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We present an implementation of the optimised effective potential (OEP) scheme for the exact-
exchange (EXX) and random phase approximation (RPA) energy functionals and apply these meth-
ods to a range of bulk materials. We calculate the Kohn-Sham (KS) potentials and the corresponding
band gaps and compare them to the potentials obtained by standard local density approximation
(LDA) calculations. The KS gaps increase upon going from the LDA to the OEP in the RPA and
finally to the OEP for EXX. This can be explained by the different depth of the potentials in the
bonding and interstitial regions. To obtain the true quasi-particle gaps the derivative discontinuities
or G0W0 corrections need to be added to the RPA-OEP KS gaps. The predicted G0W0@RPA-OEP
quasi-particle gaps are about 5% too large compared to the experimental values. However, com-
pared to G0W0 calculations based on local or semi-local functionals, where the errors vary between
different materials, we obtain a rather consistent description among all the materials. © 2014 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4863502]

I. INTRODUCTION

Kohn-Sham (KS) density functional theory (DFT) has
developed into a widely used scheme for the description and
prediction of materials properties. The central quantity in KS
DFT is the functional for the exchange-correlation (XC) en-
ergy (Exc) which includes all the electronic interactions be-
yond the Hartree term. It is now a well established fact that
even simple approximations for Exc based on the local elec-
tron density alone often give sufficiently accurate results and
this makes DFT so successful. However, functionals that are
based solely on the density, e.g., the local density approx-
imation (LDA), or the generalized gradient approximations
(GGA), cannot be easily systematically improved. In fact,
most of the recent development has focused on functionals
that include the KS orbitals and possibly their energies in the
energy functional, for example, meta-GGAs and hybrids. A
family of functionals that offers a route for systematic im-
provements are functionals based on perturbation theory, such
as the many-body perturbation theory (MBPT).1, 2 Here the
accuracy is increased by taking progressively more terms in
the perturbation series. The downside of such functionals is
that compared to the standard schemes the cost to evaluate
the energy is higher.

The second central quantity in the KS DFT scheme is
the XC potential vxc, defined as vxc(r) = δExc/δ�(r). The XC
potential is required if one wants to perform self-consistent
calculations, and it can be obtained rather straightforwardly
for the explicit functionals of the density. However, it is more
involved to obtain the potential for orbital dependent function-
als and δExc/δ�(r), performed with chain derivatives, leads to
the so-called optimized effective potential (OEP) equation.3

a)jiri.klimes@univie.ac.at

In the case when only the exchange interaction is included,
corresponding to the Hartree-Fock (HF) method, the OEP
equation was obtained by Sharp and Horton already in 19534

following the work of Slater5 who sought to find a common
local potential within the HF method. The equations have
been given later by other authors, who also realised that this
common local potential is the KS potential in the exchange
only case.6–9 Furthermore, this scheme, usually denoted as
exact-exchange OEP (EXX-OEP) or exchange-only OEP, has
been implemented for calculations of atoms, molecules, and
solids.10–21 As the correct asymptotic behavior (−1/r) of the
potential is obtained for finite systems, properties of inter-
est, such as electron affinities or ionisation potentials, tend
to be improved.12 Making approximations to the EXX-OEP
equations has also received considerable interest. Well known
is the Krieger-Li-Iafrate (KLI) approximation22, 23 and simi-
lar approaches,24–27 applied to both molecular and condensed
matter systems.28–31

There has been considerable interest to go beyond the
exchange only case, mostly when describing condensed mat-
ter systems where screening is important. Within MBPT this
is done by including progressively more electron interaction
terms in the perturbative series. A well known example is the
GW approximation for the electron self-energy, where the
electrons interact via a screened Coulomb interaction W . This
method is widely used to obtain quasi-particle energies. How-
ever, MBPT can be used to obtain total energies as well.32, 33

The MBPT energy functionals have received some interest re-
cently, and there are several publications that discuss in detail
the particular choice of the MBPT functional and self-energy
approximation and how these relate to KS DFT.2, 34–38 In fact,
the XC functional of the Kohn-Sham DFT can be simply
written using the MBPT expression for the electron-electron
interactions.1, 2, 39 For example, when the GW self-energy is

