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We present a tree-tensor-network-based method to study strongly correlated systems with nonlocal interac-
tions in higher dimensions. Although the momentum-space and quantum-chemistry versions of the density-
matrix renormalization group �DMRG� method have long been applied to such systems, the spatial topology of
DMRG-based methods allows efficient optimizations to be carried out with respect to one spatial dimension
only. Extending the matrix-product-state picture, we formulate a more general approach by allowing the local
sites to be coupled to more than two neighboring auxiliary subspaces. Following �Y. Shi, L. Duan, and G.
Vidal, Phys. Rev. A 74, 022320 �2006��, we treat a treelike network ansatz with arbitrary coordination number
z, where the z=2 case corresponds to the one-dimensional �1D� scheme. For this ansatz, the long-range
correlation deviates from the mean-field value polynomially with distance, in contrast to the matrix-product
ansatz, which deviates exponentially. The computational cost of the tree-tensor-network method is significantly
smaller than that of previous DMRG-based attempts, which renormalize several blocks into a single block. In
addition, we investigate the effect of unitary transformations on the local basis states and present a method for
optimizing such transformations. For the 1D interacting spinless fermion model, the optimized transformation
interpolates smoothly between real space and momentum space. Calculations carried out on small quantum
chemical systems support our approach.
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I. INTRODUCTION

Understanding and simulating strongly correlated systems
has long been a major challenge in theoretical physics and in
theoretical chemistry. In the past two decades, the density-
matrix renormalization group �DMRG� method has been ap-
plied effectively to study problems in these fields.1,2 In par-
ticular, it has been widely used to study fermionic and spin-
chain problems in one dimension for models with both local
and long-range interactions. Application to systems with
long-range interactions gained impetus when the method was
reformulated to treat models defined in momentum space3–5

�MS-DMRG�, quantum chemistry calculations6–16 �QC-
DMRG�, and on random graphs.17 Common characteristics
of these approaches are that a higher dimensional system is
mapped to a one-dimensional �1D� chain and that variational
approximations to the eigenstates are obtained by an iterative
diagonalization procedure. Introduction of various quantum
information entropies5,18–20 and the reformulation of the
problem in terms of matrix product states21–23 �MPS� has
clarified the mathematical underpinnings of the method.

Recently, extensions to two dimensions based on the con-
trolled manipulation of entanglement between subsystems
has led to alternate methods that can be viewed as generali-
zations of matrix-product-state-based methods.24 These
methods include projected entangled pair states21,25–27

�PEPS�, the multiscale-entanglement-renormalization
ansatz28 �MERA�, and correlator product states29 or
complete-graph tensor network states.30 The PEPS and
MERA methods have already shown considerable promise
for frustrated and fermionic problems; they do not suffer
from the fermion sign problem that appears in quantum
Monte Carlo simulations.31,32 These new methods, however,

have primarily been restricted to the treatment of local
Hamiltonians. Thus, developing effective algorithms to treat
higher dimensional systems in which the interactions are
nonlocal remains an important problem.

In order to efficiently treat quantum chemical systems, it
has become evident in the past few years that methods must
take into account more general spatial topology. It has been
shown that quantum information entropy5,15,33 can be used to
determine the entanglement or quantum correlation among
sites or orbitals in a pairwise way. Such a two-dimensional
�2D� entanglement matrix leads to a picture of the topology
of orbitals that corresponds to a multiply connected network.
Two possible approaches to optimize computational effi-
ciency are to work with an appropriate networklike structure
that reflects the entanglement topology and to vary the
single-particle basis34 so that entanglement is reduced. For
states based on a one-dimensional topology, the only possi-
bility to take entanglement topology into account is to reor-
der the orbitals. The next step in generalizing the topology is
to use a tree network. This was first pointed out in Ref. 35. A
tree network makes it possible to reduce the distance be-
tween highly entangled orbitals when they are multiply con-
nected. In addition, the coordination number z can be varied
from orbital to orbital to adapt the variational state to a par-
ticular entanglement topology. For a tree network that is bi-
partite, it is possible to adapt methods and optimizations de-
veloped for matrix-product-state-based algorithms such as
the DMRG �Ref. 36� to tensor-product states on the tree
network. This is because the tree network method can be
related to a generalized DMRG with z blocks instead of two.
In addition since an effective Hamiltonian can be formed,
real time evolution, like that done in time-dependent density-
matrix renormalization group �t-DMRG� �Refs. 19 and 37–
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39� and in PEPS,26 can be carried out. Real time evolution
could be used, for example, to calculate spectral functions
for quantum chemical systems.

