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We investigate the motion of an impurity particle injected with finite velocity into an interacting one-
dimensional quantum gas. Using large-scale numerical simulations based on matrix product states, we
observe and quantitatively analyze long-lived oscillations of the impurity momentum around a nonzero
saturation value, called quantum flutter. We show that the quantum flutter frequency is equal to the energy
difference between two branches of collective excitations of the model. We propose an explanation of the
finite saturation momentum of the impurity based on the properties of the edge of the excitation spectrum.
Our results indicate that quantum flutter exists away from integrability and provide parameter regions in
which it could be observed in experiments with ultracold atoms using currently available technology.
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Experiments with ultracold atomic systems have recently
realized different incarnations of quantum impurity prob-
lems in which a one-dimensional (1D) gas of particles pre-
pared in a particular state (background gas) interacts with a
single, distinguishable particle (impurity) [1–6]. The back-
ground gas exhibits properties that are special to 1D quan-
tum many-body systems [7–10]. Investigations of mobile
impurities have contributed to the understanding of various
phenomena in those systems, including the excitation spec-
trum and effective mass [11–14], orthogonality catastrophe
[15,16], logarithmic diffusion of Green’s functions [17,18],
persistence of threshold singularity in spectral functions
[19,20], its momentum-dependent power-law scaling
[17,21–25], and response to external confinement [26,27]
and to external driving [28–33].
In a recent theoretical work [34], a phenomenon called

quantum flutter was reported for an impurity injected with
finite momentum Q into a gas of free fermions or a gas of
Tonks-Girardeau bosons. It was found that the impurity
sheds only a part of its momentum to the background
gas, and forms a correlated state that no longer decays
in time. Furthermore, if Q is of the order of or larger than
the Fermi momentum kF, the momentum of the impurity
undergoes long-lived oscillations. Quantum flutter was
demonstrated by examining the full quantum-mechanical
evolution of the impurity state, obtained from the exact
Bethe ansatz solution, which exploits the integrability of
the model. Integrability implies the existence of an exten-
sive number of mutually commuting integrals of motion,
which strongly constrain the dynamics of a system
[7,35,36]. This raises the general question to what extent
qualitative results obtained for a particular integrable model
are universal. As a general rule, the low-energy dynamics

of 1D gapless quantum systems does not differ for inte-
grable and nonintegrable systems [8,9]. However, emerging
from the time evolution of a far-from-equilibrium initial
state, quantum flutter may be viewed as a particular case
of quench dynamics in a 1D many-body quantum system.
Equilibration after a quench could be model specific and
could reveal a vast amount of integrability-specific phe-
nomena [37–39]. Whether quantum flutter is an integrabil-
ity and model-specific phenomenon is an open problem,
whose analysis is especially desirable in view of potential
experiments envisioned along this direction.
In this Letter, we report numerical evidence of quantum

flutter in the dynamics of an impurity with arbitrary mass
injected into a 1D quantum gas of interacting bosons; see
Fig. 1. The model we use is integrable or nonintegrable
depending on the choice of parameters. We extract the
quantum flutter frequency ωf and the saturated impurity
momentum hP↓ð∞Þi from numerical simulations, for val-
ues of impurity mass and interaction strength which are

FIG. 1 (color online). Schematic illustration of the system. An
impurity atom (large blue sphere) moves with momentum hP↓ðtÞi
through a background gas of interacting bosonic atoms (small red
spheres). The shaded area illustrates an equipotential surface con-
fining the atomic motion to one dimension. Initially the back-
ground gas is prepared in its ground state, and the impurity is
injected as a plane wave with finite momentum hP↓ð0Þi ¼ Q.
The background particles interact with the impurity and with each
other through a repulsive δ-function potential of strengths γ and
γbg, respectively.
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accessible in current experiments with ultracold gases. We
propose an explanation of why hP↓ð∞Þi is nonzero, based
on the properties of the model at the edge of the excitation
spectrum. Moreover, for the integrable case we show that
ωf is related to the energy difference between two branches
of collective excitations of the system.
Model and numerical method.—The Hamiltonian of the

system schematically illustrated in Fig. 1 is

H ¼ Hbg þ
P2
↓

2m↓
þ g

XN

i¼1

δðxi − x↓Þ; (1)

where

Hbg ¼
XN

i¼1

P2
i

2m↑
þ gbg

X

1≤i<j≤N
δðxi − xjÞ: (2)