0021-9606/2014/140(5)/054516/13/$30.00 © 2014 AIP Publishing LLC140, 054516-1
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inserted into the MBPT energy functional of Klein,32 the so-
called random phase approximation (RPA) energy formula is
obtained. More specifically, the direct RPA is obtained, which
is usually derived from the adiabatic-connection fluctuation-
dissipation theorem.40–44 The OEP equation for this case, and
the general case when the self energy is non-local and energy
dependent, was derived by Sham and Schlüter who used the
fact that the KS and interacting densities should be identical.45

Thus within the MBPT formalism the OEP procedure for the
RPA energy functional involves the GW self-energy, and in
the following, we simply refer to this procedure as RPA-OEP.
Because of the complexity of the RPA-OEP scheme, it has
been applied only to few solid state systems so far,37, 46, 47

sometimes with approximations made to the correlated part
of self-energy.48, 49 There have been also numerous applica-
tions of OEP within RPA or MP2 energy functionals to atoms
or molecules.38, 50–59 In some of the publications, different
derivations of the OEP equation were given that – unlike the
one of Sham and Schlüter – do not involve the electronic self-
energy but rather rely on total energy expressions50, 59 or ex-
pressions for the electron density.58

One of the fundamental questions concerning the OEP
KS scheme is the magnitude of the true KS gap. It is
known that the experimental quasi-particle gap does not cor-
respond to the KS single particle gap since there is a deriva-
tive discontinuity in the potential (for the orbital dependent
functionals).45, 60, 61 Hence to obtain the quasi-particle gap one
usually resorts to MBPT and performs, e.g., GW calculations.
However, for semiconductors the EXX-OEP gaps are surpris-
ingly close to the experimental quasi-particle gaps, and one
was thus lead to believe that there is a physical reason for
this.11, 14 However, the agreement diminishes for systems with
a large gap.18 Furthermore, since only the exchange diagram
is used in EXX, the calculations will yield basically HF single
particle energies once the derivative discontinuity is added,
and the HF gap is known to be too large. Gaps closer to the
experiment are obtained for the RPA-OEP scheme with the
derivative discontinuity added.37, 46 Interestingly, it was found
that the single particle RPA-OEP gaps are rather close to LDA
gaps but this point has not been settled upon yet and to study
if and why these two gaps are close is one of the objectives of
this study.

In this work we study the KS potentials and gaps as
obtained with the EXX-OEP and RPA-OEP schemes. In
Sec. V A we discuss the band gaps and compare to previ-
ous EXX-OEP and RPA-OEP calculations. Interestingly, the
RPA-OEP and LDA gaps do not agree that closely. The RPA-
OEP one particle gaps are generally larger by several tenths of
an eV for semiconductors. A similar increase in the one parti-
cle gap is observed upon going from RPA-OEP to EXX-OEP.
In some cases, though, there are large differences between
LDA and RPA-OEP, for example, the RPA-OEP gap is almost
1 eV larger than the LDA gap for ZnO. Furthermore, we study
the differences between the EXX-OEP, RPA-OEP, and LDA
potentials in Sec. V C. We show that there are two main fac-
tors that lead to the differences in the gaps. First, the proper
treatment of self-interaction in EXX-OEP or RPA-OEP deep-
ens the potentials in the core and bonding regions compared
to LDA. Second, in the interstitial regions the EXX-OEP is

more repulsive than the RPA-OEP; this can be attributed to
the inclusion of response of the electron density in the GW

self-energy. Overall, this leads to the single-particle KS gaps
following the order LDA<RPA-OEP<EXX-OEP.

