 6. The structure remains tetragonal
up to the stress maximum of σ 100

max = 2.57 GPa at a critical
strain of ε100

c = 0.08. Within the monoclinic description,
the lattice constants of the structure at stress maximum are
a = 5.71 Å, b = 8.89 Å, c = 2.85 Å, and β = 103.7◦, almost
exactly coincident with the results found with the smaller
supercell.

After passing through the stress maximum, beyond a strain
of ε = 0.1 the structure becomes orthorhombically distorted
(bSC 	= cSC in the plane perpendicular to the applied uniaxial
load). This distortion corresponds to the shear deformation
(α < 90◦) of the 16-atom cell found in case 1. The energy
reaches a maximum at ε = 0.24, the structure is coincident
with that for the energy maximum reached with the smaller
supercell, and within the monoclinic description MC1 we
have a = 5.99 Å, b = 7.76 Å, c = 3.04 Å, and β = 95.8◦. At
larger strain of ε ∼ 0.25, a modest monoclinic distortion of
the supercell sets in which disappears again at a strain of 0.34.
A stress-free energy minimum (higher by about 11.8 meV
than the undistorted G1 structure) is found at ε = 0.42, with
lattice constants in the MC1 setting a = 6.49 Å, b = 6.48 Å,
c = 3.30 Å, and β = 89.9◦. With a = b and β = 90◦ a cell
doubled in the c direction corresponds to the tetragonal L60

structure. In their search for the optimal decoration of the
(eventually distorted) bcc structure for the Ti3Nb alloy, Lazar
et al.31 had found that an L60 structure is the energetically
least favorable alternative, 11.4 meV/atom higher in energy
than the cubic G1 structure and with relaxed lattice constants
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of a = b = 6.499 Å and c = 6.56 A. However, the L60-type
decoration of the lattice was found to be very important
for the understanding of the martensitic phase transitions,
because the L60 structure can be continuously deformed to the
orthorhombic structure of the α′′ phase, while the G1 structure
cannot. This has very important consequences for the kinetics
of the phase transformation.

Together we have found in simulations using different
supercells that under uniaxial 〈100〉 tensile loading the Ti3Nb
alloy reaches along a tetragonal deformation path a stress
maximum of σ 100

max between 2.45 GPa (simulations with the
cubic G1 cell) and 2.57 GPa (simulations with a doubled cell
rotated by 45◦ around the direction of the applied strain),
at a strain of ε = 0.08. In a simulation using a cell with a
weakly broken symmetry at a slightly lower strain of ε = 0.06
a shear instability against an orthorhombic distortion has been
detected, limiting the ITS to 2.4 GPa. The stress maximum
is not determined by a high-symmetry saddle-point structure,
although at very large strains we have identified stress-free
structures which have been found to play an important role
in the martensitic transformations of this alloy. The ratio
of tensile strength to tensile modulus, σ 100

max/E100 = 0.046 is
exceptionally low in comparison to the value of 0.08 found
for normal bcc metals (Mo, Ta) and even much lower than the
value of 0.11 calculated for Nb with a low tensile modulus. This
shows that the low value of the ITS found in this gum metal
approximant cannot be caused by a low shear constant alone.

B. 〈110〉 uniaxial loading

Because the G1 structure contains chains of Nb atoms
oriented along a 〈111〉 direction, uniaxial tensile loading
along different 〈110〉 directions will not yield identical results.
Supercells appropriate for simulations of uniaxial tensile
deformations along a 〈110〉 direction of the cubic cell are
shown in Fig. 7. Evidently, for the type-1 supercell loading
along [110] creates a linearly increasing tensile strain on the
Nb-Nb chains in the (1̄10) plane containing the direction of the
applied load. In contrast for the type-2 supercell loading along
the [11̄0] direction creates a compressive strain on the Nb-Nb
chain in the plane perpendicular to the direction of the applied
load. Both supercells contain 32 atoms; the lattice constants
are aSC = bSC = a0 × √

