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The modified Becke-Johnson exchange potential [F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009)]
(TB-mBJ) is tested on various types of solids which are difficult to describe theoretically: nonmagnetic
semiconducting transition-metal oxides and sulfides, metals (Fe, Co, Ni, and Cu), and (anti)ferromagnetic
insulators (e.g., YBa2Cu3O6). The results for the band gap and other quantities such as the magnetic moment
or electric field gradient are analyzed in detail, in particular to have a better understanding of the mechanism
which leads to improved (or sometimes worse) results with the TB-mBJ potential compared to the standard local
density and generalized gradient approximations.
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I. INTRODUCTION

Electronic structure calculations on periodic solids are often
performed with the Kohn-Sham1 (KS) method of density
functional theory2 (DFT) by solving the equations

(
−1

2
∇2 + vKS

eff,σ (r)

)
ψi,σ (r) = εi,σψi,σ (r) (1)

for the one-electron wave functions ψi,σ . In this equation
vKS

eff,σ = vext + vH + vxc,σ is the KS multiplicative effective
potential (for spin σ ), which is the sum of the external, Hartree,
and exchange-correlation (XC) terms. The last term has to be
approximated; all other terms can be calculated numerically
very accurately. The most popular approximations are the
local density approximation (LDA)1,3 and the PBE4 version
of the generalized gradient approximation (GGA). The XC
potential for Eq. (1) is obtained as the functional derivative
of the XC-energy functional Exc with respect to the electron
density ρσ (vxc,σ = δExc/δρσ ). This is a fast and reliable
theory for ground-state properties which can help to interpret
experimental data and has also quite some predictive power.
However, one of DFT’s main weak sides is the prediction
of excited state properties. For instance, the KS band gap of
semiconductors and insulators is most of the time severely
underestimated. By KS band gap, we mean the difference
in energy between the conduction band minimum (CBM)
and the valence band maximum (VBM) as obtained from a
multiplicative (i.e., common for all orbitals) potential.5

In principle, one should not compare the KS band gap
with the experimental band gap, which is defined as the
ionization potential minus the electron affinity I − A. Indeed,
even the exact KS band gap differs from the experimental one
by the derivative discontinuity �xc,6,7 which can be as large
as the KS band gap itself (see, e.g., Refs. 8 and 9). There
are indications that the KS band gap calculated with LDA
and GGA may not be so different from the exact KS gap,8

but the problem of these approximations is that �xc is zero.
The optimized effective potential (OEP) method applied to
the exact exchange functional leads to KS band gaps which
are relatively close to the experimental values;10,11 however
this method is computationally expensive and, because of the
missing �xc, it is maybe in some sense “empirical” to obtain
KS band gaps in good agreement with experiment.

There are alternative ways to have an estimate of the
experimental band gap. One can use a method which lies
outside the KS framework by using a nonmultiplicative
potential. Hybrid functionals (e.g., HSE12), in which a fraction
of exact exchange replaces a fraction of the LDA or GGA
exchange, also improve the band gap. However, the hybrid
methods are more expensive and also not satisfactory in all
cases. Another possibility is the LDA+U 13 method, but it
can only be applied to correlated and localized electrons, e.g.,
3d or 4f in transition and rare-earth oxides. Very successful
but also very expensive methods are the combination of LDA
with dynamical mean-field theory (LDA + DMFT)14 and of
course GW (see Ref. 15 for a recent review). In fact, with such
nonmultiplicative potentials (a part of) �xc is contained in the
CBM − VBM difference.

Nevertheless, if one wants to stay inside the KS framework
and still use a computationally cheap semilocal method that
leads to KS band gaps which are close to the experimental
band gaps, the potential of Becke and Johnson (BJ)16 can be a
good starting point. The multiplicative BJ potential reads

vBJ
x,σ (r) = vBR

x,σ (r) + 1

π

√
5

6

√
tσ (r)

ρσ (r)
, (2)

where ρσ = ∑Nσ

i=1 |ψi,σ |2 is the electron density, tσ =
(1/2)

∑Nσ

i=1 ∇ψ∗
i,σ · ∇ψi,σ is the kinetic-energy density, and

vBR
x,σ (r) = − 1

bσ (r)

(
1 − e−xσ (r) − 1

2
xσ (r)e−xσ (r)

)
(3)

is the Becke-Roussel (BR)17 exchange potential, which was
proposed to model the Coulomb potential created by the
exchange hole. In Eq. (3), xσ is determined from a nonlinear
equation involving ρσ , ∇ρσ , ∇2ρσ , and tσ , and then bσ

is calculated with bσ = [x3
σ e−xσ /(8πρσ )]1/3. The asymptotic

behavior of vBR
x,σ is that of the exact KS exchange potential. The√

t/ρ term was introduced to reproduce the step structure of
the OEP in atoms and can be considered as a kind of screening
term.