The use of more general spatial topologies is also poten-
tially important for quantum impurity problems. In these sys-
tems, the impurity subsystem, which can consist of either a
single site or a strongly correlated cluster, is coupled to a
bath of free fermions. The classical method to treat quantum
impurity problems numerically is the numerical renormaliza-
tion group �NRG�.40 The starting point of the NRG method is
the mapping of the problem onto a one-dimensional semi-
infinite lattice in which the first site �or set of sites� describes
the impurity subsystem and the remainder of the chain rep-
resents the logarithmically discretized conduction band. In
the past few years, the NRG has been extended by dividing
the chain into a system and an environment as in the
DMRG;41 the resulting method, the DM-NRG, has under-
gone significant development recently.42–46 While these ex-
tensions have led to significant improvements, they neverthe-
less have focused primarily on optimizing algorithms based
on a one-dimensional topology. In general, the conduction
bands are entangled through the impurity subsystem only.
Therefore, it is a natural choice to describe the problem as a
treelike structure in which the impurity subsystem at the cen-
ter is surrounded by shells of the conduction bath. Such a
treelike topology has been utilized to treat the quantum im-
purity problem that occur with dynamic mean-field
theory.47,48

The first attempts to apply matrix-product states on tree
networks were carried out by Otsuka49 and by Friedman et
al.,50 who calculated ground-state properties of the spin-1/2
XXZ and Heisenberg chains using the DMRG. Subsequently,
Lepetit et al.51 studied the half-filled Hubbard model on a
Bethe lattice �also known as a Cayley tree�. Recently,
Martin-Delgado et al.52 applied the DMRG to a model of
dendritic polymers, a system that can also be represented as
a Cayley tree. All of this work uses a Bethe lattice, whose
characteristics are that the number of nearest neighbors at
each node is z, i.e., the coordination number, and that closed
loops do not occur. Since there is only one path between any
pair of sites, a DMRG-based solution of the problem is pos-
sible. In this approach, however, z systems blocks must be
renormalized to a single block at each iteration step, leading
to computational cost which increases exponentially with z,
hindering systematic DMRG studies for large systems and/or
large z; up to now only z=3 has been treated. In contrast, the
tree tensor network �TTNS� methods we introduce here have
a much lower computational cost because the topology con-
sists of a single site and z blocks whereas the superblock
configuration included 2z blocks or z+1 in previous DMRG
attempts. In this work, we present calculations on small sys-
tems in order to demonstrate the viability of the tree tensor
network method and to compare its accuracy and efficiency
with existing DMRG methods.

Another approach to take advantage of the benefits of the
tree network was formulated in Ref. 53. In this work, the tree
tensor network is formed by placing physical sites on the
boundary sites only. The remaining interior sites are virtual;
they are only used to transfer entanglement up the tree. This
tree tensor product state is designed to treat models in which

sites contribute the same amount of entanglement, i.e., have
the same value of single-site entropy.

In this work, we form a tree tensor network in which all
sites in the tree represent physical sites and in which en-
tanglement is transferred via the virtual bonds that connect
the sites. Our motivation is to treat models in which physical
sites have varying degrees of entanglement; positions closer
to the center of the tree should be better suited to represent
more entangled sites. An additional motivation is to take ad-
vantage of the property of the tree tensor network ansatz that
the long-range correlations differ from the mean-field value
polynomially with distance rather than exponentially with
distance as for MPS. In our algorithmic approach to optimize
the tree tensor network, we use tools similar to those used in
Refs. 35 and 52–55, and optimize the network site-by-site as
in the DMRG. In addition, we explicitly describe how to deal
with fermions and long-range interactions.

The paper is organized as follows. In Sec. II, we describe
the theoretical background for the TTNS algorithm and the
orbital optimization used during the iterative procedure. Sec-
tion III is devoted to the analysis of the error in the ground-
state energy for various spin and fermion models as a func-
tion of bond dimension for TTNS with different coordination
numbers. These include the 2D Heisenberg model, the 2D
spinless fermion model, the 1D spinless fermion model in
momentum space, and the Beryllium atom as an application
in quantum chemistry. In the latter case, we compare the
results to those from DMRG calculations. We conclude and
discuss future prospects in Sec. IV.

II. THEORETICAL BACKGROUND OF THE TREE-
NETWORK APPROACH

We approach the problem of finding the ground state of
strongly correlated systems on a finite lattice of M sites with
long-range interactions using a TTNS ansatz of the form

��� = �
k1,. . .,kM

Ck1,. . .,kM
�k1, . . . ,kM� .

Here the coefficients Ck1,. . .,kM
describe a tree tensor network,

i.e., they emerge from contractions of a set of tensors
�A1 , . . . ,AM	 according to a tree network, as shown in Fig. 1.
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FIG. 1. �Color online� Tree tensor network with �a� z=3 and �b�
z=4. The structure of the tensors is shown in �c� and �d�. The bonds
indicate the virtual indices �1 , . . . ,�z and the circle the physical
index k.
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We associate a tensor with z+1 indices,

�Am��1,. . .,�z

k

with each vertex m of the network, that is, each tensor has z
virtual indices �1 , . . . ,�z of dimension D and one physical
index k of dimension d, with z being the coordination num-
ber of that site. In the following, D will be referred to as the
virtual dimension, and d as the physical dimension. The co-
efficients Ck1,. . .,kM

are obtained by contracting the virtual in-
dices of the tensors according to the scheme of a tree tensor
network �see Fig. 1�. The structure of the network can be
arbitrary and the coordination number can vary from site to
site. The only condition is that the network is bipartite, i.e.,
by cutting one bond, the network separates into two disjoint
parts. In the special case z=2, the one-dimensional MPS-
ansatz used in DMRG is recovered.