2, cSC = a0.
Figure 8 shows the energy strain and stress-strain relations

calculated with both supercells and using two different k-point
meshes. At first sight the energy increases monotonously up
to a very large strain of ε = 0.5; the stress shows a maximum
of 25 GPa at ε = 0.42. A closer inspection shows a slight
inflection in the energy-strain curve and a local maximum
in the stress at ε110

c = 0.04. To verify the existence of the
stress maximum, the calculations have repeated with a very
small strain increment of 0.005 and convergence with respect
to the BZ sampling has been examined. The initial slope of
the stress-strain curve corresponds to a tensile modulus of
E110 = 84.1 GPa, in excellent agreement with the value of 83.2
GPa derived from the calculated elastic constants. The stress
maximum leads to a theoretical tensile strength of σ 110

max(1) =
2.21 GPa, σ 110

max(1)/E110 = 0.026 for the type-1 supercell, and
σ 110

max(2) = 2.76 GPa, and σ 110
max(2)/E110 = 0.033 for type 2. The

difference between the two values of the ITS is a consequence

FIG. 7. (Color online) Supercells used to simulate 〈110〉 uniaxial
tensile deformations of G1-type Ti3Nb alloys. The strain is always
applied along the x direction. Note the different orientations of the
-Nb-Nb- chains relative to the direction of the applied load (cf. text).

of the different orientations of the -Nb-Nb- chains with respect
to the direction of the applied tensile load. For a multidomain
structure mixing different variants of the G1 structure, the ITS
is given by the average of the two values, σ 110

max ∼ 2.5 GPa.
Thus, we have found two important results. (i) The ITS

has the same almost equal extraordinarily low value of about
2.4 GPa for loading along the 〈100〉 and 〈110〉 directions.
(ii) The ideal strength is the same, although the tensile
modulus is much higher for the 〈110〉 direction. The ratio
between ideal strength and tensile modulus is even lower for
the 〈110〉 direction.

For both types of supercells the guiding symmetry along
the deformation path under 〈110〉 tensile loading is monoclinic
(see Fig. 9). With increasing strain (linearly increasing aSC)
the lattice is compressed along the cSC direction (the [001]
direction of the bcc lattice), while bSC remains first unchanged
and increases only on approaching the local stress maximum at
ε110
c = 0.04. Both supercells undergo a very small monoclinic

distortion counteracting the strain onto the Nb-Nb chains.
For the type-1 supercell the angle βSC increases beyond 90◦
such that the tensile strain on the -Nb-Nb- chains is reduced.
For the type-2 supercell, the angle αSC is reduced, reducing
the compressive strain onto the Nb-Nb bonds in the plane
perpendicular to the direction of the applied load.

At the first stress maximum small discontinuous changes of
the lattice constants and the angle in the plane perpendicular
to the applied load are observed. The crystal structure at the
stress-maximum may be described by a MC1-type monoclinic
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FIG. 8. (Color online) Variation of total energy (left panels) and stress (right panels) of G1-type Ti3Nb as a function of the tensile strain
along the [110] direction, calculated using two different supercells and different k-point meshes. The bottom panels show a zoom of the
low-strain region (cf. text).

lattice with lattice constants a = 5.73 Å, b = 9.29 Å, c =
2.87 Å, β = 113.6 at ε = 0.04 for type 1 and a = 5.58 Å,
b = 9.64 Å, c = 2.82 Å, β = 112.4 at ε = 0.045 for type 2.

V. RESPONSE TO SHEAR DEFORMATIONS

For the bcc metals V and Nb the saddle-point structure
under {110}〈111〉 or {211}〈111〉 shear deformations is a special
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body-centered tetragonal (bct) structure which is identical to
the saddle-point structure reached after a bifurcation from the
tetragonal to the orthorhombic deformation path under 〈100〉
uniaxial loading. Because the ITS is about twice as large as
the ideal shear strength, both metals will fail by shear even
under strictly uniaxial tensile loading. This stands in contrast
to the normal bcc metals such as Mo or W, where the stress
maximum under tensile loading is reached along a tetragonal
deformation path and which fail by cleavage. The stress-strain
curves of both classes of metals are also very different, those
of V and Nb are very asymmetric, leading to an ideal shear
strength which is much higher than expected on the basis of
their low shear moduli.15

