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We study the mechanisms of the homogeneous crystal nucleation from the supercooled liquid to the
crystal phase in the Gaussian core model for colloidal suspensions with the aim to find optimal re-
action coordinates. We introduce a set of novel collective variables based on the local structure of
particles. By applying likelihood maximization of the committor function for the reweighted path en-
semble constructed by replica exchange transition interface sampling, we select the optimal reaction
coordinates from the set of collective variables. We find that the size of the cloud of prestructured
particles surrounding the crystalline nucleus enhances the description of the transition. Further, we
show that the rearrangement of the inner core of the nucleus according to Ostwald’s step rule is a
separate process, independent of the growth of the nucleus. © 2011 American Institute of Physics.
[doi:10.1063/1.3651367]

I. INTRODUCTION

Homogeneous nucleation from the liquid to the crys-
talline phase is usually described within the framework of
classical nucleation theory (CNT). This theory predicts that
at moderate undercooling the free energy of a crystalline nu-
cleus growing in the supercooled fluid consists of two terms,
a negative volume term, taking into account the particles in
the nucleus that are already in the more stable solid phase,
and a positive surface term, which comes from the surface
free energy penalty of the interface between solid and liquid.
Underlying assumptions of CNT are: (i) that the cluster has a
spherical shape, (ii) that the nucleation process is independent
of the particular crystal structure, (iii) that only the largest
cluster in the system is important for the transition, and (iv)
that the surface tension is independent of the cluster size. The
Gibbs free energy difference between the supercooled liquid
with and without a spherical crystal nucleus with radius r is
then given by

�G(r) = 4

3
ρsπr3�μ + 4πr2γ. (1)

Here, �μ is the chemical potential difference between the
meta-stable liquid and the solid phase, ρs is the density of the
solid phase, and γ is the solid-liquid surface tension. This free
energy exhibits a maximum at r* = −2γ /ρs�μ, and only if a
solid nucleus becomes large enough to reach r*, the nucleus
will continue to grow spontaneously towards a bulk crystal.
At coexistence, �μ vanishes and therefore r* becomes in-
finitely large and spontaneous freezing will not be observed.
On the other hand, when the system is undercooled far below
coexistence, the free energy barrier becomes small compared
to kBT and spinodal decomposition is observed.

a)Author to whom correspondence should be addressed. Electronic mail:
w.lechner@uibk.ac.at.

The recent considerable interest in the nucleation of col-
loidal particles stems from the novel experimental techniques,
such as optical tweezers and confocal microscopy, that allow
one to study homogeneous nucleation in real time and three-
dimensional space1, 2 and, on the other hand, the progress in
computational techniques3–7 that allow for accurate sampling
of rare transitions. These advances also provide exciting new
challenges that are currently extensively studied. First, the
transition rates predicted by computer simulations based on
the classical theory are, for some cases, orders of magnitudes
off from the experimental measured ones.8, 9 Second, the pre-
dicted transition states cannot be fully described by the size
of the nucleus only.7 This discrepancy is revealed by investi-
gation of the distribution of the commitment probability (also
known as the committor distribution) at the top of the free en-
ergy barrier that should be peaked at pB = 0.5 but is found
to be rather flat. In this paper, we focus on the latter chal-
lenge and show which of the assumptions made by the classi-
cal theory may oversimplify the description of the nucleation
process in the context of the novel insights into theory and
experiment.

As a consequence of assumption (i), that the nucleus has
a spherical shape, the surface and volume term are not in-
dependent variables, but are both described by a single co-
ordinate, the radius r. Usually, in computer simulations (see,
e.g., Ref. 10) the size of the nucleus is measured in terms
of N, the number of connected solid particles that form the
cluster. The CNT then predicts that the free energy barrier
is due to the contributions of the volume, which scales with
N and the surface S ∼ N2/3. In this paper, we show that the
crystallization transition can be described more accurately by
including the size of a prestructured cloud of particles sur-
rounding the nucleus as an additional parameter. Defining this
cloud requires novel order parameters that allow one to distin-
guish between crystalline cluster and prestructured surround-
ing, which will be introduced below.

0021-9606/2011/135(15)/154110/14/$30.00 © 2011 American Institute of Physics135, 154110-1
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Assumption (ii), that the particular crystal structure of
the nucleus does not enter the free energy was challenged
by several recent studies. In some regions of the phase di-
agram of colloidal systems with strong short-ranged attrac-
tions, freezing is observed to be a two step process rather
than the simple nucleation mechanism postulated by CNT.12

This behavior can also be observed for the vapor-solid tran-
sition in the Lennard-Jones model.13 Other researchers inves-
tigated the dependence of the nucleation on the underlying
crystal structure. Ostwald’s step rule14 predicts that the sys-
tem will not necessarily freeze into the thermodynamically
most stable phase, but the one that is most easily accessi-
ble. Based on Landau theory, Alexander and McTague15 ar-
gued that this first step would always be a crystal with body
centered cubic structure (BCC). The general applicability of
this theory is still debated. Klein16 showed, based on the same
formalism, that close to the spinodal, the BCC crystal would
not be stable. Computer simulations indicated that the freez-
ing of a Lennard-Jones system indeed exhibits solid clusters
with a BCC ordering at the surface and a face centered cu-
bic (FCC) structure in the core.17 In contrast, experiments on
hard-sphere colloids1 exhibit random hexagonal close packed
clusters rather than the predicted BCC crystals. Here, we
study the crystal structure of the nucleus with novel averaged
local bond order parameters showing that the structural rear-
rangement of the core is an independent event from the nucle-
ation, thus providing a confirmation of the Ostwald step rule.

The applicability of assumption (iii) is well established.
The rate of nucleation is determined by the probability to find
a critical nucleus in the system volume. For large clusters,
CNT is accurate while for small clusters the free energy has
to be renormalized with the distribution of all cluster sizes
in the system (see Ref. 17). The possibility of a size depen-
dent surface tension, ruled out by assumption (iv), has been
studied, e.g., in Ref. 18 and will not be addressed in this
work.

The remainder of this paper is structured as follows. The
model system we used will be introduced in Sec. II. A crucial
part of the analysis concerning the distinction between differ-
ent crystal structures will be discussed in Sec. III. In Sec. IV,
we introduce our approach to test the quality of reaction coor-
dinates based on the reweighted path ensemble with a nonlin-
ear mapping onto a string. Finally, the results are presented in
Sec. V, followed by a discussion on the prestructured cloud,
recrossings at the transition state, and Ostwalds step rule in
Sec. VI. We end with concluding remarks in Sec. VII.