The BJ exchange potential has been implemented18 self-
consistently into the WIEN2K code19 which is based on the
full-potential (linearized) augmented plane-wave and local
orbitals method to solve the KS equations for periodic systems.
In Ref. 18 it was shown that the BJ potential improves over
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LDA and PBE for the description of band gaps; i.e., the
obtained values for CBM − VBM were larger and hence closer
to experiment. However, the improvement was moderate.
Further improvement has been achieved by a modified version
(TB-mBJ)20 of the BJ exchange potential which introduces a
parameter to change the relative weights of the two terms in
the BJ potential:

vTB-mBJ
x,σ (r) = cvBR

x,σ (r) + (3c − 2)
1

π

√
5

6

√
tσ (r)

ρσ (r)
. (4)

The way in which this linear combination is written makes
sure that for any value of c the LDA exchange potential is
recovered for a constant electron density. For c = 1 the original
BJ potential is recovered. The actual value of c in the TB-mBJ
is calculated for every studied system by

c = α + β

⎛
⎝ 1

Vcell

∫
cell

∣∣∇ρ(r′)
∣∣

ρ(r′)
d3r ′

⎞
⎠

1/2

, (5)

where Vcell is the unit cell volume and α and β are two
free parameters whose values are α = −0.012 and β =
1.023 bohr1/2 according to a fit to experimental results. In
general, the band gap increases monotonically with respect to
c and using Eq. (5) yields satisfying results for many different
systems, ranging from small band gap semiconductors to
wide gap insulators (even the band gap of 22 eV of Ne can
be reproduced fairly well) and transition metal oxides.20 A
drawback of the TB-mBJ potential is that it cannot be obtained
as the derivative of a functional as shown in Refs. 21 and 22.
Therefore, this potential cannot be used for the calculation of
forces which act on the nuclei as required for the optimization
of the geometry.

So far, several groups have used the TB-mBJ potential for
the calculation of electronic properties of different families of
solids and confirmed that TB-mBJ band gaps are improved for
a wide range of different materials. Among these works there
are the studies of Al-Sawai et al.23 and Feng et al.24 on half-
Heusler topological insulators, Feng et al.25 on chalcopyrite
semiconductors, Guo and Liu26 on transition-metal pnictides
and chalcogenides, and the numerous calculations reported by
Singh et al. on halide scintillators,27 ferroelectric Bi4Ti3O12,28

and other solids.29 Kim et al.30 applied the TB-mBJ potential
on III-V semiconductors for the calculation of band gaps and
effective masses. While the band gaps improve at least as
much as using expensive hybrid DFT methods, the effective
masses are not as good, although a considerable improvement
compared to PBE calculations has been found.

We also briefly mention published works in which the
BJ potential was considered. Kümmel and co-workers21,31

extended the BJ potential for the calculation of polarizability
of molecules. In Refs. 22, 32, and 33, Gaiduk and Staroverov
considered more formal aspects of the BJ potential, and in
Refs. 34–36, Räsänen and co-workers proposed a correction
to the BJ potential.

Finally we mention that the idea to determine an unknown
parameter in a XC functional by a density-related property of
the specific system under investigation was taken up in Ref. 37,
where the fraction of exact exchange in hybrid functionals
was not taken as constant, but determined by a very similar

expression as Eq. (5). This has led to much better band gaps
so that also with hybrid-DFT schemes an accuracy similar to
the TB-mBJ potential has been obtained.