Gum metal alloys also fail under shear, but it was found
that the scenario determining the behavior of V and Nb metals
cannot be extended to gum metal. The VCA calculations of
Li et al.25 predicted that V-rich Ti-V alloys show the same
behavior as V metal, but in alloys with less than 45 at.%
V a shear instability is reached only at strains beyond the
stress maximum under tension. Also, because in the VCA the
alloys are treated as effective one-component systems with
bcc symmetry, the saddle-point structures determining the
ideal strength are determined by symmetry. Our results for
G1-type Ti3Nb alloys presented in the foregoing sections have
demonstrated that this is not the case for real alloys, because
as a consequence of the occupation of the lattice sites by
different atomic species the symmetry of the deformed crystal
is further reduced. Under tensile loading along the 〈100〉 and
〈110〉 directions the structure at the stress maximum can be
described by the same monoclinic structure, which is not
determined by any stress-free structure with higher symmetry.
Failure by shear under uniaxial tensile loading requires that
the same structure is also reached the stress maximum under
shear and that the ideal shear strength is lower than the ITS.

We have considered the {211}〈111〉 and {110}〈110〉 shear
systems. The first is the weakest slip system of the bcc metals;
for the alloy it is also relevant for the transformation from the β

to the ω phase.31 The second is relevant in relation to a possible
strain-induced transformation from the β to the α′′ martensite.
The information on the lattice constants of all supercells and
the BZ meshes used in the calculations is compiled in Table III.

A. {211}〈111〉 shear deformation

Figure 10 shows the two computational cells containing
24 and 48 atoms respectively used for simulating shear
deformations in a 〈111〉 direction on a {211} plane. The
undeformed cells are orthorhombic, with lattice parameters
aSC, bSC, and cSC as defined in the figure and in Table III. The
two supercells differ in the orientation of the shearing direction
relative to the -Nb-Nb- chains. For type-1 supercells shearing
occurs along the Nb-chains, for type-2 supercells the shearing
direction is oblique to the orientation of the -Nb-Nb chains.
As demonstrated below, this leads to slightly different results
for the two supercells of different size.

The shear deformations have been performed in an alias
mode;29,30,48 that is, the strain is applied to the top layer of the
supercell, while the bottom layer is kept in a fixed position
and all intermediate layers are free to relax. The alias regime
provides a more realistic description of a shear deformation

than an affine transformation applied to all coordinates in the
cell. The alias regime also allows the formation of stacking
faults such that the competition between theoretical shear
strength and stacking fault formation can be discussed on
a common footing. For example, simulations of {1̄10}〈111〉
and {112̄}〈111〉 shear deformations of face-centered cubic
(fcc) Al have demonstrated that for both shear systems the
ideal shear strength is limited by stacking fault formation,
whereas for fcc Cu stacking fault formation occurs only
at strains larger than the critical strain at the shear stress
maximum.48 For {1̄10}〈111〉 shearing the microscopic analysis
of the deformation mechanism permitted by the alias regime
shows that the smallest possible perfect 1

2 [1̄10] dislocation is
split into two partial Shockley dislocations 1

6 [2̄11] + 1
6 [1̄21̄]

because a stacking fault leads to a lower misfit energy. To
perform the simulations in the alias regime is particularly
important for gum metal approximants which are characterized
by elastic deformations up to the ideal strength.11,12

Upon shearing a bcc lattice parallel to a {211} plane a
mirrored bcc lattice is created at a strain of γ = √

2/2 ∼ 0.71
(the “twining” strain) if relaxation is excluded. If only a single
maximum in the total energy exists for strains from 0 to 0.71,
symmetry dictates that it must be located at γ ∼ 0.35, and the
inflection point must fall around 0.17. Along this deformation
path the symmetry changes from cubic to monoclinic and
further to orthorhombic at the saddle point. For an alloy, the
symmetry can be further reduced by the chemical decoration
of the bcc lattice.