II. GAUSSIAN CORE MODEL

As a general model for soft colloidal particles in solution
(e.g., polymer chains), we used the GCM.19, 20 In this model,
particles interact via a pair potential of Gaussian shape,

v(r) = εe−r2/ξ 2
. (2)

Here, r is the particle-particle distance, ε and ξ determine the
strength and the range of the potential, respectively, and kB

is the Boltzmann constant. In the following, we will use re-
duced units. Denoting the true temperature, density and pres-
sure by T*, ρ*, and P*, respectively, the reduced temperature

ρ

fluid

low pressure 
regime

high pressure 
regime

FIG. 1. Schematic phase diagram of the Gaussian Core model (GCM) in the
temperature density plane taken from Refs. 21–23. The solid lines indicate
(rather narrow) first order coexistence regions. At high density the fluid be-
comes stable again, a phenomenon known as re-entrant melting.

is T = kBT*/ε, the reduced density is ρ = ρ*/ξ 3, and the re-
duced pressure is P = P*ξ 3/ε. Although the pair interaction of
the system is rather simple, the GCM exhibits a feature-rich
phase diagram (see Refs. 21–23). A particularly interesting
feature of the GCM phase diagram is the phenomena called
re-entrant melting (see Fig. 1), which refers to the following
process. Starting at low densities and low temperatures, the
system’s dynamics is essentially that of a hard sphere system.
Increasing the density will cause the system to freeze but, due
to the lack of a hard core, the system will melt again after fur-
ther compression. Another anomalous feature of the GCM is
that the solid phase actually consists of two distinct regions:
one at low densities, where the FCC crystal structure is more
stable, and one at high densities, where the BCC structure be-
comes thermodynamically stable.

We studied the crystal nucleation in both the high and in
the low density regime. At a pressure of P = 0.011, which
corresponds to a density ρ ≈ 0.12 and moderate undercooling
at T < 0.0030, the most stable phase is a FCC crystal. In the
high pressure regime of P = 1.0 (ρ ≈ 0.6) and temperatures
below T < 0.0018, the stable phase is a BCC crystal. With
this model, it is thus possible to study the nucleation transi-
tion from a liquid to a BCC crystal and to a FCC crystal in the
same system simply by adjusting the pressure. This allows
us to study to what extent the underlying thermodynamically
stable phase influences the structure of the crystal nucleus.
To answer this question, we select optimal reaction coordi-
nates to represent the nucleation from a set of collective vari-
ables that provide structural information about the nucleus. In
Sec. III these collective variables are introduced.

III. POSSIBLE REACTION COORDINATES

The most widely used method to distinguish between
solid and liquidlike particles, introduced by ten Wolde et al.,17

is based on Steinhardt’s bond order parameters.24 The method
basically consists of two steps. First, for each particle in the
system the vector qi

lm = 1/nnn(i)
∑nnn(i)

j=1 Ylm(rij ) is calculated
(with l typically l = 6), where Ylm are the spherical harmon-
ics, and nnn(i) is the number of nearest neighbors of parti-
cle i within a distance rnn.24 This vector holds information
on the relative positions of the nearest neighbors of particle
i. Second, for each pair of neighboring particles i and j the
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normalized scalar product of si,j = 〈qi
lmq

j∗
lm〉 is evaluated. If

the bond orders of the nearest neighbors of particle i and j are
strongly correlated the number si, j will be close to 1, if they
are uncorrelated the scalar product will vanish. Connections
between particles can, therefore, be defined as liquidlike, if
si, j is smaller than a certain threshold, usually si, j < 0.5, oth-
erwise as solidlike bonds. As a last step, particles with more
than six to eight solid connections are defined as solidlike
particles. The strength of this method is that the definition of
the solidity of particles is independent of the reference frame
and also independent of the particular crystal structure. In this
method, solidity means strongly correlated relative positions
of the nearest neighbors.

Additional information about the particular local struc-
ture around a particle can be (in principle) calculated from
the local bond order parameters, again based on qlm.24

For a choice of l = 4, the vector q4m is sensitive to cu-
bic symmetries and for a choice of l = 6 q6m is sensi-
tive to hexagonal symmetries. The self-scalar products qi

l

= (4π/(2l + 1)
∑m

l=−m |qi
lm|2)1/2 can then be used to distin-

guish between different structures. Unfortunately, in the in-
teresting region for nucleation – close to coexistence – these
order parameters exhibit large fluctuations.

In fact, even for perfect crystals the distributions of the lo-
cal bond order parameters overlap to a large extent, such that
it is impossible to distinguish structures from these parame-
ters alone. Frenkel and co-workers10, 11, 25 developed a method
that allows one to distinguish between FCC, BCC, and liquid-
like clusters based on the histograms of q4 and q6 of the per-
fect crystals at moderate undercooling. The histogram of the
q4 and q6 values of all particles in the cluster are considered
as a superposition of the reference histograms of the perfect
crystals. The coefficients are then the ratios of the particular
crystal structures in the cluster. This allows one to calculate
the structural composition of the cluster as well as the radial
dependence thereof.

An averaged version of the local bond order resolves the
local structure of individual particles better and allows for a
distinction of crystal structures even in the regime close to
coexistence.26 Averaging the vectors q4m and q6m over the
nearest neighbors of particle i and the particle i itself, and sub-
sequently taking the self-scalar product of these vectors leads
to an averaged version q̄4 and q̄6 of the bond order parameters.
The probability histograms of these averaged local bond order
parameters show minimal overlap and, hence can distinguish
FCC, BCC, HCP, and liquidlike particles. The consequence
of averaging over the nearest neighbors is that the structure
of the second neighbor shell is taken into account. Therefore,
this method has the same spatial resolution as the solid-liquid
distinction of ten Wolde et al.17

In this work, we employed the averaged version of the
local bond order parameters to distinguish between crys-
tal structures as well as to define a novel interpretation of
solidity.7 The interpretation is based on the two-dimensional
(2D) histograms of the parameters q̄4 and q̄6 for a perfect
FCC, BCC, and HCP crystal as well as for an undercooled
liquid. These reference histograms, evaluated for the system
at the pressure and temperature at which the nucleation was
studied, show almost no overlap.

As the reference histograms of the perfect structures give
the probabilities to find a q̄4–q̄6 pair in the particular perfect
crystal, particle i is defined to be of the structure that has
the largest of all four probabilities at the given instantaneous
q̄4–q̄6 for particle i. If all probabilities are smaller than p
< 10−5, the structure is defined as undefined structure. Fi-
nally, we define a particle to be solidlike, if the probabil-
ity of finding the local structure in the liquid phase van-
ishes. This is an alternative view of local solidity: while
the method of ten Wolde and Frenkel defines solidity as
strong correlation between the local structures of the neigh-
bors of a particle, our method defines solidity by a vanishing
probability to find a particular structure in the undercooled
liquid.

The information about the crystal structure of each
individual particle in the system opens a wide range of
possible collective variables. Besides using the ten Wolde-
Frenkel definition of solidity to determine the number of
particles in the largest cluster, Ntf, we can now also employ
our new solidity definition to obtain a novel cluster size
parameter Nld. Moreover, to study the influence of the
structure of the cluster, we define the following additional
collective variables: the fraction of BCC particles in the
cluster nBCC, that of FCC particles nFCC, that of HCP
particles nHCP and that of undefined structures nUND. We
also compute the ratio of crystal structures of the whole
system: sBCC is the fraction of BCC particles in the system,
sFCC, sHCP, sUND, sLIQ, and sSOL are the fraction
of FCC, HCP, undefined structures, liquidlike particles
and solid particles, respectively, where sSOL + sLIQ = 1
and sBCC + sFCC + sHCP + sUND = sSOL. Including the
shape of the cluster as a reaction coordinate might improve the
classical nucleation theory. Therefore, we consider the num-
ber of skin particles Ns and the number of skin links Nsl. Skin
particles are defined as liquidlike particles that have at least
one nearest neighbor that is part of the largest cluster. The link
number of a liquidlike skin particle is given by the number
of its nearest neighbors that are part of the cluster. Summing
all links of all skin particles yields Nsl. Moroni et al.27 found
evidence for possible enhancement of the reaction coordinate
by taking the parameter Q6, cl into account, the average of
the local bond order parameter q6 over all particles in the
largest cluster. We added Q4, cl and Q6, cl to our set of test
reaction coordinates. All 15 collective variables were tested
as possible candidates for enhancing the reaction coordinate.