II. THEORY

In KS DFT the energy is obtained as a sum of the kinetic
energy of non-interacting electrons, interaction with the ionic
potential, the Hartree energy, and the XC term

EKS = Ts + Eext + EH + Exc . (1)

The KS potential for the last three terms is obtained by vari-
ation with respect to the electron density and serves to obtain
the KS states ϕi and single particle KS energies εi from the
KS equation

(−∇2/2 + vext + vH + vxc)|ϕi〉 = εi |ϕi〉 . (2)

The energy in MBPT can be obtained from energy function-
als such as the one of Klein32 or the one of Luttinger and
Ward.33 For example the energy functional of Klein evaluated
at a Green’s function G takes the form

EK = EH[G] + iTr
{
GG−1

H − 1 + ln(−G−1)
} − i�[G],

(3)

where GH is the Hartree Green’s function, Tr denotes the
trace, and the so-called � functional contains the perturba-
tive electron interaction terms.1, 2, 39 The Klein functional is
based on the Green’s function formalism and thus appears
quite different from the KS equation on first sight. However,
as discussed in detail in Ref. 2, the connection to KS DFT can
be made when the functional is evaluated for the KS Green’s
function G0. Since the KS Green’s function corresponds to ef-
fectively non-interacting electrons, Eq. (3) can be much sim-
plified, and one obtains an equation identical to the KS en-
ergy formula, Eq. (1), with the XC energy given by the �

functional, Exc = −i�[G0].1, 2, 39

The XC potential is obtained from the variation of the
� functional with respect to the density vxc = −iδ�[G0]/δ�.
This can be done with chain derivatives using the basic prop-
erty that �xc = δ�[G0]/δG0, and leads to the Sham-Schlüter
(SS) equation,1, 2, 8, 37, 45, 52

∫
dr′vxc(r′)

∫
dω

2π
G0(r, r′, ω)G(r′, r, ω)

=
∫

dr′
∫

dr′′
∫

dω

2π
G0(r, r′, ω)�xc(r′, r′′, ω)G(r′′, r, ω).

(4)

In practical implementations, the exact Green’s function is
replaced by the non-interacting (KS) one leading to the so-
called linearized Sham-Schlüter (LSS) equation.46 Then the
ω integration can be performed on the left-hand side of
Eq. (4) to obtain the independent particle response function
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χ0(r, r′). The LSS equation then reads

i

∫
dr′vxc(r′)χ0(r′, r)

=
∫

dr′
∫

dr′′
∫

dω

2π
G0(r, r′, ω)�xc(r′, r′′, ω)G0(r′′, r, ω).

(5)

The SS equation can also be obtained using the property that
the density of the interacting and reference KS system are the
same.45

The equation for the KS potential simplifies when only
the exchange term is included in the self-energy, correspond-
ing to the HF method. The exchange only self-energy is fre-
quency independent and reads

�x(r, r′) =
∑occ

n ϕn(r)ϕ∗
n(r′)

|r − r′| . (6)

When �x is inserted into the LSS equation, the ω integra-
tion can be performed analytically also on the right-hand side
leading to the EXX-OEP equation
∫

dr′vx(r′)χ0(r′, r) =
occ∑
i

unocc∑
a

∫
dr′

∫
dr′′ϕa(r)ϕ∗

a (r′)

×�x(r′, r′′)ϕi(r
′′)ϕ∗

i (r)
1

εi − εa

+ c.c..

(7)

The equation for the exchange potential can also be directly
obtained by performing a functional derivative of the energy
with respect to the electron density, that is, vx(r) = δEx

δ�(r) , as
shown, e.g., in Ref. 8.

The solution of the OEP equation even in the exchange
only case is still quite involved, but can be simplified by using
the orbital shifts as suggested by Kümmel and Perdew,62, 63

∑
i

ψ∗
i (r)ϕi(r) + c.c. = 0 , (8)

where ψ i is the linear response of the orbital i to the replace-
ment of the orbital dependent potential with the local one.23, 64

The equation then simply states that the response of the den-
sity to replacing the non-local HF potential by the local KS
potential must be zero.