The energy-strain and stress-strain curves for {211}〈111〉
sheared Ti3Nb calculated with both types of supercells are
shown in Fig. 11. With the type-1 supercell the initial slope
of the stress-strain curve yields a shear modulus of G111 =
24.9 GPa, in good agreement with the value derived from the
elastic constants (G111 = 22.4 GPa; see Table I). The ideal
shear strength (ISS) is τ 111

max = 1.7 GPa at a critical strain of
γ 111

c = 0.12. A stress-free saddle-point structure is found at a
strain of γ ∼ 0.34.

At the stress maximum the structure can be described
as monoclinic, with lattice parameters a = 5.57(5.70) Å,
b = 9.08(8.89) Å, c = 2.83(2.85) Å, and β = 102.8(103.7)◦,
space group C2/m in the MC1 setting. This structure is
very similar to that reached at the stress maximum along
the tetragonal deformation path under [100] tension whose
lattice parameters are given in parentheses. The stress-free
structure reached at a strain of γ = 0.34 is base-centered
orthorhombic with lattice parameters a = 5.61 Å, b = 8.94 Å,
c = 2.81 Å and space group Cmmm. This stress-free structure
is determined by symmetry. Shearing along [111] changes the
angle β of the MC1-type monoclinic cell, from the tetrahedral
angle β = 109.5◦ for the unstrained G1 structure to 102.8◦ at
the stress maximum and 90◦ at the energy maximum which
32 meV/atom higher than the G1 structure.

This structure has the same symmetry and is energetically
nearly degenerate with the orthorhombic structure found under
[100] uniaxial tension, if the angle α of the cubic cell of the G1
structure is fixed at 90◦ (case 3). The structure is also similar to
that found at the energy minimum under unconstrained [100]
uniaxial tension applied to the doubled unit cell, at ε100 = 0.42,
at an energy of 12 meV/atom above the ground-state structure.
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FIG. 10. (Color online) Supercells used to simulate {110}〈110〉 (a) and {211}〈111〉 (b),(c) shear deformations. In (a) the cubic unit cell
of the G1 structure is indicated by the broken arrows; in (b) and (c) the smaller MC1-type monoclinic unit cell of the G1 structure has been
emphasized (cf. Table III and text).

The three orthorhombic energy extrema differ, however, in the
lattice constants.

Calculations using the larger type-2 supercell differ from
those with the smaller type-1 cell by the absence of symmetry

constraints. The type-1 supercell remains always monoclinic,
while for a type-2 supercell a symmetry-breaking leading
to triclinic symmetry is not excluded. Results are in almost
perfect agreement with those described above up to a strain

TABLE III. Supercells used for the simulations of the response to shear loading (cf. text).

Shear

{110}〈110〉 {211}〈111〉
Type 1 Type 2

x axis [110],aSC = √
2 × a0 [111],aSC =

√
3

4 × a0 [1̄11],aSC =
√

3
2 × a0

y axis [001],bSC = a0 [1̄10],bSC = √
2 × a0 [1̄1̄0],bSC = √

2 × a0

z axis [1̄10],cSC = √
2 × a0 [1̄1̄2],cSC = √

6 × a0 [11̄2],cSC = √
6 × a0

k mesh 5 × 7 × 5 14 × 5 × 3 7 × 5 × 3
Natoms 32 24 48
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FIG. 11. (Color online) Variation of the total energy (a), the stress (b), the lattice constants and angles of the type-1 (c) and type-2
(d) supercells calculated for G1-type Ti3Nb as a function of the applied strain under {211}〈111〉 shear deformations (cf. text).

of ε = 0.10. At this strain the cell suddenly relaxes to a
triclinic symmetry, the change in the angles is related to a
discontinuous change in the lattice parameters aSC and bSC.
The lattice parameters (in a framework derived from the MC1
structure) are a = 5.64 Å, b = 9.34 Å, c = 2.86 Å, α = 92.5◦,
β = 112.2◦, γ = 85.1◦.

