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For the homogeneous crystal nucleation process in a soft-core colloid model, we identify optimal

reaction coordinates from a set of novel order parameters based on the local structure within the nucleus,

by employing transition path sampling techniques combined with a likelihood maximization of the

committor function. We find that nucleation is governed by solid clusters that consist of an hcp core

embedded within a cloud of surface particles that are highly correlated with their nearest neighbors but not

ordered in a high-symmetry crystal structure. The results shed new light on the interpretation of the

surface and volume terms in classical nucleation theory.
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Homogeneous nucleation of a crystal from the super-
cooled melt is a phenomenon of great importance in
numerous areas of physical science ranging from materials
science to biophysics. While this process is well under-
stood on a qualitative level, its atomistic details often
remain elusive. In particular, finding a reaction coordinate
(RC) that captures the essential physics of the transition
mechanism is an open problem with a century-old history.
A first phenomenological description of the nucleation
mechanism and kinetics was given by the classical nuclea-
tion theory (CNT) [1,2], which asserts that the phase
transition occurs via the formation and subsequent growth
of a solid nucleus of spherical shape. Here, the sole RC is
the radius R of the crystalline nucleus leading to the Gibbs
free energy (FE)

�GðRÞ ¼ 3

4
�R3��þ 4�R2�; (1)

where �� is the difference in the chemical potential
between metastable liquid and the thermodynamically sta-
ble solid phase, and � is the surface FE of the interface
between solid and liquid. CNT has been widely used and
successfully applied for decades; however, computer simu-
lations indicate that Eq. (1) misses important details about
the freezing transition of soft particles [3].

How can one measure the quality of a RC? Given two
metastable states, A (e.g., the liquid phase) and B (e.g., the
solid phase), separated by a FE barrier, the perfect RC is
the committor function pBðxÞ, the probability that dynami-
cal trajectories initiated at configuration x, consisting of
the positions of all particles, actually reach the crystalline
phase B [4,5]. This function provides a quantitative mea-
sure for the progress of a reaction in the sense that it tells us
what is likely to happen next [4,6]. However, computing
the committor directly requires sampling a large number of
trajectories and moreover does not yield any new insight
into the nucleation mechanism. Instead, what we seek is a
low dimensional representation pB½qðxÞ�, in which the

committor depends only on n collective variables (CV)
qðxÞ ¼ fq1ðxÞ; q2ðxÞ; . . . ; qnðxÞg, which are functions of
the particle positions x. These n CVs should hold all
relevant information about the reaction and provide a
physically transparent picture of the mechanism. The qual-
ity of the RC expressed in terms of the CVs can be
evaluated by computing the committor distribution for
configurations at a fixed value of the RC. For instance,
configurations corresponding to the top of the barrier pre-
dicted by Eq. (1), are expected to lead to committor values
of pB ¼ 0:5. However, our simulations show that the pB

distribution of 100 independent configurations taken from
the top of the barrier [see Fig. 3] is flat rather than sharply
peaked at 1

2 , indicating that the size of the crystalline

nucleus is not sufficient to describe the transition, and
additional variables, such as structure or shape, need to
be included to predict the likely fate of a given nucleus.
Indeed, based on extensive transition path sampling simu-
lations, Moroni and co-workers [3] suggested as a better
RC for the nucleation of a Lennard-Jones system a combi-
nation of the nucleus size N and the order parameter (OP)
Q6;cl, which can be interpreted as the crystallinity of the

nucleus. Recently, Kawasaki and Tanaka [7] showed that
the nucleus of colloidal hard spheres forms within a region
of particles in a preordered random hexagonal close
packed structure. In both cases, the assumptions under-
lying CNT break down demanding an extension of the
basic picture provided by CNT.
In this study, we use a new computational technique

[8,9] and new structural OPs to find optimal RCs for crystal
nucleation, in terms of a low dimensional set of CVs. To
find such a low dimensional representation we make use of
the recently developed method to extract nonlinear RCs
from the reweighted path ensemble (RPE) [8,9]. This
method is based on calculating the likelihood that a given
representation follows an ideal committor function, which
serves as a measure for the quality of the OPs and allows
for a systematic evaluation of RCs without any a priori
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assumptions about the mechanism. As a model system, we
will investigate the Gaussian core model, which reprodu-
ces the effective interaction of soft-core colloids [10–12].
We show that in contrast to the single variable FE profile
predicted by CNT, an optimum RC can only be obtained by
including information on both surface and volume inde-
pendently. The optimal RC suggests a more general form
of the classical theory, in which the volume term is inter-
preted as arising from ‘‘core’’ particles that exhibit a high
symmetry crystal structure and the surface term describing
particles that are correlated to the structure of their neigh-
bors but not ordered in a crystal structure.