However, some questions about the TB-mBJ potential
are still open. Where does its strength originate, what are
the limitations, is it suitable for metallic systems, or can it
also be useful for ground-state properties such as magnetic
moments or electron density related properties such as the
electric field gradient? In this work we present the results
of additional investigations on the merits and weaknesses
of the TB-mBJ potential. Since the good performance of
TB-mBJ for classical semiconductors is well established, we
compare its performance with the benchmark functional PBE
on three much more difficult categories of test systems. The
three groups are nonmagnetic semiconducting transition-metal
oxides and sulfides, where the band gap is of interest; 3d-band
metals, where the position of the d bands or the magnetic
moment plays an important role; and (anti)ferromagnetic
insulators, where both properties are important. For a better
understanding of the different results, a detailed analysis of
some cases is presented.

II. RESULTS AND DISCUSSION

The calculations were performed with the WIEN2K code.19

As in our previous work,20 the TB-mBJ exchange potential
was combined with LDA correlation3 and implemented self-
consistently [including Eq. (5)]. For comparison purposes,
PBE calculations were also done. The calculations were well
converged regarding the integrations in the Brillouin zone and
size of the basis set. The two-dimensional plots of the electron
densities or potentials were made using XCrySDen.38

A. Nonmagnetic transition-metal oxides and sulfides

Table I shows the fundamental band gap of several
compounds calculated by PBE and TB-mBJ in comparison
with the experimentally measured values and other results
from the literature. Generally, there is an improvement for
all cases. However, the quality of the improvement is not
constant for all cases, but varies a lot. We can find perfect
agreement with experiment for HfO2, but for Cu2O the band
gap is still strongly underestimated. On the other hand, also
more sophisticated methods like the hybrid functional HSE,
non-self-consistent G0W0, or even self-consistent GW are not
necessarily better.

Since in a few cases the improvement is relatively modest,
we have tried to improve on this. It was mentioned before (see
Ref. 20) that the band gap in solids depends nearly linearly
on the value of c, and that with increasing c, the band gap
increases. Actually, the need to increase “by hand” the value
of c to have better agreement with experiment would mean
that the present determination of c using Eq. (5) might not
be general enough. Using a larger c value [both, the value
from Eq. (5) and the optimal value for c are included in
Table I], it is possible to reproduce the experimental band
gaps in all cases except for Cu2O. We should mention that
Cu2O seems to be a quite difficult case although formally
it is an easy system with a full 3d10 shell. Not only is the
band gap severely underestimated, but also the electric field
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TABLE I. Theoretical and experimental fundamental band gaps [eV]. For comparison, results from the literature which were obtained by
other methods (HSE, G0W0/GW ) are also shown. The value of c obtained from Eq. (5) and the value of c (copt) which leads to the experimental
gap are shown in the last two columns. In the G0W0/GW column the values from self-consistent GW are indicated with *.

Solid PBE TB-mBJ Expt. HSE G0W0/GW c copt

HfO2 (monoclinic) 4.09 5.83 5.7a 5.45l 1.44 1.39
ZnS (zinc blende) 2.10 3.68 3.91b 3.49g 4.15*m 1.28 1.35
ZnO (wurtzite) 0.82 2.71 3.44b 2.49h 3.8*m 1.42 1.64
SiO2 (quartz) 6.01 8.89 10.30c 7.89c 9.34n 1.47 1.71
SrTiO3 (perovskite) 1.88 2.70 3.25d 3.07i 5.07o 1.41 1.67
TiO2 (rutile) 1.89 2.57 3.3e 3.2j 3.34p 1.44 1.86
MoS2 (hexagonal) 0.85 1.07 1.29c 1.42c 1.22 1.45
ZrO2 (monoclinic) 3.66 4.73 5.5a 4.99l 1.42 1.74
Cu2O (cuprite) 0.53 0.82 2.17f 2.12k 1.97*q 1.32

aReference 39.
bReference 40.
cReference 37.
dReference 41.
eReference 42.
fReference 43.
gReference 12.
hReference 44.
iReference 45.
jReference 46.
kReference 47.
lReference 48.
mReference 49.
nReference 50.
oReference 51.
pReference 52.
qReference 53.

gradient (EFG) which is a ground state-property and can be
directly obtained from the electron density54 is much too small
in PBE calculations (see Fig. 1). With TB-mBJ, when c is
increased the band gap increases slightly but never comes close
to experiment (Fig. 1) and after a critical value of c, a sudden
decrease of the band gap indicates a severe problem for larger
c. The calculated EFG of −7.5 × 1021 Vm−2 with c = 1.32

FIG. 1. Variation of the TB-mBJ band gap and Cu EFG in Cu2O
as functions of c. The experimental values for the band gap (Ref. 43)
and the EFG (Ref. 54), as well as the band gap and the Cu EFG from
PBE, are also shown.

from Eq. (5) is not too far from experiment, while larger c

values lead soon to large errors in the EFG indicating that the
TB-mBJ potential with a large c leads to a wrong electron
density.