IV. METHODS

The challenge is to extract information about the reac-
tion coordinate without making a priori assumptions about
the transition. Our approach requires two steps. First, we con-
struct the reweighted path ensemble (RPE; Ref. 28) from
a replica exchange transition interface sampling (RETIS)
simulation29, 30 as described in Subsection IV A. Second, we
present ways to extract and analyze a number of properties
from the RPE in a post production step that does not require
any additional sampling. These analysis methods will be ad-
dressed in Subsection IV B.
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A. Simulation

For the degree of undercooling used in this study, the
free energy barrier separating the metastable liquid state from
the solid state is of the order �F ≈ 10 − 20kBT. The transi-
tion rates are so low that one cannot sample the barrier with
straightforward methods. There are several solutions to this
sampling problem, for instance, umbrella sampling, constraint
MD, Wang-Landau sampling, to name just a few.31 These
methods are powerful tools to calculate of free energy profiles
along a predefined collective variable. However, finding the
optimal collective variable that can act as a model for the true
reaction coordinate is rather the question that we address than
the input. A method that does not require any a priori knowl-
edge about the reaction coordinate is transition path sampling
(TPS).3, 4 We employ an enhanced path sampling method
called RETIS.5, 29, 30 While in a TPS simulation only paths
that leave the state A (the liquid state) and enter the state B (the
solid state) are sampled, a TIS simulation includes all possible
trajectories. In TIS, interfaces are introduced between the two
stable states and paths are accepted or rejected with the condi-
tion that they cross a given interface. For enhanced sampling,
a number of TIS simulations are run in parallel in a replica ex-
change scheme. The resulting paths can then be reweighted in
accordance with the correct Boltzmann weights leading to a
full description of the transition.28 This RPE is an estimate for
an infinitely long trajectory in a system with two metastable
states A and B separated by a free energy barrier.

In the following we will summarize these methods.

1. Path ensembles

A path or trajectory of length L is defined as a sequence
of phase points xL = {x0, x1, ..., xL}, where phase point x
contains the positions r and momenta p of all particles in the
system and two subsequent phase points are separated by a
time step �t. The equilibrium probability to find a path is

P[xL] = π [xL]

Z , (3)

where π [xL] = ρ(x0)
∏N

i=1 p(xi → xi+1) is the product of
the distribution of initial points ρ(x0) and the short time
Markovian transition probabilities to go from one phase
point to the next. Z = ∫

DxLπ (xL) is the normalization fac-
tor, where

∫
DxL denotes the integral over paths. Transition

path sampling allows one to sample a subset of these paths,
namely, all paths that start in state A and end in state B. Their
probability is

PAB[xL] = hAB[xL]π [xL]

ZAB

. (4)

Here, hAB[xL] is the indicator function which is unity if the tra-
jectory starts in A and ends in B and zero otherwise. The tran-
sition path ensemble has been proven to be extremely useful
for finding dominant reaction paths. A drawback of this en-
semble is, however, that it does not hold direct information on
the free energy or rate constant. The calculation of free energy
also requires the missing paths that start in A and go back to A,
as well as paths that start and end in B. TIS samples such paths

by introducing an ordered set of n non-intersecting interfaces,
defined by a parameter λi, between the stable states, and ac-
cepting or rejecting paths depending on whether or not they
cross the interface λi. Here, the interfaces are fully described
by the cluster size Nld. We refer to trajectories that leave re-
gion A as belonging to the forward and those that leave region
B as belonging to the backward process. The individual for-
ward path probability for each interface is

PAλi
[xL] = hAλi

[xL]π [xL]

ZAλi

, (5)

where the function hAλi
[xL] = 1 if the path starts in A and

crosses interface λi and is zero otherwise. The path probabil-
ity for backward paths that start in B is defined accordingly,

PBλi
[xL] = hBλi

[xL]π [xL]

ZBλi

. (6)

2. Replica exchange transition interface sampling

In a RETIS simulation, the path distributions of
Eqs. (5) and (6) are sampled in parallel with replica exchange
methods developed to enhance sampling.29, 30 We introduce nf

forward and nb backward replicas with their according inter-
faces. The total number of interfaces is thus n = nf + nb (note
that this definition does not include the stable state boundaries
as a first and last interface, in contrast to, e.g., Refs. 28 and
30). The simulation consists of four possible moves, chosen
with equal probabilities at each step.

(i) The shooting move selects, for each of the nf + nb repli-
cas, randomly one configuration from the current tra-
jectory as a new shooting point. The velocities of this
phase point are slightly changed and the equations of
motions are integrated forward and backward in time,
until the trajectory either hits region A or region B. This
trial trajectory is accepted or rejected according to the
acceptance rules of TIS. Trajectories belonging to a for-
ward process are accepted when they start in A and cross
their respective interface, i.e., the maximum Nld reached
along the path is larger than λi. Analogously, trajectories
belonging to the backward process have to start in B and
cross the interface λi.

(ii) The swapping move allows replicas to exchange their in-
terfaces. Each move consisted of (nf − 1)nf/2 swapping
attempts between replicas with forward trajectories and
(nb − 1)nb/2 attempts between replicas with backward
trajectories. Therefore, each possible swap is attempted
in average once in each move. A swap between two for-
ward trajectories is accepted when both swapped trajec-
tories fulfill the TIS criterion.

(iii) An additional swapping move allows for exchange be-
tween forward and backward trajectories. A forward tra-
jectory ending in B and a backward trajectory ending in
A can be swapped. All velocities in all path points along
the trajectories are reversed. This move is attempted nf

× nb times per step with random pairs.
(iv) At the first interface, an additional replica samples tra-

jectories that start at the interface λ0, visit A and recross
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the first interface.29 This additional replica is used to
calculate the flux through the first interface and to feed
independent new configurations into the replica ex-
change simulation. Note that this is only possible for
state A, the undercooled liquid, as the B state will con-
tinue to grow until the system is fully crystallized.

The trajectories from the path sampling simulation are
not sampled from their natural distribution as they are bi-
ased by the acceptance procedure that rejects all paths that do
not cross the given interface. Nevertheless, the paths can be
reweighted such that the ensemble of configurations from the
reweighted paths are drawn from the Boltzmann distribution.