In a tensor network, entanglement is transferred via the
virtual bonds that connect the sites. Thus, it is preferable to
put strongly correlated sites close together, i.e., to minimize
the number of bonds between them. Evidently, the diversity
of arranging the sites in the network increases drastically
with increasing coordination number z. Also, with a coordi-
nation number z�2 the number of virtual bonds required to
connect two arbitrary sites scales logarithmically with the
number of sites M whereas the scaling is linear in M for z
=2.35 This can be seen by considering a Cayley-tree of depth
�, as shown in Fig. 1. The number of sites in the tree is

M = 1 + z�
j=1

�

�z − 1� j−1 =
z�z − 1�� − 2

z − 2

and thus, the maximal distance between two sites, 2�, scales
logarithmically with M for z�2. This logarithmic scaling is
fundamental because, with a MPS ansatz, the expectation
value of a long-range correlation differs from the mean-field
result only by a quantity that decays exponentially with the
distance:


�n�n+�� − 
�n�
�n+�� � c−�.

With a TTNS ansatz, the logarithmic scaling counteracts this
exponential decay, so that the difference from the mean-field
result only scales polynomially with the number of sites M.

The way to arrange the physical sites on the network is
determined by the choice of the basis �k1 , . . . ,kM�. Obviously,
the precision of the ansatz depends critically on the choice of
the basis. For example, the noninteracting Fermi gas has a
ground state that is a direct product in the momentum space
representation. Such a state corresponds to a tree tensor net-
work state with virtual dimension D=1 at all bonds. In po-
sition representation, however, a bond dimension that in-
creases exponentially with the number of sites would be
required. Thus, it will be favorable to optimize not only over
the tensors in the coefficients Ck1,. . .,kM

but also over the basis
�k1 , . . . ,kM�.

In second quantization, �k1 , . . . ,kM� denotes the basis in
occupation number representation,

�k1, . . . ,kM� = �a1
†�k1

¯ �aM
† �kM�0�

and a basis transformation is obtained from the canonical
transformation

bj
†�U� = �

r=1

M

Ujrar
†

defined by the M 	M unitary matrix U. The whole varia-
tional ansatz then depends on two sets of parameters: the
tensors �A1 , . . . ,AM	 and the unitary U. The goal of the algo-
rithm is to find the minimum of the energy with respect to
these two sets of parameters, i.e., to calculate

E = min
A1,. . .,AMU


��A1, . . . ,AM,U��H���A1, . . . ,AM,U�� .

The idea is to perform the optimizations over the parameter
sets �A1 , . . . ,AM	 and U consecutively and repeatedly until
convergence is reached. In the following two sections, we
describe the two optimization procedures in more detail.

A. Network optimization

First, let us sketch how to optimize the tensors
�A1 , . . . ,AM	 while keeping the basis fixed. The minimization
of the energy with the constraint that the norm remains con-
stant is equivalent to minimizing the functional

F = 
��H��� − E�
���� − 1� .

This functional is nonconvex with respect to all parameters
�A1 , . . . ,AM	. However, due to the tensor network structure
of the ansatz, it is quadratic in the parameters Am associated
with one lattice site m. Because of this, the optimal param-
eters Am can simply be found by solving a generalized eigen-
value problem HmA� m=ENmA� m. For a bipartite network, it is
always possible to assume a gauge condition so that Nm= I,
and thus reduce the generalized eigenvalue problem to an
ordinary one.35 We will discuss this in more detail later in
this section. The concept of the algorithm is to do this one-
site optimization site-by-site until convergence is reached.

The challenge that remains is to calculate the effective
Hamiltonian Hm of the eigenvalue problem. In principle, this
is done by contracting all indices in the expression for the
expectation value 
��H��� except those that connect to Am.
By interpreting the tensor Am as a dDz-dimensional vector
A� m, this expression can be written as


��H��� = A� m
† HmA� m. �1�

Since


���� = A� m
† NmA� m �2�

and Nm= I, the functional F attains its minimum when

HmA� m = EA� m.

Due to the bipartite structure of the tensor network, the cal-
culation of Hm can be performed efficiently, i.e., on a time
that scales polynomially with M and D. Assuming that the
coordination number z is the same everywhere, the scaling
will be MdDz+1.
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This procedure is similar to a DMRG calculation with z
blocks instead of two, where a block consists of all of the
sites within one of the branches emerging from site m �see
Fig. 2�a��. The wave function is then formed as

��� = �
�1,. . .,�z=1

D

�
�1,. . .,�z
� � ���1

1 � � ¯ � ���z

z � , �3�

where ���
i � ��=1, . . . ,D� is the basis in environment block i

�i=1, . . . ,z� and �
�1,. . .,�z
� is the state of site m. Since Nm is

obtained from the norm 
� ��� by contracting all tensors
except Am �see Eq. �2��, it factorizes into a tensor product of
z matrices Nm

i ,

Nm = Nm
1

� ¯ � Nm
z ,

where each matrix Nm
i is formed by taking the overlap of the

basis states in environment block i

�Nm
i ��� = 
��

i ���
i � .

Obviously, in order to guarantee that Nm= I, the basis in each
environment block must be orthonormal. This is a similar
requirement as in the DMRG. In the tree tensor network, this
may be achieved by assuming an appropriate gauge condi-
tion. The purpose of this gauge condition is to fix the natural
freedom in the tensor network that a matrix and its inverse
can be inserted at any bond, with the matrix being contracted
with the first attached tensor and the inverse being contracted
with the second attached tensor, leaving the network invari-
ant �see Fig. 2�b��. The gauge condition for all sites n �n
�m� that assures that Nm= I is

�
k�2,. . .,�z

�An
�����2,. . .,�z

k �An���2,. . .,�z

k = ���. �4�

Here we take the index � to be outgoing, i.e., the branch
attached to this index contains site m, and the indices

�2 , . . . ,�z to be incoming, i.e., the attached branches do not
contain site m �see Fig. 2�a��.