Any study on crystallization requires a suitable defini-
tion of OPs that can distinguish the liquid from the solid.
The most widely used solid-liquid distinction, due to
tenWolde and Frenkel [13], considers the correlation Sij ¼P

6
m¼�6 q6mðiÞq�6mðjÞ between two neighboring particles

based on the Steinhardt bond order parameters qlm ¼
1

nnbðiÞ
PnnbðiÞ

j¼1 YlmðrijÞ, where Ylm are the spherical harmonics

functions, and nnbðiÞ is the number of nearest neighbors of
particle i [14]. In a perfect solid Sij ¼ 1; in a liquid this

correlation vanishes. Subsequent cluster analysis of con-
nected solidlike particles yields Ntf , the number of parti-
cles in the largest cluster. In this scheme, a structural
analysis of the solid region requires additional steps [15].

Here, we suggest a novel definition of solidity. Lechner
and Dellago [16] introduced OPs that allow for an accurate
distinction between crystal structures by including infor-
mation of the second shell neighbors as well. Here, the
structural identity of each particle is determined by the
largest probability in the reference distributions in Fig. 1
for that particle’s instantaneous �q4 and �q6. A particle is

defined as solidlike if it is not within the liquid region in
Fig. 1. In other words, the probability to find the local
structure of a solidlike particle is vanishing in the under-
cooled liquid. This method allows one to determine the
size Nld of the largest cluster of solidlike particles and its
crystal structure in a single step.
We construct several CVs that serve as candidates for the

best RC. In addition to Nld we also calculate the size Ntf of
the largest cluster determined according to the criterion of
tenWolde and Frenkel [13]. With the information about the
structure of the particles within the cluster we define the
ratio of bcc particles within the cluster nbcc, the ratio of fcc
particles nfcc, of hcp particles nhcp, and of particles with

undefined structure nund. We also introduce corresponding
ratios for the entire system sbcc, sfcc, shcp, and sund. Further

we consider Q6;cl and Q4;cl averaged over all particles in

the cluster as suggested in Ref. [3]. The number of liquid-
like particles with at least one neighbor in the cluster, Ns,
and the total number of connections between these parti-
cles and cluster particles, Nl, are also considered. These
CVs are now used as candidates for enhancing the original
description of the nucleation process based solely on the
size of the largest cluster Nld.
Based on the original likelihood maximization scheme

developed by Peters and Trout [17] we developed a method
that selects the optimal CVs and yields the best nonlinear
parametrization of the RC by taking into account the
full nucleation process (for details see Ref. [9]). This
method takes the RPE [8] as the input data set, which is
obtained from a replica exchange transition interface
sampling simulation, followed by reweighting all
configurations from all paths to their equilibrium weights
wðxÞ. Assuming a model committor function pest

B ðrÞ ¼
0:5½1� tanhðrÞ�, the log-likelihood lnL ¼ P

xA
wðxAÞ�

lnpest
A ðrÞ þP

xB
wðxBÞ lnpest

B ðrÞ, where pest
A ¼ 1� pest

B

and r½qðxÞ� is the RC model [9]. The first sum goes over
all configurations xA that are part of RPE paths that end in
A weighted by wðxAÞ, the second sum accordingly over
all configurations that end in B. We allow for nonlinear
mapping from qðxÞ to r by projecting each configuration
x in the RPE onto a string [18] between A and B in the
n-dimensional CV space. This leads to a parameter � 2
½0; 1�, denoting the progress along the string, which is
mapped to r by a monotonic function rð�Þ. Using a
Monte Carlo annealing scheme, we maximize the log like-
lihood lnL with respect to (i) the string, (ii) the mapping
function rð�Þ, and (iii) a relative scaling s of the CVs [9].
We study the nucleation at moderate undercooling in the

high as well as the low pressure regime of the Gaussian
core model [see phase diagram in Fig. 2]. The simulation
details are as follows. The equations of motion are inte-
grated with the velocity Verlet algorithm and temperature
and pressure are fixed with the Andersen thermostat
and the Andersen barostat, respectively. The pair interac-
tion between the particles is vðrÞ ¼ � expð�r2=�2Þ.
Temperatures are given in units of T� ¼ kBT=�, distances