To understand the different performance of TB-mBJ we
take a closer look at two examples: SrTiO3 and Cu2O. Figure 2
shows the electron density of the VBM and the CBM as
obtained with the PBE functional. The respective densities
obtained with TB-mBJ are very similar and therefore not
shown here. Obviously, the VBM density stems from O-2p

orbitals, while the CBM originates from Ti-3d states with t2g

character and thus also a multiplicative potential can in princi-
ple selectively shift these states differently and independently.
In fact, when we compare these densities to Fig. 3(a), where the
difference between the TB-mBJ and the PBE XC potentials is
plotted, we see that in the valence electron region the TB-mBJ
potential is more attractive (negative) around both atoms
(leading to a stronger localization of the corresponding states),
but in addition (and even more importantly) the TB-mBJ
potential around Ti is quite aspherical. It is more attractive
for Ti-3d-eg but more repulsive for t2g states and thus shifts
the latter upward, leading to a larger band gap. This asphericity
comes mainly from the

√
t/ρ term [Fig. 3(c)], while the BR

contribution [Fig. 3(b)] is fairly spherical. Since the
√

t/ρ term
in Eq. (4) is weighted with 3c, while the BR term is weighted
only with c, we can also understand why increasing c increases
the band gap.
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FIG. 2. (Color online) Electron density (in e/bohr3) of the VBM
(a) and the CBM (b) of SrTiO3. The image shows a cross section
through the TiO6 octahedron with Ti in the center and O on the top,
bottom, left, and right.

We can now compare this to the situation in Cu2O. Figure 4
shows the electron density of the VBM and CBM states of
Cu2O in the (011) plane. Both densities are composed mainly
of Cu-3d-z2 orbitals and although there is some difference
between the electron density of VBM and CBM, overall
they are very similar. Consequently, any orbital-independent
potential will not be able to create a large energy difference
between these states and thus improve much the band gap with
respect to PBE.

B. Metals

By definition, metals do not have a band gap, but still it
is interesting to know how the TB-mBJ potential shifts the
bands or changes the exchange splitting of some ferromagnetic
metals, and whether better agreement with angle-resolved
photoemission can be achieved. On the other hand, one must
also ask if the Fermi surface or the calculated magnetic
moments are still accurate. A first application of TB-mBJ to
hcp Gd by Singh29 was not very promising in this respect.

We start the discussion with fcc Cu, where it is well known
that LDA/PBE calculations reproduce very well the Fermi
surface but place the Cu-3d bands about 0.5 eV too high in
energy (left panel of Fig. 5), while some unoccupied states
at the X-point are up to 2 eV too low (right panel of Fig. 5)
in comparison to experimental data measured with VLEED.55

TB-mBJ improves the comparison slightly. The valence band
minimum agrees now perfectly with experiment and also the
Cu-3d bands are shifted downward, but the shift is too small.

(a) (b) (c)

FIG. 3. (Color online) (a) Difference between the TB-mBJ and
the PBE XC potentials (in Ry) in SrTiO3. (b) BR term of TB-mBJ
potential [Eq. (4)]. (c)

√
t/ρ-term of TB-mBJ potential [Eq. (4)].

FIG. 4. (Color online) Electron density (in e/bohr3) of Cu2O in
the (011) plane of the VBM (a) and the CBM (b).

Let us now discuss more demanding cases such as the
ferromagnetic metals Fe, Co, and Ni, representing the three
classic metallic structures bcc, hcp, and fcc, respectively. It is
known (see, e.g., Ref. 56) that the exchange splitting in these
metals is not well represented (overestimated) by LDA and
GGA, but on the other hand the spin magnetic moments are
quite accurately reproduced (Table II). The TB-mBJ potential
leads, however, to an increase of the magnetic moments of
about 15% and severely overestimates these quantities. In the
hcp-Co case, TB-mBJ seems to be a better choice, but Co is
known57 to have a large orbital contribution to the magnetic
moment which has to be subtracted from the experimental
value (or added to the calculated spin magnetic moment),
which means that we face the same problem.