A stable way to apply this gauge condition is to “or-
thonormalize” the tensors from outside to inside. That is,
starting with the tensors on the leaves of the tree, we take
into account condition �4� by QR-decomposing �An��

k , i.e., by
writing it as

�An��
k = �

��

�Qn���
k R���.

The unitary matrix �Qn���
k is the new orthonormalized tensor

at site n. In order to keep the tensor network invariant, R���

must be contracted with the tensor on the first inner shell that
is connected to the tensor at site n. This procedure continues
iteratively with the tensors on the first inner shell, the second
inner shell, and so on until site m is reached.

Thus, by assuring that the gauge condition is always sat-
isfied in the course of the algorithm, the only term that must
be calculated is the effective Hamiltonian Hm. This term is
obtained, as can be gathered from Eq. �1�, by contracting all
tensors except Am in the expectation value 
��H���. Since
the Hamiltonian is a sum of interaction terms

H = �
r=1

R

hr

with hr being a tensor product of matrices, e.g., hr=��7�

� ��15� for a two-body interaction acting on sites 7 and 15,
the effective Hamiltonian splits into a sum of effective
Hamiltonians hm,r with respect to a single interaction term hr


��hr��� = A� m
†
hm,rA� m.

Due to the structure, Eq. �3�, of the TTNS, each effective
Hamiltonian hm,r factorizes into a tensor product of z matri-
ces

hm,r = hm,r
1

� ¯ � hm,r
z ,

where each matrix hm,r
i corresponds to the matrix elements of

hr with respect to the basis in environment block i

�hm,r
i ��� = 
��

i �hr���
i � .

Graphically, the evaluation of 
��
i �hr���

i � corresponds to the
contraction of a three-layered tensor network according to
the structure of the branch in block i, as depicted in Fig. 3.
This network can be contracted efficiently by starting from
the leaves and working in the inward direction. The numeri-
cal effort for contracting one additional site into the network
scales as dDz+1, so that the total effort scales as dDz+1 times
the number of sites in the block.

Of course, if hr has no support in environment block i,
hm,r

i is equal to the identity because the basis is chosen to be
orthogonal in each environment block. Because of this, the
calculation simplifies significantly. For example, each two-
site interaction has support in at most two blocks. This
means that at most two effective Hamiltonians hm,r

i have to
be calculated �for each interaction term�; all others are equal
to the identity. Since the orthonormalization of the state is
applied iteratively from the leaves inwards to the optimized

(a)

A B1
w

�

wA B

site m

Block 1

Block 2Block 3

(b) =

1
�

2
�3

�

FIG. 2. �Color online� �a� Separation of the state into z blocks
plus the site under optimization, as described by Eq. �3�. �b� Natural
freedom in the tensor network: insertion of a matrix w and w−1 at
one bond leaves the state invariant. The contraction of A with w
forms the new tensor A� on the left-hand side; the contraction of B
with w−1 forms the new tensor B� at the right-hand side.
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site m, the calculation of hm,r
i simplifies substantially, as well.

Within each block, the contraction of all subbranches on
which hm,r

i has no support automatically yields the identity.
Thus, for the example of a two-site interaction, it is sufficient
to take into account the sites on the path connecting the two
sites �see Fig. 4�. The treatment of long-range interactions on
a tree is therefore not significantly more complicated than the
treatment of long-range interaction on a chain in the DMRG.

At first glance, it might seem that the advantage of “crop-
ping” all subbranches with no support is lost when switching
to fermions. This is because fermionic interactions with local
support are turned into interactions with nonlocal support in
the spin picture via the Jordan-Wigner transformation. The
two-particle fermionic interaction a7

†a15, for example, is
turned into the spin interaction

a7
†a15 = �+

�7�� �
7�n�15

Z�n��−
�15�

that has support on 9 sites, where Z=−�z and �+, �−, �z
denote the Pauli operators �see Fig. 5�. However, as we will
show, local fermionic interactions can be treated in the tree
network with the same effort as local spin interactions by
including the Z2 symmetry in the ansatz. This is the fermion
number parity in the fermionic language.

The Z2 symmetry can be incorporated into the ansatz by
making the tensors �Am��1,. . .,�z

k block diagonal. That is, each
virtual index is split into an index pair ��i , pi�, with pi car-
rying the parity information. By stipulating that p1 � ¯

� pz � k=1 �where � denotes summation modulo 2�, it is
possible to “move” the operator Z that acts on the physical
index of Am to the virtual parity indices pi

Zkk̃�Am��1p1¯�zpz

k̃ = �Am��1p̃1¯�zp̃z

k Zp̃1p1
¯ Zp̃zpz

. �5�

From this relation, it immediately follows that:

Z � ¯ � Z��� = ��� �6�

and thus that the state is Z2 symmetric. This is because the
left-hand side of Eq. �6� corresponds to the contraction of Z’s
to the physical indices of all tensors Am. After moving all Z’s
to the virtual bonds, the operator Z appears twice on each
bond. Thus since Z2= I, the state ��� remains unchanged.