Here, xi (Pi;m↑) is the coordinate (momentum, mass) of
the ith background particle, i ¼ 1;…; N; and x↓ðP↓; m↓Þ
is that of the impurity. Throughout this Letter we set
ℏ ¼ 1. We are interested in the limit of large particle num-
ber, N → ∞, and system size, L → ∞, at a fixed back-
ground gas density, ρ↑ ¼ N=L. Momenta and time are
measured in units of Fermi momentum kF and Fermi time
tF, respectively:

kF ¼ πρ↑; tF ¼ 2m↑

k2F
: (3)

The dimensionless strength of the impurity-background
repulsion is γ ¼ m↑g=ρ↑ and background-background
repulsion is γbg ¼ m↑gbg=ρ↑.
The impurity is injected into the background gas in a

plane wave with momentum Q at time t ¼ 0, so that the
initial state of the system is

jinQi ¼ c†Q↓jbgi; (4)

where jbgi denotes the ground state of the background
gas (2). The initial state (4) evolves in time to
jinQðtÞi ¼ e−itHjinQi, where H is the Hamiltonian (1).
The total momentum of the system P↑ þ P↓, where
P↑ ¼ P

N
i¼1 Pi, is conserved. We are interested in the time

evolution of the impurity momentum

hP↓ðtÞi ¼ hinQðtÞjP↓jinQðtÞi: (5)

Exemplary plots for integrable and nonintegrable cases are
shown in Fig. 2. They share the following characteristic of
quantum flutter: after a rapid drop pronounced slowly
decaying oscillations develop, which saturate at a nonzero
value of the momentum.
We perform large-scale numerical simulations based on

matrix product states (MPS). To this end, we finely discre-
tize the Hamiltonian (1) and calculate the initial state jinQi
with the density matrix renormalization group [40,41].
The time evolution of the model is then obtained using

time-evolving block decimation (TEBD) [42,43]. We
push TEBD to its limits to perform high-accuracy simula-
tions. Specifically, the presented results are obtained for
systems with 400 or 600 sites with N ¼ 40 or N ¼ 60
particles and MPS bond dimension M ¼ 800 or M ¼ 600,
respectively. We verified that all of the results are represen-
tative for the continuum and do not depend on the
number of sites, number of particles, or the MPS bond
dimension.
Flutter frequency for integrable cases.—To elucidate the

origin of long-lived oscillations in hP↓ðtÞi, we compare
their periods for two integrable cases of model (1). Case
(a) is the limit of infinite repulsion between background
particles, γbg ¼ ∞ (known as a Tonks-Girardeau gas
[44,45]). It is this integrable case which has been used
to reveal the quantum flutter phenomenon through Bethe
ansatz and form-factor resummations in Ref. [34]. Case
(b) is a particular case of the bosonic Yang-Gaudin model,
γbg ¼ γ [36,46,47]. The data for the oscillation frequency
ωf are shown in Fig. 3. In case (a) we compare ωf obtained
from TEBD simulations with the one from Bethe ansatz
calculations of Ref. [34] and find good agreement, which
is a strong justification of the convergence of the TEBD
simulations [48]. In case (b) only data from TEBD are
available thus far. Our simulations demonstrate that oscil-
lations in hP↓ðtÞi develop when Q is of the order of or
larger than kF, their amplitude increases with Q, and the
frequency is independent of Q.