The increased magnetic moments result from a strong
increase of the exchange splitting. This makes Fe a strong
ferromagnet, where the spin-up d-band is completely filled
(as in Ni) (see Fig. 6) and the spin-up Fe-3d-t2g occupation
increases while the spin-down 3d occupation decreases.

FIG. 5. (Color online) Comparison between PBE and TB-mBJ
band structure with VLEED measurements for Cu (Ref. 55).
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TABLE II. Comparison between the calculated spin magnetic
moments and the experimental total magnetic moments of Fe, Co,
and Ni. Values are in μB .

Solid PBE TB-mBJ Expt.a

Fe (bcc) 2.17 2.49 2.22
Co (hcp) 1.63 1.70 1.72
Ni (fcc) 0.65 0.74 0.606

aReference 40.

The failure to describe ferromagnetic metals by TB-mBJ
is not unexpected. The exchange part of TB-mBJ is much
stronger than that of LDA/PBE, while the correlation func-
tional (from LDA) has been kept constant and the good error
cancellation of LDA/PBE for itinerant metallic systems has
been lost. For Fe, it is possible to achieve the correct magnetic
moment by adjusting the parameter c in Eq. (4) to a value
slightly below 1, while the value calculated from Eq. (5) is
c = 1.19. However, this leads for instance to a big error in the
magnetic hyperfine field (HFF) at the nucleus: HFFPBE = 30
T, HFFTB−mBJ = 35 T, HFFTB-mBJ,c=0.95 = 12 T, HFFExpt. =
33 T. TB-mBJ is therefore not recommended in this case.

C. (Anti)Ferromagnetic insulators

Previously, we focused either on the band gap (Sec. II A) or
on the magnetic moment (Sec. II B), but here both properties
play an important role. The selected examples in this category
are antiferromagnetic NiO, CuO, and YBa2Cu3O6, as well
as ferromagnetic EuO. Table III shows the values for the
band gap, the magnetic moment, and the EFG of these
materials calculated with PBE and TB-mBJ, together with
the experimental values.

Let us start out with NiO, one of the best studied cases
where the common semilocal DFT functionals fail. One
has to resort to methods like LDA+U 13 where the strong
correlations within the 3d shell had to be added “by hand”
or highly sophisticated and expensive DMFT calculations.65

Even standard G0W0 calculations improve the gap only
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FIG. 6. (Color online) Spin-up and spin-down density of states
(in states/spin/cell/eV) of bcc Fe for PBE and TB-mBJ potentials.

slightly, while TB-mBJ leads to very big improvement both
for the band gap and the magnetic moment.20 In Fig. 7 we
show the NiO band structure calculated with the PBE and
TB-mBJ potentials. In the energy region between −2 and 0
eV there is not much change. These states have a high Ni-3d

spin-up and 3d-t2g spin-down character with only modest O-
2p contributions. The states where O 2p dominates are located
at lower energies. The PBE potential separates them from the
Ni-3d bands and places them between −2.2 and −7.5 eV, while
in the TB-mBJ calculation they are found between −1.8 and
−6.6 eV. The TB-mBJ potential makes the O-2p bands
more narrow and shifts them closer to the VBM. The largest
difference, however, is in the position of the unoccupied states,
which are shifted by about 3 eV (the two flat Ni-3d-eg spin-
down bands) and 2 eV (the parabolic Ni-4s band), respectively.
It should be noted that LDA+U (with a suitable value of U )
or “hybrid-DFT for correlated electrons only” can also shift
the Ni-3d-eg spin-down bands up, but leave the Ni-4s band

TABLE III. Comparison between calculated (PBE and TB-mBJ) and experimental values of the band gap [eV], magnetic moment [μB ],
and electric field gradient [1021 V m−2].

Band Gap Magnetic Moment EFG

Solid PBE TB-mBJ Expt. PBE TB-mBJ Expt. PBE TB-mBJ Expt.