The OEP equation can also be approximated in various
ways. Well-known approximations are the Krieger-Li-Iafrate
approximation and the local HF method (LHF) of Della Salla
and Görling. The first one is derived by setting the energy
difference to a constant in the denominator of Eq. (7). This
approximation gives the Slater potential vS plus a correction
term

vKLI(r) = vS(r) + 2

�(r)

occ∑
i �=m

ϕi(r)ϕi(r)〈ϕi |vx − vHF|ϕi〉 , (9)

where the highest energy occupied orbital m is not included
in the summation. The Slater potential can be written as

vS(r) = 2

�(r)

∫
dr′

|γ (r, r′)|2
|r − r′| , (10)

where γ (r, r′) = ∑occ
i ϕ∗

i (r)ϕi(r′) is the one particle electron
density matrix for one spin. In fact, similar approximations

can be made also for the GW self-energy as discussed by
Casida.1 The LHF was derived by imposing that the KS and
HF orbitals are identical and gives a similar correction

vLHF(r) = vS(r) + 2

�(r)

occ∑
ij

ϕi(r)ϕj (r)〈ϕj |vx − vHF|ϕi〉 .

(11)
Again, only occupied states are involved in the evaluation.
Moreover, the equation has the advantage that it is invariant
under unitary transformations among the occupied orbitals.

The OEP equation corresponding to the RPA total energy
functional is obtained when the corresponding self-energy, the
GW self-energy, is used in Eq. (5) for �xc. The GW self-
energy �GW is obtained from the KS Green’s function and a
dynamically screened Coulomb interaction W ,

�GW (r, r ′, ω)= i

4π

∫ ∞

−∞
dω′eiω′δG(r, r ′, ω + ω′)W (r, r ′, ω′),

(12)

where δ is a positive infinitesimal. This is similar to the HF
case, however, in the HF case the bare Coulomb interaction is
present and the frequency integration can be performed ana-
lytically leading to the self-energy given in Eq. (6).

The frequency dependence of �GW makes the solu-
tion of the OEP equation computationally rather involved.
To simplify the calculations, we approximate the full fre-
quency dependency of the GW self-energy by the self-
energy operator at the poles. This method is usually re-
ferred to as self-consistent Quasi-Particle GW approximation
(scQPGW ).65–67 The matrix elements are then given by

�
scQPGW
ij = 1

2
〈i|�∗

GW (εi) + �GW (εj )|j 〉 , (13)

where the first term is complex conjugated to make the self-
energy Hermitian, see Ref. 67. As usual, �GW (εi) means that
the self-energy is evaluated at the energy of the state i. This
leads to a considerable computational simplification of the
OEP equation, since the energy dependence of the self-energy
is effectively removed. The frequency is then present only in
the Green’s functions and the frequency integral can be per-
formed analytically in the same way as in the exchange-only
case. In fact, the approximate RPA-OEP equation is identical
to the EXX-OEP equation, Eq. (7), only the matrix elements
of the exchange-only self-energy, 〈i|�x|j〉, need to be replaced
by �

scQPGW
ij . We represent the quantities using a plane-wave

basis set so that the final equation for the RPA-OEP potential
reads

vxc(G) =
∑
G′

χ−1
0 (G,G′)

∑
a,i

〈a|eiG′r|i〉�
scQPGW
ia

εi − εa

+ c.c.,

(14)

where G and G′ are the wave vectors of the plane-wave ba-
sis set. We note that without the scQPGW approximation
the fully frequency dependent self-energy would be required,
while in the current case only the elements around εi and εj

are needed, see also Ref. 68.
Recently Bleiziffer et al.59 derived an OEP equation

for the (direct) RPA energy functional by performing the
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variation of the energy with respect to the orbitals and eigen-
values, which ultimately involves the variation of the response
function with respect to these properties. This approach then
avoids the MBPT route where the variation with respect to the
Green’s function is taken to obtain the Sham-Schlüter equa-
tion. In principle, this approach and the full Sham-Schlüter
equation should be equivalent, but the proof of this is beyond
the scope of the present work.

The fundamental or quasi-particle gap of the system is
obtained as the difference of the ionization potential and the
electron affinity Egap = I − A. These are the electron removal
and addition energies, respectively. For the orbital dependent
functionals, the gap is not given by the energy difference of
the eigenvalues of the single particle KS states but also in-
cludes a contribution of the derivative discontinuity 
xc in the
XC potential.45, 60, 61, 69 This is a consequence of the fact that
the energy functional, unlike in the, e.g., LDA case, is not
an explicit and differentiable functional of the electron den-
sity, as discussed recently by Yang et al.70 The close relation
between the quasi-particle correction and the derivative dis-
continuity leads to similar expressions for them. To obtain the
quasi-particle energy, the quasi-particle equation