Using the same idea, we can immediately enforce a more
restrictive symmetry that is fulfilled by all fermionic Hamil-
tonians: the charge symmetry U�1�, i.e. the conservation of
the number of particles. For this, the tree graph has to be
made directed �see Fig. 6�, so that all sites �except one� have
z−1 incoming and one outgoing bond. The exception is the
sink site, which has only incoming bonds. Thus, each virtual
index of a tensor Am is equipped with the additional infor-
mation of whether it is “incoming” or “outgoing.” We as-
sume that the index 1 is always the outgoing index in the

site m

r| h |� � � � �
1

m,rh

3

m,rh

A

A

A

�

A

�

�

� �

2

m,rh

(a)

(b)

FIG. 3. �Color online� �a� Formation of the effective Hamil-
tonian hm,r=hm,r

1
� hm,r

2
� hm,r

3 with respect to the interaction hr

=��7� � ��15�. The sites on which the interaction has support are
marked by a filled circle. Each open �filled� circle in the tensor
network corresponds to the contraction of the layered structure of
tensors shown in �b�.

site m

r| h |� � � � �

1

m,rh

3

m,rh

�

�

2

m,rh

FIG. 4. �Color online� Branches with no support �marked by
dotted lines and circles�, which yield the identity when contracted
and therefore do not have to be taken into account in calculating the
effective Hamiltonian.
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FIG. 5. �Color online� Formation of the effective Hamiltonian
hm,r=hm,r

1
� hm,r

2
� hm,r

3 with respect to the fermionic interaction hr

=a7
†a15. The sites on which the interaction has support are marked

in red.
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following. As before, each virtual index is split into an index
pair ��i ,ni�. In addition, we require that n1=n2+ ¯+nz+k.
Thus, for i=2, . . . ,z, ni counts the number of particles within
the branch attached to index i. The index n1, on the other
hand, is equal to the number of particles in all the branches
plus the number of particles at site m. Since the parity can be
immediately derived from the particle-number information, a
similar relation as Eq. �5� holds, namely,

Zkk̃�Am��1n1¯�znz

k̃ = �Am��1ñ1¯�zñz

k Z̃ñ1n1
¯ Z̃ñznz

�7�

with Z̃ñn=ñn�−1�n. Thus, as before, Z acting on the physical
index can be moved to the virtual particle-number bonds and

since Z̃2= I, the state is Z2 symmetric.
The advantage of taking into account the particle number

is twofold: on the one hand, the block structure of the tensors
reduces the numerical effort considerably: a bond dimension
of �=ND can be treated with an effort of order NzDz+1 in-
stead of �z+1 for a nonsymmetric ansatz. Here � is the full
bond dimension, so it is equivalent to the number of block
states kept in a DMRG procedure. On the other hand, the
calculation of the effective Hamiltonians hm,r with respect to
an interaction with support on a few sites only, e.g., a two-
particle or four-particle interaction, is simplified. The main
idea is depicted in Fig. 7 for the interaction a7

†a15: with an
appropriately chosen numbering of the fermions, each sub-
branch that has no fermionic support either has only identi-
ties acting on the sites or only operators Z. The subbranches
including only identities simplify to the identity because of
the orthonormalization of the state. The Z operators can be
moved, using relation �7�, to the virtual bonds, and all of
them except one cancel �see Figs. 5 and 7�. What remains is
a subbranch that includes only identities, which reduces to
the identity because of the orthonormalization of the state.
Thus, for a fermionic two-site interaction, it is sufficient to
take into account the path connecting the two sites. In this
way, the treatment of long-range fermionic interactions is
feasible with the same numerical effort as the treatment of
long-range spin interactions.

Using the same scheme as for minimizing the energy, the
efficient simulation of time evolution is also possible. For
this, the time evolution is split up into small steps of duration
t. For t�1 and a starting state ��0� of the form of a
TTNS, the time-evolved state e−iHt��0� is a TTNS as well.
However, the virtual dimension is multiplied by a factor �
�1. In order to prevent the bond dimension from increasing
exponentially with time, the TTNS has to be approximated
by a TTNS with a reduced virtual dimension ��� after every
time step, i.e., the functional

K = �e−iHt��0� − ����2

must be minimized. The optimization with respect to a single
site m leads to the system of linear equations NmA� m=w� m
�where Nm can again be set equal to identity by using the
appropriate gauge� with


��e−iHt��0� = A� m
† w� m

and thus can be performed efficiently with the scaling
MDz+1, as before. Clearly, all previous considerations regard-
ing particle-number symmetry can also be adapted to the
case of time evolution.