NiO 0.93 4.25 4.0−4.3a 1.39 1.76 1.64−1.9a

YBa2Cu3O6 0 1.18 1.5b 0 0.69 0.66e Cu1: −8.3 Cu1: −12.8 Cu1: 11.8g

Cu2: −3.7 Cu2: −8.6 Cu2: 9.0g

CuO 0.05 2.32 1.4c Cu: 0.38 Cu: 0.75 Cu: 0.65c −2.84 −13.97 −7.8c

O: 0.12 O: 0.14 O: 0.14c

EuO 0 0 0.9d 6.99 7.00 6.9f

aReferences given in Ref. 58.
bReference 59.
cReferences given in Ref. 60.
dReference 61.
eReference 62.
fReference 63.
gReferences given in Ref. 64.
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FIG. 7. Comparison of the NiO band structure calculated with
PBE and TB-mBJ. The gray regions indicate the states at the valence
and conduction bands whose densities are plotted in Fig. 8.

essentially unchanged,58 while full hybrid-DFT calculations66

show results similar to those of TB-mBJ.
Figure 8 shows the spin-up density of NiO for states at the

VBM and CBM (gray regions in Fig. 7). The VBM of the
spin-down Ni atom shows a pronounced 3d-t2g density with
minor contributions from O and the Ni spin-up atom. This
density hardly differs between PBE and TB-mBJ calculations.
On the other hand, the CBM density has strong Ni-3d-eg

spin-down character and the TB-mBJ density shows even less
antibonding O-2p and Ni-spin-up character than PBE. This
means that both the VBM and CBM states are composed
of Ni-3d spin-down states and they differ only in their
angular dependency. Thus, the TB-mBJ potential must be
able to selectively shift up the 3d-eg spin-down states. The
difference between the TB-mBJ and PBE spin-up potentials is
plotted in Fig. 9. The most important features are not the
spherically symmetric oscillations with increasing distance
from the nuclei, which are due to more contracted orbitals

FIG. 8. (Color online) (a) Spin-up electron density in NiO (001)
of states in the indicated energy regions in Fig. 7. (a) VBM with PBE.
(b) CBM with PBE. (c) VBM with TB-mBJ. (d) CBM with TB-mBJ.
(e) Density scale (in e/bohr3). (f) Position of atoms for (a)–(d).

FIG. 9. (Color online) Difference between the TB-mBJ and PBE
spin-up XC potentials (in Ry) in the (001) plane of NiO. The positions
of atoms are indicated in Fig. 8(f).

in TB-mBJ, but the strong asphericity of the potential around
the spin-down Ni atom. This asphericity, which is as large as
1 Ry, causes the larger band gap because it only shifts up the
CBM states. In addition, we see a more positive potential in the
interstitial region (about 0.2 Ry) which raises the Ni-4s band.

We can analyze which of the two terms of the TB-mBJ
exchange potential is responsible for the main effect. The BR
and

√
t/ρ terms are plotted in Fig. 10. While we see also in the

BR term some asphericity with a more negative potential in
the [110] direction than in [100], the main contribution to the
asphericity comes again from the repulsive

√
t/ρ term, which

raises the energy of the 3d-eg states. This makes sense since
this contribution is proportional to 1/

√
ρ and thus raises the

potential in regions with a lower electron density. A similar
mechanism is responsible for the increase of the magnetic
moments of Fe and Ni and the local magnetic moments of the
antiferromagnetic systems. Since only the density of electrons
with the same spin is of relevance in the TB-mBJ exchange
potential, the spin excess leads to a more attractive potential for
electrons with the same spin which in turn leads to an increase
of the spin excess and in effect to higher magnetic moments
for TB-mBJ. While this is an unwanted effect in the cases of
the ferromagnetic metals (Fe, Co, and Ni), here it turns out

FIG. 10. (Color online) The two contributions to the TB-mBJ
exchange potential (in Ry) in NiO in the (001) plane: (a) BR and (b)√

t/ρ. The positions of atoms are indicated in Fig. 8(f).
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TABLE IV. Band gap [eV], magnetic moments [μB ], and EFG
[1021 V m−2] of CuO as calculated by PBE and TB-mBJ with c = 1.41
[obtained from Eq. (5)] or the value of c [copt = 1.22] which leads to
perfect agreement with experiment for the band gap. The references
for the experimental values can be found in Ref. 60.

TB-mBJ

PBE c = 1.41 copt = 1.22 Expt.

Band gap 0.05 2.32 1.4 1.4
Cu magnetic moment 0.38 0.75 0.65 0.65
O magnetic moment 0.12 0.14 0.16 0.14
EFG −2.73 −13.31 −9.94 −7.8

to lead to magnetic moments in much better agreement with
experiment than using PBE (see Table III).