ε
QP
i = 〈i| − ∇2/2 + vext + vH + �xc

(
ε

QP
i

)|i〉, (15)

is linearized and after substitution from Eq. (2) one obtains
the usual first order expression

ε
QP
i = εKS

i + Zi〈i|�xc
(
εKS
i

) − vxc|i〉 , (16)

where the renormalization factor Zi = (1 − Re〈i|
∂

∂ω
�(ω)|εKS

i
|i〉)−1 stems from the fact that the self-energy

should be evaluated at the quasi-particle energy and not at
the KS energy. For the derivative discontinuity, Niquet and
Gonze36 argued that the self-energy should be taken at the
KS single particle energy so that there is no renormalization
factor

ε

i = εKS

i + 〈i|�xc(εi) − vxc|i〉 . (17)

The final correction to the gap is then obtained by subtract-
ing the corrections to the two states between which the gap is
calculated


xc =εKS
i +〈i|�xc(εi)−vxc|i〉−εKS

j −〈j |�xc(εj ) − vxc|j 〉 ,

(18)
typically the orbital index i corresponds to the conduction
band minimum and j to the valence band maximum.

The subtle difference in the equations for the QP gap and
the true KS gap is caused by the use of the KS non-interacting
Green’s function, when the equation for the derivative dis-
continuity is derived, see, e.g., Ref. 71. More specifically, the
unoccupied state to which the electron is added is assumed
to have the energy of the KS unoccupied state. If the ex-
act Green’s function was used instead, the electron would be
added with the quasi-particle energy, that is, with the energy
given by Eq. (15). Then the renormalization factor would be
present in the formula for the derivative discontinuity in the
XC potential and the true KS gap would be identical to the
quasi-particle gap calculated from MBPT. This suggests that
the renormalization factor should be included. The use of the

renormalization factor to obtain 
xc is also supported by cal-
culations in Ref. 72, where the derivative discontinuity was
obtained for a two plane-wave model from the exact Green’s
function for that model system. Indeed, Eqs. (48) and (49) in
Ref. 72 are essentially the same as the standard equations for
the gap obtained from the MBPT approach, that is, includ-
ing the renormalization factor, which is the denominator of
Eq. (49) in Ref. 72. We will, nevertheless, report the gaps cal-
culated using both ε

QP
i and ε


i in this work.

III. COMPUTATIONAL SETUP

The calculations have been performed using the plane-
wave code VASP.73 The OEP routines use parts of the
Hartree-Fock and GW routines which were described
previously.68, 74–76 The one center terms of the projector
augmented-wave (PAW) method77, 78 are obtained using LHF
and kept fixed for subsequent EXX-OEP and RPA-OEP cal-
culations.

It is well-established that the properties obtained from
MBPT, such as the band gap correction, depend more
strongly on the technical parameters than the ground state KS
calculations.66 For example, the plane-wave basis set cut-off
EPW

cut , the cut-off employed for the response function E
χ
cut, the

number of bands included in the calculation of the response
function, and the number of k-points are important parame-
ters. For the OEP calculations we additionally need to control
the convergence with the size of the self-energy matrix which
is represented in a basis set of KS states.

The number of unoccupied bands Nbands used to obtain
the response function is an important parameter in the con-
vergence of the band gaps. The error decreases as 1/Nbands and
to reduce the errors we use all the unoccupied bands spanned
by the basis set for a given EPW

cut .79 Furthermore, the response
function and the screened interaction W are stored using a
plane-wave basis with an energy cut-off E

χ
cut. The number of

basis set functions Nχ is then proportional to (Eχ
cut)

(3/2) and
the error in the band gap corrections also decreases like 1/Nχ ,
similar to the convergence of the total energy observed in,
e.g., Ref. 80. To obtain converged results we perform a set
of calculations for several values of EPW

cut and consistently set
E

χ
cut = 2/3EPW

cut . Finally, we perform an extrapolation to the
infinite basis set limit by assuming that the error decreases as
(Eχ

cut)
−(3/2). Overall, our procedure is similar to the one used

in Ref. 81. We also note that a similar relation between E
χ
cut

and EPW
cut was used in Ref. 14, the basis set extrapolation was,

however, not performed in that study. An example of the con-
vergence for the �→X gap in diamond is shown in Figure 1
together with a linear fit to the data.