B. Orbital optimization

As mentioned previously, the entanglement properties of
the system depend critically on the choice of the basis. Our
goal is to find a basis in which entanglement is localized as
much as possible at the sites of the tree network. Such a
choice of basis guarantees that a given precision can be at-
tained with a smaller virtual dimension D, and thus with less
computational effort. In QC-DMRG the optimization of the
basis is fundamental and has been used in much previous
work.34,56–59

(a)

(b) A
k

2 2( , n )�3 3( , n )�

1 1( , n )�

1 2 3n n n k� � �

FIG. 6. �Color online� �a� Possible choice of an ordered tree
graph with each site having two incoming and one outgoing bond.
The sink site is marked in black. The tensors Am associated with
each site with virtual indices consisting of pairs ��i ,ni� have the
structure shown in �b�.
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FIG. 7. �Color online� Formation of the effective Hamiltonian
hm,r=hm,r

1
� hm,r

2
� hm,r

3 with respect to the fermionic interaction hr

=a7
†a15 with parity symmetry taken into account. The sites on which

the interaction has support are marked in red. All branches marked
by dotted lines and circles yield the identity when contracted. The

parity operator Z̃ is contracted to the virtual bond.
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In contrast to previous work, our approach aims to find
the optimal basis that can be obtained by a canonical trans-
formation of the fermionic modes. The canonical transforma-
tion is defined by a M 	M unitary matrix U. Since the num-
ber of parameters is relatively small, a gradient search
applied to the expectation value of the energy,

E�U� = 
��U��H���U��

is certainly feasible. Since E�U� is a nonconvex function of
the parameters U, it is a highly nontrivial problem to find the
absolute minimum. The idea is to perform the gradient
search multiple times in the course of the algorithm, e.g.,
after each optimization sweep of the tensor network, and
improve the energy at each gradient search by only a small
amount. This will eventually adapt the orbitals optimally to
the tree tensor network.

There are two ways to implement the basis transforma-
tion: one based on the state and the other based on the
Hamiltonian. We have applied the basis transformation to the
Hamiltonian. For the fermionic Hamiltonian with long-range
interactions,

H = �
ij

Tijai
†aj + �

ijkl

Vijklai
†aj

†akal

that appears, e.g., in quantum chemistry, in momentum-space
descriptions of the Hubbard model, or in descriptions of the
Hubbard model on higher dimensional lattices, the function
E�U� can be expressed as

E�U� = �
ij

T̃�U�ij
ai
†aj� + �

ijkl

Ṽ�U�ijkl
ai
†aj

†akal�

with

T̃�U� = UTU†,

Ṽ�U� = �U � U�V�U � U�†.

The correlation functions 
ai
†aj� and 
ai

†aj
†akal� are calculated

with respect to the original state and are not dependent on the
parameters in U. With the function E�U� in this form, its
gradient can be calculated explicitly. Both quantities can be
evaluated efficiently for different parameter sets U, which
makes the gradient search feasible.

In order to guarantee that U remains unitary in the course
of the gradient search, we express U as the exponential of an
M 	M hermitian matrix X, U=eiX, and perform the gradient
search with respect to the M2 real parameters that parameter-
ize X, compactly described as a vector x� of length M2. The
gradient search that is used for the orbital optimization typi-
cally finds the local minima in the vicinity of the starting
point of the optimization. In order to avoid falling into the
same minimum, we shift the starting point in a random di-
rection by an appropriately chosen amount, i.e., we add a
random vector to the starting vector x�0. This has the conse-
quence that the gradient search generally falls into another
local minimum that may have a higher energy. However, it
assures that the orbitals change considerably and that since

the orbital optimization is performed repeatedly interspersed
with network optimization, the energy decreases notably in
the course of the algorithm.

III. NUMERICAL RESULTS

We have applied the algorithm consisting of two optimi-
zation procedures described above, the optimization of the
tensor network and the optimization of the basis according to
this network, to several models. In this section, we discuss
the results.

A. 2D Heisenberg model

First, let us consider the tree tensor network optimization
only and show using the 2D Heisenberg model with open
boundary conditions how results improve with a TTNS an-
satz compared to a one-dimensional MPS ansatz. The rela-
tive error in the energy of a system consisting of 4	4 spins
as a function of the optimization step is shown in the left
hand side of Fig. 8 for the MPS ansatz and the TTNS ansatz
with z=3 and z=4. In all calculations, a fixed virtual dimen-
sion of D=4 is used. The manner in which the spins have
been assigned to the nodes in the tree network is shown in
Fig. 9. As can be seen, the precision increases considerably
with increasing coordination number. As a reference we used
results obtained by exact diagonalization and by Monte
Carlo simulations using Algorithms and Libraries for Physics
Simulations �ALPS�.60

For larger systems such as for 6	6 spins, shown in the
right-hand side of Fig. 8, the energy is plotted as a function
of the optimization steps for z=2, z=3, and z=4. The virtual

0 50 100
10−2

10−1

100

iteration step

∆E
re
l

0 100 200 300
10−2

10−1

100

iteration step

z=2
z=3
z=4
PEPS

(a) (b)

FIG. 8. �Color online� Relative error �Erel= ��E−Eexact� /Eexact�
in the energy for Heisenberg model on �a� a 4	4 lattice and �b� a
6	6 lattice as a function of the optimization steps. The reference
energy Eexact was obtained by exact diagonalization in the 4	4
case and by Monte Carlo simulations using Algorithms and Librar-
ies for Physics Simulations �ALPS� �60� in the 6	6 case. The
calculations were performed with a fixed virtual dimension of D
=4 and tree tensor networks with coordination numbers z=2 �blue
curve�, z=3 �green curve�, and z=4 �red curve�.
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dimension is fixed to D=4. As before, the energy decreases
considerably and approaches the PEPS result for D=4, indi-
cated by the dotted line which, however, is obtained with a
much larger numerical effort.26