3. Reweighted path ensemble

The individual paths from each interface can be com-
bined to an estimate of the full path ensemble P[xL] by
reweighting the individual paths with their appropriate
weight,

P[xL] = cA

n∑
j=0

PAλj
[xL]WA[xL]

+ cB

n∑
j=0

PBλj
[xL]WB[xL]. (7)

Here, the function WA[xL] = ∑n−1
i=0 w̄A

i θ (λmax[xL] − λi)θ
× (λi+1 − λmax[xL]) selects, using the Heaviside step func-
tions θ , the correct interface weight w̄A

i for each path xL

starting from A based on the maximum value λmax of λ

along the path. Similarly, WB[xL] = ∑n−1
i=0 w̄B

i θ (λmin[xL]
− λi)θ (λi+1 − λmin[xL]) selects the weights w̄B

i for paths
from B based on the minimum λ along the path. Note that
the weights w̄A

i = 0 for replicas belonging to the backward
process, and vice verse w̄B

i = 0 for the forward replicas.
As demonstrated in Ref. 28, the weights for each in-

terface w̄A
i and w̄B

i can be calculated from a weighted his-
togram analysis method (WHAM) procedure of the forward
and backward crossing probability histograms. The crossing
probability that a path reaches a value of λ, given that it
crossed interface i, is defined for the forward and backward
process, respectively, as

PA(λ|λi) = 〈θ (λmax[xL] − λ)hA(x0)〉λi
,

(8)
PB(λ|λi) = 〈θ (λmin[xL] − λ)hB(x0)〉λi

,

where the angular brackets denote a (RE)TIS path ensemble
average for interface λi. The crossing probability PA, B(λi|λi)
is unity per definition, because each path has to cross the inter-
face to be accepted. For larger values of λ, the crossing proba-
bility decreases. In principle, the crossing probability over the
whole range of λ can be calculated from the first interface.
This, however, is not possible in practice because the sam-
pling at the transition state is poor. The WHAM is used to con-
struct an estimated crossing probability by weighting of the
individual crossing probabilities at each interface. Here, the
crossing probabilities were cut off at values lower than 1%.

Substituting the resulting weights w̄A
i and w̄B

i into Eq. (7)
yields the reweighted path ensemble up to the two constants

cA and cB that are calculated from the statistics of the A-to-B
paths at the interface λi,28

cA = mA(λi)

mAB(λi)PA(λi |λ0)
,

(9)

cB = mB(λi)

mBA(λi)PB(λi |λn)
.

Here, mAB(λi) is the number of A-to-B paths found at inter-
face i and mA(λi) the unnormalized histogram at λi, i.e., the
total number of paths found at the interface. The constants
cA and cB fix all relative weights in the RPE. For a com-
plete path ensemble, including the stable states, the paths from
the additional first interface have to be added as described in
Ref. 28.

In the following subsection we will describe all the post
production steps, which can all be viewed as projections of
the RPE.

B. Analysis

The reweighted path ensemble is the starting point for
several post production analyses, in which we take advantage
of the fact that the RPE holds information about the statics
(free energy) but also about the dynamics of the system (com-
mittor function).28 In the following, we will summarize how
the free energy profile and a committor estimation along arbi-
trary collective variables can be calculated. Further, we show
how we can extract the information about the reaction coor-
dinate with a likelihood maximization scheme. We emphasize
that these calculations do not require any additional sampling.

1. Free energy profiles

The configurations from the paths in the RPE have
the correct Boltzmann weight and, therefore, the free en-
ergy of any arbitrary set of collective variables, q(x)
= {q1(x), q2(x), ..., qm(x)}, follows from the weighted config-
urations by projecting them onto the desired variables without
any additional sampling. The configurational density is

ρ(q) = 1

Z

∫
DxLP[xL]

L∑
k=0

δ(q(xk) − q). (10)

Here, Z is the normalization constant. The sum in the integral
runs over all configurations k in all paths. The free energy as
a function of q is

�F (q) = −kBT ln ρ(q). (11)

2. Committor function

The methods used here to find optimal reaction coor-
dinates are based on the committor pB(x), which is defined
as the probability that a given configuration with random-
ized momenta results in a trajectory that reaches B before
A. In practice, the exact committor function cannot be cal-
culated because it would take an infinite number of tra-
jectories for each configuration in the system. However, in
the projected space of collective variables q the RPE can
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be used to estimate the averaged committor function pB(q)
efficiently,28

pB(q) =
∫
DxLP[xL]hB[xL]

∑L
k=0 δ(q(xk) − q)∫

DxLP[xL]
∑L

k=0 δ(q(xk) − q)
. (12)

Here, hB[xL] is the indicator function which is unity if the
trajectory reaches B before it reaches A, and otherwise zero.
Again, the projection can be done in any arbitrary coordinate
q. This projection of the committor function itself does not
give us direct insight into the importance of a reaction coor-
dinate, but is the basis of a maximum likelihood estimation
summarized in the next subsection.

3. Maximum likelihood estimation

The use of the maximum likelihood estimation to eval-
uate the quality of reaction coordinates was introduced by
Peters and co-workers.32, 33 The method requires the defini-
tion of an estimator for the committor function which is used
as a model for the real committor,

p̂B(q) = 1

2
(1 + tanh[r(q)]), (13)

and the logarithmic likelihood for p̂B ,

ln L =
∑
x→A

ln[1 − p̂B(q)] +
∑
x→B

ln p̂B(q). (14)

Here, p̂A = 1 − p̂B and r(q) is a projection of the n-
dimensional vector q onto a single dimension. In the original
work by Peters and Trout, this projection is a linear combina-
tion of the collective variables r(q) = c0 + ∑

iciqi. The like-
lihood is then maximized with respect to the coefficients ci

and the optimal reaction coordinate is the one with the largest
maximum likelihood after this optimization. The data points
used for the maximization are the shooting points taken from
an aimless shooting simulation.32 By design, these shooting
points are located close to the transition state and; therefore,
the linear projection is justified.

We lift the restriction to be close to the TS by including
information about the entire transition, using all the weighted
configurations from the RPE paths as underlying data.34 We
view each configuration and the path it belongs to as a sin-
gle realization of a trial calculation of the committor. These
configurations are distributed according to their Boltzmann
weight and; therefore, the distribution of the configurations
is peaked around the stable states. However, the likelihood is
peaked around the states close to the transition state. It turns
out that these two factors cancel each other to a large degree
and the contributions to the estimate result from the whole
range in a more or less uniform way (see the Appendix in
Ref. 34).

Using all configurations from the RPE requires a nonlin-
ear description of the transition. This is achieved by projecting
the configuration onto a piecewise linear string living in a low-
dimensional collective variable space.35 This string describes
the progression σ of the transition, where σ = 0 corresponds
to state A and σ = 1 to state B, respectively. The string is
constructed from piecewise linear connected string points SM

= {s0, s1, . . . , sM} in the order parameter space q. Each string

point represents a value of σ ranging from σ (s0) = 0 in sta-
ble state A to σ (sM) = 1 in state B. Each configuration from
the RPE is projected onto the string leading to a value of σ (x)
for each configuration that can be interpreted as the progress
of the nucleation along the string. An additional function f(σ )
maps σ to a number r(x) defined in the interval [−∞, ∞]
which is used as the parameter for the maximum likelihood
method. Thus, the logarithmic likelihood is

ln L =
∑
x→A

W (x) ln[1 − p̂B(r(x))] +
∑
x→B

W (x) ln p̂B(r(x)),

(15)
where the sums run over all configurations x in the RPE with
their according weight W (x), and the projection r is a function
of the string

r(x) = f (σ (SM (q(x)))). (16)

Here, SM(q) is a general annotation for the mapping of
the configurations onto the string. In practice, this can be
achieved by a Voronoi construction or a slightly more sophis-
ticated method that also takes the curvature of the string into
account.34 Equation (15) is maximized as a function of the po-
sitions of the string points S and as a function of the mapping
f(σ ). The maximum likelihood maximization based on the
nonlinear string is optimized in a steepest descent scheme34

consisting of 3 Monte Carlo moves.