The data also depend on the number of k-points used;
we observed that increasing the number of k-points gener-
ally reduces the QP gap and increases the OEP gap. For ex-
ample, the �→X G0W0@RPA-OEP gap in Si changes from
1.28 eV to 1.35 eV upon increasing the k-point sampling from
4 × 4 × 4 to 8 × 8 × 8, when the same KS potential is used.
This convergence behavior is caused by the treatment of the
divergence of the Coulomb potential at the � point. While we
properly deal with the divergence in the potential, there are
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FIG. 1. Convergence of the G0W0@RPA-OEP band gap (red ×) and of the
KS gap with the derivative discontinuity correction (green +) for diamond
�→X transition. The data are plotted against the energy cut-off for the re-
sponse function to the power of −3/2 which corresponds to the inverse of the
number of basis functions used in the response function. The data are fitted
with a linear function which closely follows the data.

non-divergent regular terms that are not accounted for, lead-
ing to a residual error. This error is proportional to the volume
per k-point in the reciprocal space and, therefore, decreases as
1/N3

kpt, where Nkpt is the number of k-points in one direction,
see, e.g., Ref 66. To obtain results converged with respect to
the k-point sampling we extrapolate the results obtained for
the 4 × 4 × 4 and 6 × 6 × 6 k-point grids. This scheme is ac-
curate as observed by a calculation with an 8 × 8 × 8 k-point
grid for diamond. In many materials the convergence with the
basis set cut-off shows an opposite trend, both the QP and KS
gaps increase with increasing basis set.82 Therefore the usu-
ally employed small basis and k-point grids can lead to similar
results for the QP gaps as the data converged with respect to
both k-point sampling and basis-set completeness.

Another parameter that affects the results is the number
of KS states that are used to represent the self-energy matrix
in the OEP equation. While using more bands gives a higher
accuracy, it also increases the computational time. We there-
fore set the number of states such that an accuracy of about
0.01 eV in the QP band gap is obtained. We typically use 80 to
112 KS states. The number of iterations of the self-consistent
OEP procedure was set to 10 which also guarantees conver-
gence to better than 0.01 eV. Overall, we expect our values to
be converged typically well within 0.05 eV.

IV. MATERIALS AND PAW POTENTIALS

For the present study we considered a range of materi-
als, semiconductors, noble gas solids, and ionic solids. The
materials were studied at their experimental lattice parameter
and the cubic diamond or zinc blende structure was used for
the semiconductors. The PAW potentials used for the different
materials are given in Table I, these are generally the “GW”
type PAW potentials that include projectors at energies above
the vacuum level. For some materials we tested more poten-
tials and then more entries are shown. The spin-orbit coupling
was not included in the present calculations.

TABLE I. The PAW potentials used in this study using their names in the
VASP distribution. For some of the materials we obtained the results using
two different potentials for comparison. Second column gives the number of
valence electrons, third column lists the number of partial waves and projec-
tors for a given angular momentum (s, p, d, f). The local potential (fourth
column) is either a potential obtained for a high angular momentum (d, f) or
a truncated, pseudized all electron potential. In the latter case the cut-off ra-
dius for the local potential in a.u. is given in the table. The default plane-wave
basis cut-off is shown in the last column.

PAW potential No. of valence electrons Projectors Local Ecut (eV)