fcc

bcc

hcp

liq

und

q
6

q
4

FIG. 1 (color online). Probability distribution in the �q4 �q6 plane
of crystals in the perfect fcc (red), bcc (black) and hcp (green)
structures as well as of the liquid phase (blue) at pressure P ¼
0:011 and temperature T ¼ 0:0030. The bond order parameters
qlm are averaged over ~nnb, the nearest neighbors of particle i plus

particle i itself, �qlmðiÞ ¼ ½1=~nnbðiÞ�
P~nnbðiÞ

k¼0 qlmðkÞ. The inner

products of �q4m and �q6m are denoted as �q4 and �q6, respectively
[16]. The joint distributions of these two OPs have a small
overlap allowing for an accurate distinction between different
crystal structures.
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in units of r� ¼ r=�, and pressures in units of
P� ¼ P=ð��3Þ. We consider two phase points: the high
pressure regime at P ¼ 1:0 and T ¼ 0:0018, which results
in a density of about � ¼ 0:6 and the bcc structure as
the most stable phase, and the low pressure regime at
P ¼ 0:011 and T ¼ 0:003 with a density of approximately
� ¼ 0:12 and fcc as most stable structure. These phase
points have been chosen such that the FE barrier of the
liquid-solid transition, calculated in preliminary NPT
Monte Carlo umbrella sampling simulations, has about
the same height in both cases. The number of particles is
N ¼ 10 976 and periodic boundaries are used. The stable
states A and B are defined as Nld � 5 and Nld � 400,
respectively. In order to sample the full trajectory space
using replica exchange transition interface sampling simu-
lations [8] we collect both forward paths (that start in A)
and backward paths (that start in B) with interfaces at
positions Nld ¼ 10, 20, 40, 60, 80, 100, 160, and 200 and
at Nld ¼ 360, 320, 280, 240, 200, 160, 100, and 80, re-
spectively. A total of NP ¼ 16� 7000 paths are sampled
with a shooting acceptance probability of Pacc � 0:4.

We performed the nonlinear RC optimization with the
RPE data set for pairs (q1, q2) of CVs where q1 ¼ Nld and
q2 is one of the above 15 CVs. Figure 3(a) shows the nine-
point string and the function rð�Þ after 20 000 optimization
steps on top of the FE contour plot with the transition state
indicated as a grey (green) line. Whether or not adding
q2 does enhance the RC is decided by the Bayesian

information criterion [19], stating that for each extra model
dimension the log likelihood has to increase at least by
b ¼ 1=2 lnNd, where Nd is the sum of all weights over all
configurations [8]. We introduce the relative likelihood

change g ¼ ½lnLðq1; q2Þ � lnLðq1Þ�=b and the error � ¼
hðg� hgiÞ2i1=2 estimated from six optimizations runs. In
both the high and low pressure regime, the pair (Nld, Ntf)
results in the largest information gain (ghigh ¼ 2:35ð� ¼
0:23Þ and glow ¼ 2:23ð� ¼ 0:12Þ) while all other OPs lead
to a gain smaller than 1 within the error bars. Indeed, the
committor distribution along the transition state r ¼ 0
[grey (green) line in Fig. 3(c)] is peaked around pB ¼
0:5 in contrast to the transitions state defined by constant
Ntf at the top of the FE barrier [see Fig. 3(b)]. Adding a
third CV to the model did not improve the RC.
The results of the RC optimization point to a particular

role of the particles near the crystal-liquid interface. Ntf is
the size of the largest cluster in the system consisting of
solidlike particles based on the criterion that its local
structure is correlated with that of its nearest neighbors
[see Fig. 2, white spheres]. The variable Nld, on the other
hand, is the size of the largest cluster of solidlike particles
by means of the reference distribution in the �q4 �q6 plane
[Fig. 1]. The cluster defined by the latter is smaller than the
Ntf cluster [see Fig. 2 (red, green, and black) spheres] and
is positioned in the center of the Ntf cluster. This core
consists of different crystal structures depending on the
progress of the nucleation and the state point. In the low
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FIG. 2 (color online). Top panel: Schematic phase diagram
adapted from Ref. [11]. Lower panels: Cross sections of clusters
in the high (right) and low (left) pressure regime: (a) critical
cluster in the fcc region consisting almost exclusively of hcp
particles (green) surrounded by preordered particles (white);
(b) in the postcritical cluster some parts of the core rearrange
to fcc or bcc; (c) in the high pressure regime the critical clusters
are also mainly of hcp structure; (d) postcritical clusters at high
densities rearrange to bcc, predominantly in the center.
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FIG. 3 (color online). (a) Color map of the FE as a function of
Ntf and Nld for the high pressure regime with the optimized nine-
point string (circles). The optimized scaling between Ntf and Nld