The stress maximum of τ 111
max = 1.5 GPa and γ 111

c = 0.10
reached at the shear instability limits the ISS. At larger
strains the deviations of the angles αSC and γSC from 90◦
gradually decrease and also the lattice parameters aSC and
bSC converge to the values calculated at the energy maximum
with a type-1 supercell. Note that even for a type-1 supercell
the energy-maximum of the saddle-point configuration is
very flat, indicating the possibility of coexisting almost
degenerate stress-free configurations. However, the differences
between both sets of simulations are relevant only for plastic
deformations beyond elastic failure, not for the determination
of the ISS.

A real Ti3Nb crystal will consist of domains representing
different realizations of the G1 structure, with different orien-

tations of the -Nb-Nb- chains relative to the shearing direction.
The type-1 and type-2 supercells describe two such possible
configurations. The important point is that for both we find val-
ues of the ISS which are considerably lower than the ITS under
〈100〉 loading, and similar structures at the stress maximum.
Hence, our simulations lead to the conclusion that even under
strictly uniaxial tensile loading the alloy will fail by shear and
not by cleavage, as found experimentally for gum metal alloys.

The dimensionless ISS is τ 111
max/G111 = 0.067; this value

is much lower than the exceptionally high dimensionless ISS
calculated for bcc V and Nb metals of 0.17 (V) or 0.19 (Nb) due
to a low shear modulus of G111 = 33(31) GPa in combination
with a modest ISS of τmax = 5.5(6.0) GPa for V(Nb) and also
significantly lower than the dimensionless ISS of τmax/G111 =
0.11–0.12 determined for “normal” bcc metals such as Mo, W,
and Ta15. Hence, the low ISS of Ti3Nb cannot be explained
by a low value of the elastic modulus alone. Comparing the
stress-strain curves of the bcc metals under shear with that
of the G1-type Ti3Nb alloys we find that the exceptional
behavior of the alloy (which justifies its use as a “gum metal
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FIG. 12. (Color online) Comparison of the stress-strain curves
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approximant”) is that it combines a low value of the shear
modulus (as found also for V and Nb) with a rather “normal”
stress-strain curve (as in Mo, W, and Ta); this is illustrated in
Fig. 12. For V and Nb with a very low value of G111 and C44, the
stress-strain curve shows upward curvature at low strain; that
is, the initially very soft lattice stiffens under increasing strain.

It has been demonstrated15 that at strains larger than about
0.08 in pure V and Nb a pure shear deformation is insufficient
to relax all lateral stresses and that upon further deformation
a volume expansion reflected by a nonmonotonous variation
of the lattice constants under strain takes place. For Ti3Nb we
find that under shear aSC remains almost constant, while bSC

decreases and cSC increases monotonously up to strains well
beyond the critical strain, the atomic volume remains constant.
This means that the alloy remains soft also under strain and
this is instrumental for achieving a low shear strength.

It is also remarkable that all stress-strain curves display
a stress-free structure at γ ∼ 0.34 which is determined by
symmetry for both the bcc metals and the G1-type Ti3Nb
alloy. For the bcc metals the stress-free structure corresponds
to the energy maximum separating the unstrained bcc structure
and the mirrored bcc structure at γ ∼ 0.71 for the G1-
type compound to the base-centered orthorhombic structure
realized if the angle β of the MC1-type monocinic cell reaches
a value of 90◦ under shear.