Al_sv_GW 11 3s 3p 2d f 411
Al_GW 3 2s 2p 2d f 241
Ar_GW 8 2s 2p 2d f 266
As_GW 5 2s 2p 1d f 209
As_d_GW 15 2s 2p 2d f 864
B 3 2s 2p d 319
C_GW 4 2s 2p d 414
F_GW_new 7 3s 3p 2d f 487
Ga_d_GW 13 2s 2p 3d f 405
Ge_d_GW 14 2s 2p 2d f 310
Ge_sv_GW 22 3s 3p 2d f 455
Li_sv_GW 3 3s 2p 1d 1.003 433
Mg_sv_GW 10 3s 3p 2d 1.204 430
N_GW 5 2s 2p d 421
Ne_GW 8 2s 2p d 318
O_GW 6 2s 2p d 414
O_GW_new 6 3s 3p 2d f 434
P_GW 5 2s 2p 2d f 255
Si_d_GW 4 2s 2p 2d f 246
Si_sv_GW 12 3s 3p 2d 1f 1.712 547
Zn_sv_GW(1f) 20 3s 3p 3d 1f f 499
Zn_sv_GW(2f) 20 3s 3p 3d 2f 1.206 496

V. RESULTS

A. Band gaps

We now discuss our results starting with the Kohn-Sham
and quasi-particle gaps as obtained with different methods.
The values extrapolated to an infinite number of k-points and
complete basis set are shown in Tables II and III. We com-
pare to experimental data and previous EXX-OEP calcula-
tions, where available. The minimal gaps are also compared
in Figure 2.

For the KS EXX-OEP gaps we can compare to the
data obtained with the all-electron full-potential linearized
augmented-plane-wave (FLAPW) method by Betzinger et al.
in Refs. 20 and 21. We generally find good agreement with
these results, for example, the difference for the gaps of no-
ble gas solids, Ge, or Si is around 0.05 eV. In the case of BN,
AlN, and SiC there is a larger difference for some of the gaps,
up to ∼0.3 eV, the smallest energy gap, however, differs in
all these cases by less than ∼0.1 eV. While our results are
generally in reasonable agreement with previously published
pseudopotential calculations, a direct comparison is often not
possible, since the published values usually include LDA cor-
relation, that we have not included here since our goal is to
include RPA correlation.

It turns out that the results within the current implemen-
tation are in some cases somewhat sensitive to the number of
valence electrons used in the PAW potential. For example, the
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TABLE II. Kohn-Sham and quasi-particle transition energies between the �-point and the indicated k-point compared to previous results (column “EXX
other”) and experimental reference where available. The “Z” scaling factor for the self-energy correction is included in the G0W0 column, while unscaled data
are shown in the “OEP+
xc” column for the RPA-OEP method. The PAW potential used to obtain the data is given in the PAW column and all the results have
been extrapolated with respect to the number of k-points and plane-wave basis set cut-off. All data in eV.

EXX RPA

Solid k-point PAW LDA OEP OEP other OEP+
x OEP G0W0 OEP+
xc Expt.

C � C_GW 5.54 6.20 6.21a 14.27 6.07 7.68 8.00 7.3b

L 8.38 9.07 9.09a 17.99 8.92 10.64 10.99
X 4.71 5.36 5.20a 12.90 5.00 6.43 6.70

Si � Si_d_GW 2.53 3.13 3.13a 8.52 2.69 3.32 3.52 3.05c

L 1.43 2.11 2.21a 7.16 1.60 2.23 2.42 2.4d

X 0.61 1.26 1.30a 6.02 0.73 1.37 1.56 1.25c

Si � Si_sv_GW 2.53 3.15 3.13a 8.53 2.69 3.33 3.54 3.05
L 1.43 2.29 2.21a 7.28 1.75 2.25 2.39 2.4
X 0.61 1.35 1.30a 6.04 0.80 1.38 1.54 1.25

SiC � Si_d_GW 6.35 7.50 7.18a 14.97 6.83 7.61 7.81
L C_GW 5.44 6.30 6.14a 13.60 5.83 6.88 7.14
X 1.31 2.39 2.29a 8.39 1.62 2.63 2.85 2.42e

BN � B_GW 8.69 9.84 9.80f 19.14 9.51 11.69 12.10
L N_GW 10.21 11.15 10.88f 20.50 10.76 12.56 12.92
X 4.35 5.57 5.42f 13.48 4.93 6.72 7.02 6.4g

AlN � Al_sv_GW 4.22 5.69 5.46f 13.27 4.85 6.31 6.65 5.93h

L N_GW 7.25 8.59 8.42f 16.97 7.94 9.76 10.16
X 3.23 4.84 4.77f 11.90 3.86 5.55 5.89 5.3h