The PBE potential fails badly for YBa2Cu3O6 (the parent
compound of the high-Tc cuprate YBa2Cu3O7−x), which is
an antiferromagnetic insulator. PBE yields a metallic and
nonmagnetic ground state (Table III). In contrast, TB-mBJ
opens a gap almost as large as in experiment and also gives
a correct magnetic moment. In addition the electron density
is greatly improved by TB-mBJ as indicated by the EFGs.
PBE yields a somewhat too small EFG for the Cu1 site (for
definitions see Ref. 67), but in particular the EFG in the CuO2

plane (Cu2 site) is by more than a factor of two too small.
TB-mBJ repopulates slightly the Cu-3d-z2 at the expense of

FIG. 11. Band structures of the majority spin in EuO obtained by
different methods.

the 3d-(x2 − y2) orbitals and gives EFGs on both Cu sites in
perfect agreement with experiment. It should be noted that a
similar result can be obtained using LDA+U with a proper
choice of U .67

CuO is a system which is at first glance very similar to the
cuprates, but here the Cu2+ ions have a different O coordination
than in the high-Tc materials. An antiferromagnetic ground
state and a nonzero band gap are obtained with PBE, but
the values of the band gap and of the Cu magnetic moment
are by far too small (see Table III). As expected, TB-mBJ
increases the magnitude of the values, but now the band gap,
the magnetic moment, and the EFG are too large. Apparently,
the automatically determined value of c = 1.41 [Eq. (5)] is
too large. However, by considering the value of c which gives
the experimental band gap, copt = 1.22, not only the band
gap, but also the magnetic moments and the EFG are very
close to experiment (see Table IV). This indicates that it might
be useful to search for alternative possibilities to determine
self-consistently the value of c in Eq. (4). It should be noted
that for CuO also LDA+U (or hybrid-DFT calculations60)
yields good agreement with experiment only when U (or the
mixing factor α) is reduced compared to commonly accepted
values for Cu2+.

In the case of EuO both PBE and TB-mBJ give a metallic
state (Table III). Figure 11 shows the band structures of the
majority spin in EuO calculated with PBE, LDA+U with
U = 6.9 eV for the Eu-4f orbitals, and TB-mBJ with c

obtained from Eq. (5) or the value (c = copt = 1.97) which
leads to agreement with experiment for the band gap. The
choice of U is based on the linear response approach.68 All
four band structures place the seven spin-up Eu-4f states
just below the Fermi level, while the spin-down 4f states are
unoccupied. Analyzing the PBE band structure reveals that a
band at about 1 eV below the Fermi energy (minimum at −1.3
eV at the X-point) is responsible for the metallic character and
this band has predominantly Eu-5d character. The electron
density of the states at X near 0 and −1.3 eV are shown in

FIG. 12. (Color online) Spin-up electron density according to
PBE at the X-point for a state at −0.06 eV: (a) in the (011) plane (Eu
atoms on top and bottom and O atoms at the center) and (b) 3D image
with 0.03 e/bohr3 isosurface. Spin-up electron density for a state at
−1.3 eV: (c) in the (011) plane and (d) 3D image with 0.0084 e/bohr3

isosurface.
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FIG. 13. (Color online) Difference between the TB-mBJ XC
potentials (in Ry) obtained with c = 1.38 and c = copt = 1.97 in the
(011) plane of EuO.

Fig. 12, where we can see the strongly localized Eu-4f states
as well as the delocalized Eu-5d states. Obviously, for an
insulating state one has to shift the 5d band up with respect to
the 4f states. Standard TB-mBJ [i.e., c = 1.38 from Eq. (5)]
does this, but the effect is too weak and we still have an
overlap at the X point. In addition, TB-mBJ shifts the O-2p

states down by about 1 eV and narrows them significantly.
LDA+U with a fairly large U opens up a band gap, but it is
by far too small compared with experiment because the O-2p