FIG. 2 (color online). Impurity momentum hP↓ðtÞi as a func-
tion of time. Red solid curve: γbg ¼ ∞ the integrable Tonks-
Girardeau model studied in Ref. [34]. Blue dashed curve:
γbg ¼ 12, the integrable bosonic Yang-Gaudin model. Black dot-
ted curve: γbg ¼ 4, a nonintegrable case. The initial momentum is
Q ¼ 1.16kF and the impurity-background coupling strength is
γ ¼ 12 for all curves. The masses of the impurity and the
background particles are equal, m↓ ¼ m↑. All curves exhibit a
rapid drop at short times followed by pronounced slowly
decaying oscillations around a finite saturation value of momen-
tum. We call the frequency of these oscillations the quantum
flutter frequency ωf.
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Our interpretation of quantum flutter exploits the structure
of the many-body excitation spectra of model (1), which we
show in Fig. 4. The plasmon spectrum is the lowest energy
excitation of the background gas (2) and follows from the
Bethe ansatz solution [49]. The magnon spectrum is the
lowest energy excitation of model (1) [50]. For γbg ¼ ∞ it
has been found inRef. [11], and for γbg ¼ γ it is given explic-
itly in, e.g., Refs. [13,25]. For nonintegrable cases the mag-
non spectrum is not yet known; however, techniques
proposed in Refs. [51,52] may be used to evaluate it. The
plasmon-magnon energy difference at the Fermimomentum

ωpm ¼ EpðkFÞ − EmðkFÞ (6)

is shown in Fig. 3. We find that

ωf ¼ ωpm (7)

within numerical accuracy. This striking observation has
the following intuitive explanation. Provided the impurity
is injected in the system with momentum Q ∼ kF, it forms,
after a few single-particle collisions, amany-body correlated
state with the background gas, which consists of a superpo-
sition of plasmon and magnon excitations at kF with nearly
zero group velocity. The energies of the plasmon and the
magnon relative to the zero-momentum ground state energy
of model (1) are EpðkFÞ and EmðkFÞ, respectively. It is pre-
cisely the evolution of that correlated state that determines
the frequency of quantum flutter. IfQ > kF, anymomentum
inexcessofkF iscarriedawaythroughanadditionallyemitted
wave packet. If Q < kF, the aforementioned state cannot
form, and the oscillations should not develop, which agrees
with our numerical observation.
Flutter frequency for nonintegrable cases.—We investi-

gate hP↓ðtÞi when model (1) deviates from integrability in
two different ways: first, γbg is changed while keeping γ
constant and, second, the mass of the impurity is changed
relatively to the mass of the background particles. We find
that quantum flutter persists in both cases. The flutter fre-
quency ωf decreases continuously with decreasing γbg,
Fig. 5(a). Note that the nonintegrable point γbg ¼ 20, which
lies between the two integrable points γbg ¼ ∞, red dia-
mond, and γbg ¼ γ, blue circle, also follows that trend.
One observes ωf > EpðkFÞ for γbg ¼ 4 and 5, which would
imply that EmðkFÞ < 0 if one assumes that Eq. (7) is valid.
However, for these background interaction strengths we
can only observe very few oscillations in hP↓ðtÞi with high
enough precision and ωf could contain a large systematic
error. In the mass-imbalanced case, we find a minimum in
the flutter frequency as a function of the mass ratiom↓=m↑,
Fig. 5(b). The smallest flutter frequency is obtained for
impurities that are slightly heavier than the background
gas particles. Only very few oscillations in hP↓ðtÞi are
accessible form↓=m↑ ¼ 0.5 which leads to the large uncer-
tainty of this data point.
Saturated momentum.—We now analyze hP↓ðtÞi in the

infinite time limit. Bethe ansatz calculations of Ref. [34]
and TEBD simulations reported in this Letter indicate that
the amplitude of the oscillations in the impurity momentum
slowly decays with increasing time. The momentum itself
saturates at some nonzero value hP↓ð∞Þi at infinite time;
see Figs. 5(c) and 5(d). The physical intuition behind the
finite value of hP↓ð∞Þi can be obtained when interpreting
the time evolution of the impurity as a sequence of collision
events. These events create excitations in the background
gas which carry away energy and momentum of the impu-
rity until it reaches a minimal energy state at some residual

FIG. 3 (color online). Quantum flutter frequency for the inte-
grable cases of model (1). Red circles: γbg ¼ ∞ TEBD simula-
tions. Black diamonds: γbg ¼ ∞ Bethe ansatz (BA) data from
Ref. [34]. Blue boxes: γbg ¼ γ TEBD simulations. Each data
point and its error bar is obtained by taking twice the distance
in time between all neighboring extrema of hP↓ðtÞi (exemplary
curves of which are shown in Fig. 2), converting them into
frequencies, and calculating their mean and standard deviation.
Solid (dashed) curve is the plasmon-magnon energy difference
ωpm for γbg ¼ ∞ (γbg ¼ γ) at momentum kF obtained from Bethe
ansatz.