(i) The string move, where a new trial string is gener-
ated by displacing each string point by a small amount.
Equation (15) is then evaluated for the trial string and
accepted when the log-likelihood increased. We restrict
the first string point to region A and the last one to B.
The states A and B are only defined by the variable Nld.
Therefore, the first and last points are only allowed to
move perpendicularly to Nld. A second constraint on the
movement of the string points is the equidistance con-
dition required for the projection method used here.34

Equidistance of the string points is achieved by mov-
ing the string points randomly and then rearranging the
points to be equidistant again.36 Due to the geometry of
the string, configurations at the ends of the string can be
located outside the range of σ . To avoid inaccuracies at
the string ends, two additional virtual points are added
that serve as extensions for σ < 0 and σ > 1.

(ii) The mapping f(σ ) is assumed to be a piecewise mono-
tonically increasing linear function defined by M inter-
polation nodes (M is the number of string points). A new
trial function f ′(σ ) is generated by displacing the nodes
with the constraint that f ′(σ ) remains a monotonic func-
tion. Again the likelihood with the trial function f ′(σ )
is evaluated and accepted if the likelihood increases and
otherwise rejected.

(iii) The relative scaling of the collective variables is the
equivalent to the metric tensor M in the string method
with vanishing off-diagonal elements (see Refs. 37 and
38). In a third step, the metric tensor is optimized with
respect to the log-likelihood. Here, the metric tensor
is a 2 × 2 matrix with the elements M00 = 1, M10

= M01 = 0, and M11 = s. In this optimization step, a
trial metric tensor is generated by varying s. Then, all
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configurations are mapped onto the string in the scaled
variable space and the likelihood is evaluated leaving the
string and the mapping function constant. If the trial like-
lihood is larger than the initial one, the new scaling is
accepted.

The log-likelihood from data with different dimen-
sions cannot be compared in a straightforward way be-
cause the likelihood naturally increases with every additional
dimension.39 Peters and Trout used the Bayesian information
criterion that allows for a comparison of models with differ-
ent dimensions. In the nonlinear reaction coordinate analysis,
a similar criterion was introduced34 to find the optimal num-
ber of string beads M, where one maximizes

lnL(M) = max
SM,f M

ln L(M) − BIC(M,Nd ), (17)

with

BIC(M,Nd ) = k(M)

2
ln Nd. (18)

Here, Nd = ∑
xW(x) is the total number of data points in the

RPE, and k(M) is the number of degrees of freedom in the
string optimization. Taking into account that the number of in-
terpolation nodes is equivalent to the number of string points
and that the first and last string points are only allowed to
move perpendicularly to Nld, the number of degrees of free-
dom becomes k(M) = 3M − 2 for M ≥ 2.

With the above method, the number of configurations
that have to be taken into account becomes large (in the or-
der of Nd ∝ 108). The mapping onto the string requires sev-
eral mathematical operations and the optimization steps of the
string might become computationally expensive. Therefore, it
is useful to work with histograms of points rather than the
points itself. This can be achieved by rewriting the logarith-
mic likelihood as follows:

ln L =
∑
x→B

W (x) ln p̂B(r(x)) +
∑
x→A

W (x) ln p̂A(r(x)

=
∑

q

NB(q) ln p̂B(r(q)) +
∑

q

NA(q) ln p̂A(r(q))

=
∑

q

Ndρ(q)pB(q) ln p̂B(r(q))

+
∑

q

Ndρ(q)pA(q) ln p̂A(r(q)). (19)

In the second line, we have replaced the two sums over all x
from trajectories that end in A and B, respectively, with sums
over the q-space. Instead of summing up individual points we
now sum over two histograms NA(q) and NB(q). NA(q) is gen-
erated from all configurations that are part of a trajectory that
ends in A, while trajectories that end in B contribute only to
NB(q). The last line serves to illustrate the meaning of NA and
NB. The probability to find a configuration with order param-
eters q in the RPE is the equilibrium probability ρ(q). The
probability that this configuration leads to the stable state B
is the committor pB (for state A it is pA). In other words, the
histograms NA and NB are simply the product of the equilib-
rium distribution and committor function and can be defined

generally for configurations r,

NA(r)

Nd

= ρ(r)pA(r),
NB(r)

Nd

= ρ(r)pB(r). (20)

V. RESULTS

The simulations are done at two different pressure
regimes: at pressure P = 0.011 and T = 0.003, the low pres-
sure regime where the most stable phase is FCC, and a pres-
sure P = 1.0 and T = 0.0018, where BCC is more stable. The
number of particles is N = 10976 in both cases. The potential
is cut off at rc = 4.0, which basically means that the potential
was calculated up to machine precision. The nearest neigh-
bor criterion is rnn ≤ 1.7 in the high pressure simulations and
rnn ≤ 2.7 in the low pressure simulation. For the calculation
of the forces and the potential energy the cell list method is
used with Ncells = 216 cells in the high pressure simulation
and Ncells = 729 cells at low pressure. The high friction limit
was sampled using the velocity Verlet algorithm in combina-
tion with the Andersen thermostat with velocity reinitializa-
tion frequency ν = 0.01 in combination with the Andersen
barostat. We define region A as Nld ≤ 5 and region B as Nld

≥ 400. Note that we assume that when the cluster has reached
region B, it will be entirely committed to the crystal phase.
Between the stable states we introduce eight non-intersecting
interfaces at the positions Nld = 10, 20, 40, 60, 80, 100, 160,
200 for the forward process and eight interfaces at Nld = 80,
100, 160, 200, 240, 280, 320, 360 for the backward process.
In both simulations, we have generated 7000 trajectories for
each of the 16 interfaces.

A. Reweighted path ensemble

The RPE is constructed from the RETIS paths accord-
ing to Eq. (7). Weights of the individual interfaces and the
constants cA and cB are calculated from the WHAM analysis
of the crossing probabilities as described above. Figure 2 de-
picts the weighted crossing probability histograms from the
forward and from the backward part of the simulation for the
low pressure simulation and the high pressure simulation, re-
spectively. From these crossing probabilities, the nucleation
rate constant follows by multiplication with the first inter-
face flux φA,λ0 .5 The resulting rates are khigh = 6.32 × 10−7

(φA,λ0 = 0.018) and klow = 1.53 × 10−6 (φA,λ0 = 0.092) for
the high and low pressure regime, respectively.

B. Free energy profiles

The paths in the RPE have the correct statistical weights
and; therefore, the configurations taken from these reweighted
paths are drawn from the natural Boltzmann distribution.
Therefore, a projection of these configurations onto a set of
collective variables leads directly to the free energy as a func-
tion of these order parameters (see Eqs. (10) and (11)). The
order parameters can be chosen arbitrarily, which means that
from the weighted paths one can deduce the free energy in
any parameter space without doing any further sampling.
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FIG. 2. Reweighted crossing probability histograms as a result of the WHAM analysis of the crossing probabilities in the high pressure regime (left) and low
pressure regime (right).