is s ¼ 0:323. (b) Comparison of the committor distributions
from the transition state (green) and the top of the FE barrier
as function of Ntf (dashed blue) together with the binomial
distribution (dotted) [23]. (c) Mapping function rð�Þ. The tran-
sition state is at � ¼ 0:439 indicated by the (green) line in the
inset and at Ntf ¼ 1588� 8:5Nld in the main graph. (d) One-
dimensional projection of the free energy as a function of Nld.
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pressure regime the core is primarily of hcp structure even
at postcritical cluster sizes, at which vanishingly small fcc
and bcc regions develop. The high pressure clusters also
start as hcp clusters but then, in a second step, the inner
core transforms to the more stable bcc phase, an example
of Ostwalds step rule.

The interpretation of the two contributions Nld and Ntf

sheds new light on the applicability of CNT. The CNT
predicts the FE difference with high accuracy in many
systems even though the clusters found in simulations are
not spherical objects. Consider, now, CNT in a slightly more
general form without relying on the assumption of a spheri-
cal nucleus: �G ¼ ��Ncore þ �sNsurface, where �s is the
surface energy, and Ncore and Nsurface are the number or
particles in the core and in the surface, respectively. We
now interpret Ncore ¼ Nld and Nsurface ¼ Ntf � Nld. This
leads to a FE difference of �G ¼ c1 þ c2Nld þ c3Ntf,
where ci are constants. In the special case Ntf ¼ k0þ
k1Nld þ k2N

ð2=3Þ
ld one recovers the scaling of the FE pre-

dicted by CNT. For the system studied here we indeed find
Ntf ¼ 64þ 18N0:68

ld even though neither the surface cloud

nor the core is of spherical shape. This deviation from a
sphere can be measured by the slope of the volume-to-skin
ratio (NV=NS ¼ k1 þ k2N

k
V), where the skin consists of

particles that have at least one nearest neighbor in the cluster
but are not part of the cluster themselves. For perfect spheres
of fcc structure k ¼ 0:43 for small clusters of size 1–400.
The cluster of core particles exhibits k ¼ 0:37 and the
surface cloud k ¼ 0:26, implying that the surface cloud is
much rougher than the core. Clearly, the assumption of a
spherical cluster does not hold, and the surface cloud
and core actually do not even scale in the same way.
Nevertheless, the ratio between surface cloud and volume
term is equivalent to that of CNT with the interpretation of
Nld as volume andNtf � Nld as surface. Hence, CNT should
predict a correct FE profile for all systems with this scaling
of Ntf to Nld even without the assumption of spherical
clusters. In the system studied here, the fit parameter
c2 � �0:2 in the high and the low pressure regime, which
corresponds well with �� in Fig. 2 of Ref. [12].

In summary, we used transition path sampling methods
and RC analysis employing a likelihood maximization in
combination with a nonlinear string to describe the nuclea-
tion in terms of structural properties. Using a set of novel
CVs to distinguish between crystal structures reveals that
the crystalline cluster forms within a cloud of correlated
but unordered particles. Two OPs, the size of the cloud
(Ntf) and the size of the crystalline core (Nld) are important
for the growth of the nucleus. This is in agreement with
previous findings [3] suggesting a combination of Ntf and
Q6;cl, where the latter is basically the cluster crystallinity.

A similar conclusion was drawn from studies on hard
spheres at densities far beyond the classical nucleation
regime that show how crystallization is mediated by low
symmetry clusters [20]. Including the particular type of
crystalline structure of the core does not improve the RC,

indicating that the rearrangement of the inner core from
hcp to bcc in the high pressure regime is a step that is
independent of the nucleation. In both pressure regimes the
dominant structure is hcp in agreement with Ref. [7,21].
The system investigated here serves as a model for colloi-
dal particles and soft repulsive particles in general and
we expect that our approach is applicable to diverse mate-
rials ranging from atomic and molecular crystals to colloi-
dal soft matter. Note that our approach is also directly
applicable to experimental nucleation trajectory data as
obtained, for instance, from confocal microscopy measure-
ments [22].
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