B. 2D interacting spinless fermions

The TTNS Ansatz also performs well on two-dimensional
fermionic models. We have applied the TTNS algorithm to a
system of interacting fermions on a two-dimensional lattice,
described by the Hamiltonian

H = − J�

i,j�

ai
†aj + U�


i,j�
n̂in̂j

with n̂i=ai
†ai. The boundary conditions are assumed to be

periodic. As can be gathered from Fig. 10, the ground-state
energy improves with increasing coordination number z. The
figure shows the relative error in the energy as a function of
the iteration step for z=2 and z=3 for a 4	4-lattice in the
left part, and the ground-state energy as a function of the
iteration step for a 6	6 lattice in the right part. For the
calculations, we have used the virtual dimension D=4. We
have chosen the parameters J=1 and U=0.5 and have fixed
the number of fermions to N=3.

Thus, a TTNS Ansatz might be useful for the study of
higher dimensional models of small size because the effec-
tive long-range interactions are represented better in a tree
than in a chain and the numerical effort is relatively low
compared to a PEPS calculation.

C. 1D interacting spinless fermions

In order to assess the effectiveness of the orbital optimi-
zation, we have applied the algorithm to a simple fermionic
model, the one-dimensional interacting spinless fermion
model

H = − J�
i=1

M

�ai
†ai+1 + h.c.� + U�

i=1

M

n̂in̂i+1,

where n̂i=ai
†ai. We assume periodic boundary conditions,

i.e., aM+1=a1. This model can be mapped to the XXZ spin
chain via a Jordan-Wigner transformation. In this model, it is
known that the choice of the basis has a big effect on the
precision of the DMRG or TTNS calculation. For U→�, the
ground state is a product state in the position representation,
and thus optimally represented by a tensor network with D
=1 in this basis. For U=0, on the other hand, the ground
state can be represented as a direct product in momentum
space. Thus, the momentum-space basis is clearly best suited
in this limit. For intermediate U, one might expect a basis
intermediate between real and momentum space to represent
the entanglement properties optimally; our goal is to find
such a basis automatically by carrying out orbital optimiza-
tion.

The results of calculations incorporating the optimization
procedure are displayed in Fig. 11 for z=2 and z=3, both on
systems of M =7 sites and N=3 particles with a fixed virtual
dimension of D=2 and parameters U=1. As before, the rela-
tive error in the energy as a function of the optimization step
is plotted. For comparison, calculations performed in the po-
sition representation and in the momentum representation are
also shown. As can be seen, the energy improves signifi-
cantly in the course of the optimization; the improvement is
three orders of magnitude for the z=3 case.

D. Quantum chemical systems

In this section, we compare numerical results for quantum
chemical systems obtained using the QC-DMRG and TTNS

(a) (b)

(c) (d)

FIG. 9. �Color online� Tree structures used for the study of
models on a rectangular lattice. Structures with coordination num-
ber z=3 mapped on a rectangular lattices of size 4	4 and 6	6 are
shown in �a� and �b�, the structures with z=4 is depicted in �c� and
�d�. The sites marked in blue are virtual sites with no corresponding
particle or mode.

0 50 100 150
10−4

10−3

10−2

10−1

100

iteration step

∆E
re
l

0 50 100 150 200 250
10−4

10−3

10−2

10−1

100

iteration step

z=2
z=3

(a) (b)

FIG. 10. �Color online� Relative error �Erel= ��E
−Eexact� /Eexact� in the energy for the interacting spinless fermion
model on �a� a 4	4-lattice and �b� a 6	6-lattice as a function of
the optimization steps. The calculations were performed with a
fixed virtual dimension of D=4 and tree tensor networks with co-
ordination numbers z=2 �blue curve� and z=3 �green curve�. The
chosen parameters are J=1, U=0.5 and the number of fermions is
fixed to N=3.
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methods. In these applications, the electron-electron correla-
tion is taken into account by an iterative procedure that mini-
mizes the Rayleigh quotient corresponding to the Hamil-
tonian describing the electronic structure of the molecule,
given by

H = �
ij�

Tijai�
† aj� + �

ijkl���

Vijklai�
† aj��

† ak��al� �8�

and thus determines the full-CI wave function. In Eq. �8�, Tij
denotes the matrix elements of the one-particle Hamiltonian,
which is comprised of the kinetic energy and the external
electric field of the nuclei, and Vijkl stands for the matrix
elements of the electron repulsion operator, defined as

Vijkl =� d3x1d3x2�i
��x�1�� j

��x�2�
1

x�1 − x�2
�k�x�2��l�x�1� .

We obtain the Hartree-Fock orbitals in a given basis of
Gaussian orbitals and transform the matrix elements Tij and
Vijkl to the Hartree-Fock basis using the MOLPRO program
package,61 which we also use to obtain the full-CI energies
used as a benchmark.

In the QC-DMRG, a one-dimensional chain is built up
from the atomic or molecular orbitals obtained from a suit-
able mean-field or multiconfiguration self-consistent-field
calculation. The tree network is constructed similarly but
there is greater freedom to form the proper structure of the
network. The two-orbital mutual information15 provides a
good starting configuration. A general approach to reduce
entanglement is to form the network by placing the highly
correlated orbitals at or near the center of the tree and less
correlated orbitals at the boundary sites.