Figure 3 depicts the free energy profile as a function of
Nld and Ntf, respectively, calculated from the RPE. An addi-
tional unbiased simulation allows for a normalization of the
free energy with respect to the metastable liquid, where all
cluster sizes are taken into account.8 While, in principle, this
additional sampling is not needed as the information about
state A is included in the RPE, here, for practical reasons
we did not store full trajectories but only stored the 15 or-
der parameters described above which does not include the
information about all clusters in the system. Nld is an impor-
tant projection because it serves as order parameter to define
the interfaces and the stable states and it is the sole reaction
coordinate suggested by CNT. In both the high and the low
pressure regime, the free energy profile exhibits a single peak
without any intermediate minima. A common choice for the
reaction coordinate is Ntf (e.g., Ref. 17), which we depict for
completeness in Fig. 3 on the right. Note that the accord-
ing free energy barriers as function of Ntf and Nld, respec-
tively, are almost equally high. We come back to this point
in Sec. VI.

C. Optimal reaction coordinate

A main goal of this study is to find reaction coordinates
that enhance the description of the transition compared to the
CNT. The CNT predicts that the size of the largest cluster is
the only relevant reaction coordinate to describe nucleation.
However, Moroni et al.27 have shown that for a Lennard-Jones

system, the reaction can be described more accurately by in-
cluding structural information about the cluster.

We maximize the log-likelihood of the committor as a
function of a nonlinear mapping of pairs of candidates for re-
action coordinates. The aim is to find a reaction coordinate
that enhances the classical description with the single reac-
tion coordinate Nld. We do this by comparing pairs of reaction
coordinates (Nld, qi), where qi is one from the following list
of parameters: nBCC, nFCC, nHCP, nUND, sBCC, sFCC,
sHCP, sUND, sLIQ, sSOL, Ntf, Ns, Nsl, Q6, cl, and Q4, cl (as
defined in Sec. III). This means we are comparing 15 pairs of
possible reaction coordinates.

Figure 4 depicts the optimized strings and mapping func-
tions, respectively, from the high and low pressure simulation
after 20 000 optimization steps. Each step consisted of a string
displacement, a move in the mapping function, and a scaling
move. The mapping function f(σ ) is already well described
with two points. Note, that the predicted transition state is al-
most identical for all studied numbers of interpolation nodes.
Both at low and at high pressure, the string as well as the map-
ping function converge to a similar result for different num-
bers of string points. In particular, the mapping functions fall
together at the transition state. Note that in this method the ge-
ometric interpretation of the transition state is the collection
of all configurations at σ* with r(σ*) = 0.

For each of the 15 combinations of order parameters
(Nld, qi) we have optimized the string, the mapping function
and the scaling. For convenient comparison of the results,
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FIG. 3. (Left) Free energy profile from the projection of the RPE (solid) as a function of Nld from the high pressure regime (black) and low pressure regime (red).
(Right) Free energy profiles as a function of Ntf. The relative normalization between Ntf and Nld free energy barrier is given by the RPE as the configurations are
weighted with the correct Boltzmann weight and therefore also its projections. For completeness we have added the histogram of all cluster sizes (dashed).8, 18
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FIG. 4. (Top left) Optimized strings with M = 2, 3, 5, 9 string points in the order parameter space spanned by Nld and Ntf from the high pressure simulations.
The color map in the background represents the free energy calculated from the RPE as a function of Nld and Ntf. The estimated transition state for the M
= 9 string is indicated as a green line, parametrized as Ntf = 1588−8.5 Nld. (Bottom left) The mapping function r = f(σ ) belonging to the strings above. The
transition state is estimated as configurations perpendicular to the string (in the scaled variables) at r = 0, in the high pressure regime at σ = 0.4. (Top right) The
optimized strings in the low pressure regime. Here, the transition state is parametrized by Ntf = 1601−7.04 Nld. (Bottom right) Optimized mapping function
with a transition state at σ = 0.43 in the low pressure regime.

we introduce a relative information gain g = (ln L(Nld, qi)
− ln L(Nld))/b with b = 1/2ln L(Nd). As a result, only a g
≥ 1 leads to an information gain due to an additional col-
lective variable qi that satisfies the Bayesian information cri-
terion. The results are listed in Table I. From the full set of 15
collective variables only three combinations [(Nld, Ntf), (Nld,
Ns), (Nld, Nsl)] satisfy this criterion and exhibit a g ≥ 1 (or
close to 1). These three best combinations are the same in the
low and high pressure regimes. In both regimes the combi-
nation (Nld, Ntf) is the optimal choice. A comparison of the
information of different numbers of string points shows that
for the nucleation a linear description is sufficient. The com-
bination of (Nld, Ntf) is the optimal reaction coordinate inde-
pendent of the number of string points used in this study. This
indicates that the method is robust with respect to M. Adding
a third component to the reaction coordinate does not improve
the likelihood significantly.

TABLE I. Relative gain (g) in information compared to the single reaction
coordinate Nld with the error � = 〈(g − 〈g〉)2〉0.5 calculated from six inde-
pendent optimization runs. s is the optimized relative scaling between Nld and
the respective collective variables.

High pressure Low pressure

Rank OP g � s OP g � s

1 Ntf 2.35 0.46 0.32 Ntf 2.23 0.24 0.29
2 Ns 1.01 0.45 0.77 Ns 1.54 0.36 1.61
3 Nsl 0.95 0.33 0.28 Nsl 1.39 0.06 0.46

The results lead to a novel interpretation of surface and
volume term in the CNT presented in Ref. 7. The particles in
the core identified as crystalline particles, Nld, are surrounded
by a cloud of particles that are highly correlated in their struc-
ture but not ordered in a crystal structure. Ntf represents the
sum of the core and the surface particles. In Ref. 7, we have
shown that the free energy, one would expect from this in-
terpretation is in excellent agreement with the CNT. How-
ever, the two-dimensional reaction coordinate (Nld, Ntf) is re-
quired for an accurate description of the nucleation pathway
as shown in the next subsection.

D. Committor analysis

For a perfect reaction coordinate each configuration lo-
cated at the transition state should exhibit a commitment prob-
ability of pB = 0.5. The deviation from a peaked distribu-
tion of the pB values is, therefore, a useful measure for the
quality of a reaction coordinate.40 A bad choice would lead
to a flat distribution or, in the worst case, to a minimum at
the putative transition state. Figure 5 depicts the committor
distribution of 100 independent configurations located at the
transition state using Ntf alone and the transition state pre-
dicted by the string method which is a combination of Ntf

and Nld, and parametrized by Ntf = 1588−8.5 Nld and Ntf

= 1601−7.04 Nld for low and high pressure, respectively.
This analysis shows that the committor distribution is peaked
around pB = 0.5 when we consider both of the order param-
eters. Taking only into account, the often used Ntf reaction
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FIG. 5. Commitment probability profile from N = 100 individual configurations taken from the predicted transition state at high pressure (left) and low pressure
(right). The committor was evaluated for 100 trajectories each with velocities randomly assigned according to the Boltzmann distribution. The transition state
defined with Ntf as reaction coordinate (red) consists of 100 configurations with clusters of sizes Ntf = 560–580 in the low pressure and Ntf = 490–510 in
the high pressure regime, respectively. This ensemble of configurations leads to an almost flat histogram indicating a rather sub-optimal choice for a reaction
coordinate in both cases. The committor distribution of configurations taken from r(σ ) = 0 are plotted in black. The means and standard deviations (Ref. 41)
for the optimal reaction coordinate and the Ntf reaction coordinate in brackets are: μh,high = 0.49 (0.47) and σh,high = 0.22 (0.55) and μh,low = 0.49 (0.50) and
σh,low = 0.24 (0.30).

coordinate the distribution becomes flat. Note, that a perfect
reaction coordinate would lead to a binomial committor dis-
tribution with a standard deviation of σ p = 0.05 for N = 100
trial trajectories.41 Thus, while the optimized reaction coordi-
nate is much better than the Ntf coordinate alone, it is still far
from perfect.