B. {110}〈110〉 shear deformation

A (110)[110] shear deformation is of interest because this
type of transformation is thought to be associated with the
β → α′′ transformation. The supercell containing 32 atoms
(doubled unit cell) used for the simulation of this type of shear
loading is shown in Fig. 10. The energy-strain and stress-
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FIG. 13. (Color online) Variation of the total energy (a), the stress (b), the lattice constants and angles of the elementary cell (c) for G1-type
Ti3Nb as a function of the applied strain under {110}〈110〉 shear deformations.
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strain curves are shown in Fig. 13. The initial slope of the
stress-strain curve corresponds to a shear modulus of G110 =
19.7 GPa, in good agreement with the value of 18.7 GPa
derived from the elastic constants. At a strain of γ 110

c ∼ 0.06
a local stress maximum of τ 110

max = 0.9 GPa determining the
ISS under {110}〈110〉 deformation is detected, although the
stress increases again for larger strains until γ ∼ 0.26, where
the structure collapses to a stress-free configuration of higher
energy. The dimensionless ISS is τ 110

max/G110 = 0.048.
Under increasing strain the lattice undergoes a series of

transformations: Up to γ 110 = 0.26 the supercell undergoes
only a monoclinic deformation, with only modest changes
in the lattice constants. This deformation of the supercell
corresponds to an orthorhombic deformation of the cubic unit
cell of the G1 structure [see Fig. 13(c)]. At larger strains
beyond 0.26 the distortion of the supercell is triclinic; the
crystal structure is monoclinic at strains between 0.26 and 0.34
and also triclinic beyond [see Fig. 13]. The crystal structure
can also be described as a deformed MC1 unit cell, this permits
the comparison with other deformation-induced structures.
The structure at the first stress maximum is triclinic, with
lattice parameters (in a framework derived from the MC1
structure) are a = 5.64 Å, b = 9.22 Å, c = 2.83 Å, α = 87.3◦,
β = 109.1◦, γ = 92.8◦. Evidently, this structure is very similar
to that reached for type-2 (211)[111] shear deformation
immediately after the first shear instability. At a large strain
of γ 110 ∼ 0.48 a local energy minimum, about 13 meV/atom
above the undistorted G1 structure is found. Within the MC1
setting the lattice parameters are a = 5.93 Å, b = 6.85 Å,
c = 3.42 Å, α = 89.8◦, β = 89.7◦, γ = 89.9◦; that is, within
the computational accuracy the structure is orthorhombic.
It is related to the stress-free L60 structure realized under
〈100〉 tension through a compression of the lattice parameter
a and an expansion of b and c, but energetically almost
degenerate.

VI. DISCUSSION AND CONCLUSIONS

We have performed extensive ab initio DFT calculations
of the response of β-phase Ti3Nb alloys to tensile and shear
loading, using different computational supercells to account
for the influence of different possible orientations of the -Nb-
Nb- chains characteristic for the ground-state G1-type ordering

TABLE IV. Ideal tensile and shear strengths σmax and τmax (in
GPa), critical strains εc and γc, and dimensionless tensile and shear
strengths of Ti3Nb for different loading conditions.

Uniaxial tension

Direction εc σmax σmax/E

〈100〉 0.06 2.4 0.046
〈110〉 0.04 2.5 0.026

Shear deformation

Shear system γc τmax τmax/G

{211}〈111〉 0.10 1.50 0.067
{110}〈110〉 0.06 0.90 0.048

on the basic bcc lattice. A realistic β-phase structure will
consist of domains with such different orientations of the -Nb-
Nb- chains. Our results for the ideal tensile and shear strengths
are compiled in Table IV.

Under uniaxial 〈100〉 tensile strain a stress maximum
of 2.45 GPa is found at a strain of ε100 = 0.08 along a
deformation path describing a tetragonal distortion of the
supercell. However, a shear instability related to C11 = C12

and C22 = C23 leading to an orthorhombic distortion of the
supercell is found at a slightly lower critical strain of ε100

c =
0.06, limiting the ITS to σ 100

max = 2.40 GPa. The results are
confirmed by calculations using a larger supercell. The shear
instability limiting the tensile strength is rather weak; it may
be bypassed if the strains are increased in the simulations by a
too-large increment. The guiding crystalline symmetry under
strain is monoclinic, for the structure at the stress maximum
both supercells lead to identical results. Calculations with
the larger supercell provide evidence for the existence of
a stress-free energy minimum structure at a large strain of
ε100 = 0.42 which is just the tetragonal L60 structure found
after relaxation of the bcc lattice with the chemical decoration
leading to the highest energy.