bands come too close to the Eu-4f states. One would need
an additional U for the O-2p states to solve the problem. The
hybrid-DFT methods yield a band gap in EuO which is in
good agreement with experiment.69 As discussed above and
shown in Fig. 12, Eu-4f and -5d states have a very different
electron density and thus TB-mBJ should be effective, but
obviously the self-consistent value of c = 1.38 according to
Eq. (5) is too small. Similarly to the case of CuO we can
try to optimize c in Eq. (4), but in this case we need a larger
value of c (copt = 1.97) to reproduce the experimental gap [see
Fig. 11(d)]. The resulting shifts in the band structure can be
rationalized by plotting the difference between the TB-mBJ
potentials obtained with c = 1.38 and copt = 1.97 as shown in
Fig. 13. We see a negative potential around the O atom, which
is responsible for the downward shift of the O-2p bands and
a positive potential in the interstitial region, where the Eu-5d

states have their highest electron density. Again, it is the larger
positive

√
t/ρ term from Eq. (4) that is responsible for the

effect.
Overall, the performance of the TB-mBJ potential is

excellent for NiO and YBa2Cu3O6, but less good for CuO
and EuO, where smaller or larger values for c are required to
obtain agreement with experiment. It should be mentioned that
in a very similar way “nonstandard” values of U in a LDA+U

approach are required.

III. CONCLUSIONS AND SUMMARY

The merits and limits of the TB-mBJ potential have been
investigated using three groups of test cases: nonmagnetic

transition-metal oxides and sulfides, (ferromagnetic) metals,
and (anti)ferromagnetic insulators. The results in this study
confirm previous reports20,23,24,26–29 and show that the semilo-
cal TB-mBJ potential is able to yield highly accurate energy
band gaps in most semiconductors and insulators. It works
not only for the classical sp-type semiconductors, but also for
strongly correlated transition-metal compounds such as NiO.
The high accuracy and predictive power could be achieved by
determining a parameter c uniquely from the electron density
of the specific system [Eq. (5)]. Not only the band structure,
but also other properties such as the magnetic moment or
the electron density, can be accurately described by the
TB-mBJ potential. The method is computationally cheap and
its quantitative predictive power is often of similar quality (or
sometimes better) as much more sophisticated and expensive
methods (see also Ref. 37).

It has also been demonstrated why a semilocal, multi-
plicative potential such as TB-mBJ can increase the band
gap and the use of a nonlocal potential is not a necessary
condition. It comes from the fact that the electron density (and
the corresponding wave functions) of the VBM and CBM
are significantly different in their spatial orientation and thus
even a multiplicative potential can act differently on these
states. The most important ingredient in this respect is the
screening

√
t/ρ term in Eq. (4), whose contribution is adjusted

automatically by |∇ρ| /ρ by the use of Eq. (5). The
√

t/ρ term
leads to a more positive potential in regions with low density
and thus in general it increases the energy of unoccupied states.

However, we have also found and analyzed a few examples
for which this approach is not as accurate as desired. In almost
all cases one can fix the problem if one uses a different value
for c, but then one loses the predictive power. For most of the
problematic cases (EuO, but maybe also ZnO, TiO2, or ZrO2) a
value of c larger than the one calculated from Eq. (5) would be
desirable, but for CuO a smaller one yields better agreement
with experiment. This leaves some space for improvement
in the determination of c. It could be done via a different
density-related quantity, such as the reduced density gradient
(|∇ρ| /ρ4/3), or by involving the kinetic energy density t , or by
going to a more local determination of c instead of an integral
over the unit cell.

We have demonstrated that the use of TB-mBJ for metallic
systems seems possible but might be problematic, and in
particular for the ferromagnetic metals Fe, Co, and Ni, it
leads to, e.g., too large magnetic moments. Most likely, this
is due to an insufficient screening of the enhanced exchange
(Becke-Roussel) term by a correspondingly better correlation
contribution.

The only real problematic case found so far is Cu2O,
where the electron densities of the VBM and CBM extend in
very similar spatial regions, which means that a multiplicative
potential might never be able to solve this problem, while only
self-consistent GW 53 and hybrid functionals,70 which lead to
orbital-dependent potentials, can solve this problem.

ACKNOWLEDGMENTS

This work was supported by Project No. P20271-N17 and
the SFB-F41 (ViCoM) of the Austrian Science Fund.

195134-8



MERITS AND LIMITS OF THE MODIFIED BECKE- . . . PHYSICAL REVIEW B 83, 195134 (2011)

1W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
2P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
3J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).
4J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865
(1996); 78, 1396 (1997).
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