E. Structural composition of the nucleus

The thermodynamic stable phase at high pressure is a
BCC structured crystal, at low pressure it is a FCC crys-
tal. This raises the question whether or not, and to what ex-
tent, the underlying stable phase influences the formation of
the nucleus. This is particularly interesting in the light of
Ostwald’s step rule, which indicates that the nucleus can form
an intermediate structure first and later rearranges into the sta-
ble phase. It is therefore useful to study the structural compo-
sition of the nucleus in both regimes at different stages of the
nucleation. Figure 6 (top left) depicts the structural compo-
sition of 200 independent critical nuclei taken from the high
pressure simulation. The HCP structure is the dominant struc-
ture. Only in the core the onset of a BCC is clearly visible. For
post-critical clusters, shown in Fig. 6 (bottom left), the BCC
structure in the core is becoming larger and about equally
probably as the HCP structure. This indicates that the HCP-
BCC transformation occurs in clusters larger than the criti-
cal size in a separate transition. This is a clear indication for
the applicability of Ostwalds step rule in the high pressure
regime, where first a HCP cluster forms which then trans-
forms its core to a BCC crystal. A typical post critical cluster
is shown in Fig. 7 as illustration. The core of the nucleus is al-
ready in the BCC phase surrounded by an intermediate layer
of HCP particles. The nucleus is embedded in the prestruc-
tured surface cloud.

The composition of critical nuclei in the low pressure
regime are shown in Fig. 6 (right). Again, the HCP structure
is dominant but in the low pressure regime, it stays dominant
also for large clusters. Here, the core does not rearrange to the
most stable FCC phase.

VI. DISCUSSION

A. Free energy and rates

It is instructive to view the free energy barriers (Fig. 3) in
the context of the crossing probabilities, the flux and the rates.
The plateau of the forward crossing probability (see Fig. 2),
the probability that a trajectory starting at the first interface
reaches B, is P

high
AB = 3.4 × 10−5 and P low

AB = 1.67 × 10−5 in
the high and low pressure regime, respectively. At first sight,
this may seem surprising as the free energy barrier from the
high pressure regime is the larger one and; therefore, one
might expect the crossing probability to be lower. However,
the barrier height cannot directly be compared with the cross-
ing probability, but is related to the rate which is the prod-
uct of flux and crossing probability. Here, the flux in the low
pressure regime is larger by a factor of 5 which results in a
total fraction of the rates khigh/klow = 0.42 which in turn re-
sults exactly in the difference of 0.9 kBT between the heights
of the free energy barriers. Another way to see this con-
nection is the following: the first interface is defined as Nld

= 5 for both regimes. The crossing probability depends on the
difference between the height of the barrier and the free en-
ergy at the position of first interface. This difference is smaller
in the high pressure regime leading to a higher crossing
probability.

While the flux and the crossing probabilities are depend-
ing on the position of the first interface, the rate and the free
energy barrier are independent of this choice. Indeed, the flux
compensates exactly for the crossing probabilities to give the
correct rates according to the absolute free energy differences.
The practical consequence of this is that even though the rates
and the free energy barriers are independent of the choice of
the first interface, it does result in a trade-off of accuracy in
the calculation of flux and crossing probability.

B. Novel interpretation of CNT

The results of the likelihood maximization indicate that
the optimal choice of reaction coordinates is a combination
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FIG. 6. (Top left) Structural composition as a function of the distance to the center of mass averaged over 200 independent clusters of critical size in the
high pressure regime. The HCP structure dominates, however, the formation of BCC core in the center becomes evident. (Bottom left) Averaged structural
composition for post critical clusters in the high pressure regime. Half of the clusters have a BCC structured core. This core is surrounded by a HCP layer. (Top
right) In the low pressure regime HCP is dominant for small clusters as well as for large clusters (bottom right).

of Ntf and Nld. These two order parameters are based on two
different definitions of solidity. For the definition of Ntf, one
considers correlations between the local structures around
neighboring particles. The definition of solidity for the pa-

FIG. 7. Typical post critical cluster in the high pressure regime. The nu-
cleus consists of several layers. The innermost core (black) has rearranged
to a BCC structured cluster and is surrounded by a layer of HCP particles
(green). The nucleus is embedded in the prestructured surface cloud (white).
The undercooled liquid is indicated by blue particles.

rameter Nld requires that the local structure around a particle
has a vanishing probability in the supercooled liquid phase.
Both definitions have exactly the same spatial resolution be-
cause both hold information of qlm evaluated for the nearest
neighbors and their second shell neighbors. We find that the
crystalline core (the Nld cluster) is embedded in a cloud of par-
ticles that are solidlike in the sense that their local structure is
highly correlated but liquidlike in the sense that the probabil-
ity to find the structure in the supercooled liquid is larger than
to find it in a solid phase.

This cloud of prestructured particles that surrounds the
crystalline core of the nucleus leads to an interpretation of the
surface that is consistent with the CNT.7 To see this, we con-
sider a general form of CNT where surface term and volume
term are independent, �G = �μNcore + εsNsurface, where εs

is the surface energy and �μ is the chemical potential dif-
ference. Here, we interpret the crystalline core as the vol-
ume term Ncore = Nld and the surrounding cloud as the sur-
face Nsurface = Ntf − Nld . The resulting free energy has the
form �G = c1 + c2Nld + c3Ntf, where ci are constants. In
the special case that Ntf ∝ N

(2/3)
ld , one recovers the free en-

ergy barrier predicted by the CNT (see Eq. (1)). For this sys-
tem, we find that Ntf ∝ N0.68

ld in the high pressure regime and
Ntf ∝ N0.60

ld in the low pressure regime, which is indeed con-
sistent with CNT. Note that another possible definition of the
surface does not exhibit this feature. The number of skin par-
ticles defined as the number of particles that are liquidlike
and have a particle that is part of the cluster as nearest neigh-
bor scales as Ns ∝ N0.37

ld . This small exponent is a result of
the roughness of the clusters. In contrast, the cloud particles
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constitute a rather thick layer, which smooths the rough clus-
ter surface and recovers the compact scaling.

The appearance of the surface cloud in our simulations is
also not simply a geometrical artifact from a different sen-
sitivity of the two methods for Nld and Ntf with respect to
interfaces. We note that both methods have the same spatial
resolution and include the same information about the struc-
ture without any directional bias in a radial manner. Never-
theless, one could argue that one of the two methods might be
more sensitive to interfaces, therefore, considering a layer of
particles as liquidlike that the other criterium considers solid-
like. We have checked this possibility by performing a simu-
lation at the high pressure conditions of an idealized system
consisting of a slab of a perfect FCC crystal immersed in liq-
uidlike particles, originally at randomized positions. In this
idealized scenario, both Nld and Ntf identify the same layer
as interface layer. As the system equilibrates, the liquid par-
ticles start ordering at the interface leading to an additional
layer similar to the surface cloud. We note that the under-
standing of this interface may be further improved by using
order parameters with variable spatial resolution (see, e.g.,
Ref. 42).