(a) (b)

FIG. 4. Excitation spectrum. Plasmons are the lowest energy
excitations of the background gas (2). The plasmon dispersion
EpðkÞ is shown with dotted lines. Magnons are the lowest energy
excitations of model (1), i.e., background gas plus impurity. The
magnon dispersion EmðkÞ is shown with solid lines. Two inte-
grable cases are illustrated: (a) γbg ¼ ∞ and (b) γbg ¼ γ. The
curves are obtained from Bethe ansatz.
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momentum, i.e., a finite momentum magnon state, indi-
cated by the solid line in Fig. 4. A consistency check of this
proposed explanation is that the saturation momentum
should be less than themaximumpossible impuritymomen-
tum carried by a magnon state of finite momentum. To this
end, we examine the impurity momentum in the magnon
state jgsqi of model (1) with total momentum q. We trans-
formHamiltonian (1) to themobile impurity reference frame
[34] and get Hq ¼ Hbg þ ðq − P↑Þ2=2m↓ þ g

P
N
i¼1 δðxiÞ;

where Hq ¼ eiP↑x↓He−iP↑x↓ . Writing the magnon energy
of the model, EmðqÞ ¼ hgsqjHjgsqi, in the mobile impurity
reference frame and applying the Hellmann-Feynman
theorem, we find

hgsqjP↓jgsqi ¼ m↓vmðqÞ; (8)

where

vmðqÞ ¼
∂EmðkÞ

∂k
����
k¼q

(9)

is the group velocity of the magnon with momentum q.
Equation (8) shows that the impurity velocity (its momen-
tum divided by its mass) in the magnon state with

momentum q is equal to the magnon velocity at the same
momentum, vmðqÞ, which is defined solely by the
dispersion of the model.
The velocity vmðqÞ is an odd and 2kF-periodic function

of q with a maximum vmax ¼ maxqvmðqÞ at some q. We
calculated vmax for the integrable cases of model (1) and
found vmax ≤ kF=m↓ and that it vanishes as γ → ∞ or
γbg → 0. Comparing it with the estimate of hP↓ð∞Þi from
our TEBD simulations, we find numerical evidence that

hP↓ð∞Þi < m↓vmax: (10)

For which initial momenta Q, couplings γ and γbg, and
mass ratio m↓=m↑ Eq. (10) is valid is an important open
question. Answering it would clarify the physical intuition
that in the infinite time limit the impurity velocity is deter-
mined by the properties of the model near the edge of the
excitation spectrum, as is known for various other dynami-
cal quantities [17,18,24,25,23].
Summary.—Our analysis shows strong evidence for the

existence of quantum flutter away from integrability. The
complexity of the TEBD simulations, however, can grow
when deviating from the integrable points in parameter
space [53], which reduces the maximum time for which
the simulation is reliable. Furthermore, close to integrable
points the dynamics may resemble the integrable one for a
long period of time, a phenomenon first encountered in the
Fermi-Pasta-Ulam problem [54]. Quantifying closeness to
integrability in our model requires a separate study which
may help in the understanding of effective field theories, as
the one suggested for a different setup in Refs. [29,33,32].
Our simulations are ideally suited to model real experimen-
tal conditions. For example, the setup [55] consists of about
25 cesium atoms confined in 1D parabolic traps with longi-
tudinal frequency ∼2π × 15 Hz and highly tunable interac-
tion γbg. We checked that in this case for strong interactions
about 5 oscillation periods of hP↓ðtÞi should be observable
on experimentally accessible time scales.
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