Simulations of the response to uniaxial 〈110〉 tension have
been performed for two large supercells differing in the
orientation of the -Nb-Nb- chains relative to the direction of
the applied load. The ITS is determined by a premaximum of
the stress at a critical strain of ε110

c = 0.04 (0.045) using type-1
(type-2) supercells and slightly different values of the ITS of
σ 110

max = 2.21(2.76) GPa. Beyond the stress minimum around a
strain of about 0.05, the stress increases monotonically to much
larger values; the form of the stress-strain curve is similar to
that reported by Li et al.27,28 for B2-type FeAl compounds. The
structures reached at the stress maxima are monoclinic, they
are similar, but not identical to those at the critical stress under
〈100〉 loading. The ideal strength of a multidomain sample
displaying different orientations of the -Nb-Nb- chains may be
approximated by the average over the results for monodomain
crystals, σ 110

max ∼ 2.5 GPa.
The simulations of shear deformations have been performed

in the alias mode and for large supercells. The simulations
permit the formation of stacking faults, but this is not observed
in any of the simulations. Hence, our results demonstrate
that the ISS of this gum metal approximant is not limited
by stacking fault formation.

The results show that the ITS is almost isotropic, in contrast
to a negative shear anisotropy of A = 2 × (C ′ − C44)/C44 =
−1.002. The dimensionless ITSs are much lower than the
values calculated for all bcc metals. The stress-strain curve
of Ti3Nb is fundamentally different from that of all bcc
metals, where it is symmetry-dictated. Along the tetragonal
deformation path of bcc metals under 〈100〉 tension the saddle-
point structure at the stress maximum is fcc, it determines
the ITS of metals such as Mo or W. If the shear constant
C44 (in a body-centered tetragonal reference frame) vanishes
already before reaching the stress-maximum, a bifurcation
to an orthorhombic deformation path takes place and limits
the ITS to lower value for V and Nb. For Ta the bifurcation
point coincides with the stress maximum along the tetragonal
deformation path. The Ti3Nb alloy has a negative shear
anisotropy (like Ta), whereas V and Nb metals have a large
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positive value of the anisotropy, A = 4.4(4.9) (Ref. 15; note
that the theoretical values are somewhat too large, but agree
with experiment in the positive sign). The instability of Ti3Nb
on the primary tetragonal deformation path is determined by
the conditions C11 = C12 and C22 = C23 (again in a body-
centered tetragonal reference structure); this is different from
the condition determining the bifurcation from the tetragonal
to the orthorhombic deformation path for the pure metals. The
bifurcation found for the bcc metals also leads to a continuous
variation of energy and strain, whereas for the alloy we have
found a discontinuous collapse of the strain to lower values
(see Fig. 4). One must also remember that the tetragonal to
orthorhombic deformation describes the change in the shape
of the computational supercell, whereas the smallest possible
unit cell describing the crystalline structure of the alloy subject
to tensile strain is monoclinic.

Shear deformations following the {211}〈111〉 slip system
have been simulated using two supercells differing in size
and in the orientation of the -Nb-Nb- chains relative to the
shearing direction (parallel for type 1, oblique for type 2). In
both cases the supercell undergoes a monoclinic deformation.
For the type-1 supercell the stress increases monotonously
until a maximum of τ 111

max = 1.7 GPa at a shear strain of γ 111 ∼
0.12. The type-2 supercell becomes instable against a triclinic
deformation at a critical strain of γ 111

c = 0.10, limiting the
ideal shear strength to τ 111 = 1.5 GPa. The important point
is that the crystal structure at the stress maximum along the
monoclinic deformation path is identical to that reached at the
stress maximum under 〈100〉 uniaxial loading. Since the ISS
is much lower than the ITS, this means that even under purely
uniaxial loading Ti3Nb will fail by shear and not by cleavage.