C. Variational transition state theory

Variational transition state theory44 states that the opti-
mal dividing surface (in other words the best reaction coor-
dinate as the dividing surface is often defined in terms of the
reaction coordinate) shows the smallest number of recrossing
trajectories. The ratio of reactive trajectories and the num-
ber of crossing points on the dividing surface, also known
as the transmission coefficient, is thus a good measure for
the quality of the RC. The higher the transmission coeffi-
cient, the better the choice of RC. The transmission coeffi-
cient is also the dynamical correction factor that transforms
the estimate of transition state theory (TST) into the exact re-
action rate constant. We can compute the transmission coef-
ficient directly from the RPE.43 Focusing on the high pres-
sure case, we determined the dividing surface as the top of
the free energy barrier, for the Nld, Ntf and the optimized
RC, yielding, respectively, Nld = 120, Ntf = 550, and Ntf

= 1588−8.5 Nld (see Figs. 3 and 4). The transmission coeffi-
cients are, respectively, κNld

= 0.059, κNtf
= 0.038, and κopt

= 0.062. Indeed the optimized RC has the highest transmis-
sion coefficient, hence the lowest number of recrossings, fol-
lowed closely by the Nld parameter. The Ntf order parameter
has a significantly higher number of recrossings and is thus a
less accurate RC. These findings agree with the results of the
likelihood maximization. Interestingly, the free energy barrier
heights for Nld and Ntf shown in Fig. 3 do not seem to differ.
However, the barrier height should be multiplied by the aver-
age order parameter velocity at the top of the barrier, in order
to get the TST rate constant.43 This correction is dependent
on the order parameter and is expected to be much larger for
the Ntf than for Nld, thus compensating for the difference in
transmission coefficient and eventually leading to an identical
true rate, which by necessity is independent from the choice
of reaction coordinate.

D. Structure of the growing nucleus

Next, we will take a closer look at the structural proper-
ties of the prestructured surface cloud and discuss its relation
to previous studies on the nucleation of colloids. First, we an-
alyze the structure of the prestructured surface cloud. Figure
8 depicts the 2D-histograms of the order parameters q̄4 and
q̄6 for different crystal structures and a projection of the his-
tograms onto the q̄6 axis. The histogram of the supercooled
liquid, BCC, FCC, and HCP structures were used as reference
to determine Nld in the analysis.7 Here, we have added the
q̄4–q̄6 histogram of the prestructured surface cloud. The con-
figurations are taken from 200 post-critical clusters from the
RETIS simulation in the high pressure regime. The histogram
of the prestructured surface cloud clearly separates from the
supercooled liquid phase. In particular, the histogram of the
prestructured surface cloud is distributed around a larger q̄6

value with respect to the supercooled liquid, while the param-
eter q̄4 is identical. Note that the prestructured cloud region is
close to the HCP region, thus explaining why this structure is
the first to form out of the supercooled liquid.

As a next step, we revisit the supercooled liquid phase.
The histogram of the supercooled liquid (Fig. 8, blue) consists
of all possible local configurations in the meta-stable liquid
phase where, due to spontaneous fluctuations, highly corre-
lated regions form continuously. In the definition of Ntf, these
are crystalline clusters, while in the definition of Nld they are
part of the supercooled liquid! We add the histogram of the
particles that are part of spontaneously formed Ntf clusters in
the supercooled liquid (Fig. 8, orange). The structural proper-
ties of spontaneously formed Ntf clusters are the same as those
of the prestructured surface cloud in terms of q̄4 and q̄6, except
that the prestructured surface cloud has a slightly larger aver-
age q̄6 than the spontaneously formed Ntf clusters. Therefore,
we identified the highly correlated particles in the supercooled
liquid phase as the large-q̄6 part of the supercooled liquid his-
togram and find that their structure is the same as that of the
prestructured surface cloud.

This suggests an initial phase of the nucleation, where
first a large-q̄6 region forms spontaneously that enhances the
formation of a truly crystalline cluster. The large-q̄6 region
surrounds the crystalline nucleus, growing with it. Therefore,
our conclusions are similar to the mechanism that was re-
cently predicted by Kawasaki and Tanaka45 for colloidal hard
spheres. They find that the nucleus forms in a large-q̄6 re-
gion that is similar to a HCP structure. A similar conclusion
was drawn by Schilling et al.,46 who found that a highly cor-
related nucleus is surrounded by a less structured layer for
crystal growth at a larger undercooling. Finally, the results
are also in agreement with the conclusions by Moroni et al.27

The authors find that the reaction coordinate can be enhanced
by taking into account Ntf and Q6, cl. This is in agreement with
our results, as Q6, cl and Nld both hold the same information
about the crystallinity of the cluster, except that Nld allows for
the analysis of the structure on a particle-level, while Q6, cl

is averaged over the whole cluster. Recently, Beckham and
Peters47 confirmed this importance of Q6, cl as a reaction co-
ordinate using transition path sampling in combination with a
likelihood maximization at the transition state. They find that
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FIG. 8. Distributions of the q̄4 and q̄6 order parameters for different phases in the high pressure regime. The histograms of the perfect crystal structures and
the supercooled liquid serve as reference for the structural analysis.7 Particles that are part of the prestructured surface cloud (gray) and clusters that form
spontaneously (orange) in the supercooled liquid have a similar structure and can be clearly distinguished from the liquid and the crystal structures. (Top left)
Projection of the distributions onto the q̄6 coordinate.

the product of cluster size and crystallinity Q6, cl improves the
description considerably.

The results further shed light on the applicability of
Ostwald’s step rule. We find that the core consists almost only
of HCP and BCC, while FCC particles and undefined struc-
tures are rare and located close to the surface. Considering
the dominance of the HCP structure in the nucleus, the GCM
shows a similar nucleation pathway as a recent study found
for C60 nano-particles48 and colloidal particles.1 The study of
the composition of the crystal structures of the nuclei at the
transition state in comparison to post critical nuclei suggests a
two step mechanism of the nucleation. First, a predominately
HCP cluster forms, in both regimes with different underlying
stable crystal structure. In the high pressure regime, the core
then transforms into a BCC-HCP mixture. In the low pressure
regime, the portion of FCC also increases but HCP remains
the dominant structure even for clusters larger than Nld > 360.
This is an indication for Ostwald’s step rule which implies that
the nucleation does not necessarily lead directly to the most
stable phase but rather to the one which is most easily acces-
sible from the meta-stable phase. In the low pressure regime,
the second step might not take place because HCP and FCC
are too close in terms of free energy.

VII. CONCLUSIONS

In summary, we applied a novel method to distinguish
crystal structures and establish the degree of solidity of parti-

cles together with a likelihood maximization of the commit-
tor function. We identified a new interpretation of surface and
volume in the CNT and observed Ostwald’s step rule with
atomic resolution. Structural analysis revealed that the crystal
nucleus has an onion composition. The innermost core con-
sists of particles in the stable crystalline phase, surrounded by
a layer of HCP ordered particles. Around the latter we find the
prestructured surface cloud,7 which is surrounded by the un-
dercooled liquid. Finally, we mention that our methodology
is generally applicable not only to crystallization in colloidal
suspensions, but to all crystallization phenomena, and indeed
to other rare events, from chemical reactions to biomolecular
isomerization.
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