In Fig. 12, we plot the relative error in the ground-state
energy for the Beryllium atom as a function of DMRG itera-
tion steps for various fixed values of the DMRG block states.
Corresponding data gathered after the fourth DMRG sweep
is shown in Fig. 14. In this calculation, four electrons have
been placed on eight orbitals. The Hartree-Fock energy is
−14.351880250000 while the full-CI energy is
−14.37016558404629. Figure 13 depicts the relative error as
a function of the optimization step for the Be atom, calcu-
lated using a TTNS ansatz with coordination number z=3.
The cases with and without orbital optimization are consid-
ered separately and the z=2 results are included for compari-
son. As can be seen, the relative error is considerably smaller
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FIG. 11. �Color online� Relative error �Erel= ��E
−Eexact� /Eexact� in the energy for interacting spinless fermions with
M =7 sites as a function of the optimization steps for the TTNS
ansatz with �a� z=2 and �b� z=3. Here U=1, the particle number is
fixed to N=3, and the virtual dimension is assumed to be D=2.
Results with orbital optimization are compared to the results ob-
tained in the real-space basis and in the momentum-space basis. The
steps at which orbital optimizations are performed are marked with
arrows.
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FIG. 12. �Color online� The relative error �Erel= ��E
−Eexact� /Eexact� in the ground-state energy for the Beryllium atom
as a function of DMRG iteration steps for various values of the
number of DMRG block states. The dashed line corresponds to the
Hartree-Fock energy.

0 5 10 15 20 25 30 35 40 45 50
10−6

10−5

10−4

10−3

10−2

iteration step

∆E
re

l

z=2
z=3
z=3 + orb. opt.
Hartree Fock

FIG. 13. �Color online� Relative error �Erel= ��E
−Eexact� /Eexact� in the ground-state energy for the Be atom as a
function of the optimization step for D=2. The results obtained
using a TTNS ansatz with z=3 plus orbital optimization are com-
pared to the TTNS-results without orbital optimization For com-
parison, the results with a MPS ansatz �corresponding to z=2� are
also included. The steps at which orbital optimizations are per-
formed are marked with arrows.
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for z=3 than for z=2, and there is a significant gain in pre-
cision when orbital optimization is taken into account. In
Fig. 14, we display the dependence of the z=2 and 3 calcu-
lations on bond dimension D. As can be seen, the DMRG
and TTNS calculations with z=2 yield similar accuracy
while the z=3 TTNS calculation is significantly more accu-
rate for a given bond dimension.

It should be noted that there is currently a discrepancy
between the QC-DMRG and the TTNS calculations in the
speed of convergence with optimization step. Since our QC-
DMRG code is highly optimized, the calculation converges
faster than that in the present version of the TTNS method.
As can be seen in Fig. 12, for example, the QC-DMRG
ground-state energies are always below the Hartree-Fock en-
ergy, and the active space is extended dynamically using
CI-based expansion techniques �CI-DEAS� �Ref. 5� �DEAS�.
In general, there is no fundamental difficulty in incorporating
optimizations such as the CI-DEAS into the TTNS method.

IV. CONCLUSION

In this paper, we have described and applied a method, the
tree tensor network state method, to treat strongly correlated
systems with long-range interactions on a tree network with
arbitrary coordination number z. Our approach is based on a
tensor product state ansatz that generalizes a DMRG-like
matrix product state to z rather than two blocks. The number
of virtual bonds required to connect two arbitrary sites scales
logarithmically with the number of sites in TTNS, in contrast
to the linear scaling of a one-dimensional topology.35 In this
sense, our TTNS method has a lower computational cost than
currently used DMRG-based methods. We have also incor-
porated optimization of the single-particle orbitals in our
method, treating the case of a procedure for transforming the
basis that smoothly interpolates between real space and mo-

mentum space. We have tested our method using numerical
calculations on various systems with local and nonlocal in-
teractions, including the two-dimensional Heisenberg lattice,
the momentum-space version of the 1D interacting spinless
fermion model, and small quantum chemical systems. For
the quantum chemical systems, we have compared TTNS
results to those of DMRG calculations.

Although we have performed calculations using fixed val-
ues of the coordination number, we expect that varying z
over the sites of the lattice will give rise to a better optimized
lattice topology for quantum chemical systems. As an ex-
ample, in Fig. 15 we display the components of the two-
dimensional entanglement matrix for the beryllium atom,
which we have obtained from the two-site mutual informa-
tion calculated with the QC-DMRG method according to the
recipe given in Ref. 15. As can be seen, sites 1 and 2 are
highly entangled with the other sites while sites 4 and 6 are
less entangled. The site-dependent coordination number can
be optimized to reflect such an entanglement structure.

Since the TTNS approach is defined on a bipartite net-
work, previous algorithmic developments and optimizations
procedures developed in the context of the quantum chemis-
try version of DMRG can also be integrated into the TTNS
method. Such optimizations include dynamic adjustment of
the bond dimension,5 orbital optimization,34,56–59,62,63 and
initialization procedures based on CI expansions,11,14,64

among others. Incorporation of these elements into the TTNS
approach will be carried out in future work. In light of the
promising features of this method, we expect it to provide a
viable alternate means of treating atoms and molecules effi-
ciently in the near future.
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