The ISS of Ti3Nb for shearing along a 〈111〉 direction is
lower by a factor of about four than that calculated for bcc V
and Nb. The difference is slightly smaller for the dimensionless
ISS because the shear modulus G111 alloy is lower for the alloy.
The ratio the ideal shear and tensile strengths is τ 111/σ 100 =
0.61,0.47,0.48 for Ti3Nb, V and Nb, respectively; it follows
roughly the trend in the ratio in the shear and tensile moduli,
G111/E100 = 0.42,0.20,0.21. For the pure metals the body-
centered tetragonal saddle-point structure at a shear strain of
γ ∼ 0.35 is dictated by symmetry; the guiding symmetry along
the deformation path is monoclinic. For the Ti3Nb alloy both
the supercell and the crystal structure are monoclinic along
the deformation path; the stress-free structure at the energy
maximum (at γ ∼ 0.34) the crystal structure is orthorhombic.
The stress-free structure is similar, but not identical to that
found under 〈100〉 tension.

The response to {110}〈110〉 shear loading is similar to that
to 〈110〉 tension. The low ISS of τ 110

max = 0.9 GPa at γ 110
c =

0.06 is determined by a local maximum of the stress-strain
curve. For larger strain the stress continues to increase to much
larger values. Along the deformation path the shape of the
supercell is monoclinic, the lattice constants undergo only very
small changes. The guiding crystalline symmetry, however,
is triclinic. At a strain of τ 110 ∼ 0.48 the triclinic structure
converges to an orthorhombic stress-free lattice. The stress-
free structure found under very large tensile strain and for the
two different shear systems are all three orthorhombic. They

differ in the lattice constants, but all have almost the same
atomic volume than the unstrained G1 structure.

It is interesting to correlate the results of our ab initio
calculations to experimental measurements of the mechanical
properties of alloys of similar compositions. Kim et al.2,49

have performed tensile tests on binary Ti-Nb alloys with 22
to 28 at.%. Nb plus 0 to 2 at.% oxygen. The samples were
polycrystalline and subject to cold working and annealing.
The stress-strain curves showed a maximum stress of about
0.7 GPa in oxygen-free samples containing about 22 at.% Nb;
addition of oxygen leads to an increase of the tensile strength
to up to 1.35 GPa.

Furuta et al.10,50 investigated polycrystalline samples of
quaternary gum metal alloys containing Nb, Ta, Zr and a small
percentage of oxygen. For an alloy containing 23 at.% of Nb
the tensile strength is 1.37 GPa at a maximum elongation
of 12%, for an alloy with a slightly higher Nb content the
tensile strength increases to 1.5 GPa; the maximum elongation
decreases to 10%. Other results on gum metal alloys have been
compiled in the Introduction.20,22–24,32 The results demonstrate
that the tensile strength varies strongly with oxygen content,
processing conditions, and temperature, between 0.4 GPa
and 1.8 GPa. The shear strength for shearing in the 〈111〉
direction has been estimated from nanoscopic compression
experiments, leading to an average value of 0.85 GPa and a
maximum of 1.8 GPa, depending on the pretreatment of the
samples.

The important conclusion from our investigations is that we
find for the β-phase Ti3Nb alloy values of the ideal tensile and
shear strengths which are much lower than those estimated
before from the measured elastic constants,32 due to stress-
strain curves which are quite different from the sinusoidal
shape assumed in the derivation of the semiempirical relations.
Also the ITS is predicted to be quite isotropic, in contrast
to the elastic tensile moduli. The value of the ITS of about
2.5 GPa calculated from the binary alloy approaches that
of real gum metal specimens. The ISS is found to be more
anisotropic, varying between between 0.9 and 1.5 GPa; again
this is much lower than expected on the the basis of the elastic
constants and the semiempirical relations. For shearing in
the [111] the calculated value is at the upper limit of the
values found in experiments on gum metal. Together with
our previous work on martensitic transformations the present
results on the ideal tensile and shear strength demonstrate
that ab initio DFT provides an accurate description of the
structural, elastic, and mechanical properties of these complex
alloys and provide an atomistic insight on the deformation
mechanisms.
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