GaN � Ga_d_GW 1.69 3.12 3.11f 9.86 2.17 3.21 3.45 3.30i

L N_GW 4.48 5.83 5.94f 13.51 5.05 6.39 6.68
X 3.25 4.67 4.61f 11.25 3.70 4.96 5.21

AlP � Al_GW 3.16 4.29 10.09 3.66 4.47 4.70
L P_GW 2.69 3.52 9.27 3.08 4.00 4.26
X 1.43 2.24 7.50 1.67 2.61 2.85 2.53j

AlP � Al_sv_GW 3.16 4.27 10.13 3.57 4.44 4.69
L P_GW 2.69 3.51 9.32 3.01 3.98 4.25
X 1.43 2.21 7.49 1.68 2.64 2.89 2.53j

AlAs � Al_GW 1.88 3.28 3.20k 8.40 2.47 3.20 3.39 3.13d

L As_GW 2.02 2.92 2.99k 8.17 2.38 3.18 3.40 2.57d

X 1.34 2.10 2.26k 7.08 1.48 2.31 2.55 2.23d

AlAs � Al_sv_GW 1.88 3.33 3.20k 8.47 2.57 3.24 3.43 3.13d

L As_GW 2.02 2.90 2.99k 8.26 2.31 3.20 3.45 2.57d

X 1.34 2.06 2.26k 7.10 1.46 2.38 2.63 2.23d

aReference 20.
bReference 83.
cReference 84.
dReference 85.
eReference 86.
fReference 21.
gReference 87.
hReference 88.
iReferences 89 and 90.
jReference 91.
kReference 15.

�→L gap of Si increases by about 0.18 eV when the 2s and
2p shells are included in the valence. Interestingly, the effect
of increasing the number of valence electrons for Al is much
smaller; we observe the largest change in the gap, 0.05 eV,
for the �→� transition of AlAs when the number of valence
electrons is increased from 3 to 11. The elements with d elec-
trons turn out to be the most problematic cases in this regard.
For GaAs, we found it necessary to include the 3d electrons
of As to obtain the direct gap as the lowest transition. For Ge,

the 3s, 3p, and 3d shells need to be included to obtain the
same energy ordering of the gaps as in the FLAPW calcula-
tions. Since this Ge potential possesses 22 valence electrons
and we had to use cut-offs between 350 eV and 500 eV for the
response function, the calculations are computationally rather
demanding even though the cell contains only two atoms.

When we compare the band gaps obtained within the KS
scheme, i.e., LDA, EXX-OEP, and RPA-OEP, we find that
for every material LDA predicts the smallest gap followed
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TABLE III. Same as Table II.

EXX RPA

Solid K-point PP LDA OEP OEP other OEP+
x OEP G0W0 OEP+
xc Expt.

Ge � Ge_d_GW − 0.14 1.14 1.24a 5.41 0.31 0.62 0.72 0.9b

L 0.07 0.88 0.89a 5.00 0.29 0.71 0.82 0.74b

X 0.67 1.20 1.15a 5.45 0.73 1.23 1.37 1.3c

Ge � Ge_sv_GW − 0.15 1.28 1.24a 5.76 0.50 0.98 1.11 0.9b

L 0.06 0.93 0.89a 5.19 0.38 0.88 1.02 0.74b

X 0.67 1.20 1.24a 5.51 0.72 1.28 1.44 1.3c

GaAs � Ga_d_GW 0.35 1.77 1.72a 6.55 0.87 1.42 1.57 1.52d

L As_d_GW 0.89 1.88 1.79a 6.65 1.15 1.81 1.99
X 1.36 2.07 1.95a 6.71 1.44 2.16 2.35

Ne � Ne_GW 11.43 14.69 14.79a 25.65 12.73 21.16 21.49 21.51e

L 17.13 20.45 20.49a 32.04 18.56 27.13 27.56
X 18.32 21.80 21.85a 32.60 19.78 28.01 28.39

Ar � Ar_GW 8.18 9.61 9.65a 18.12 8.93 13.96 14.48 14.15e

L 11.05 12.18 12.22a 21.46 11.67 17.13 17.72
X 10.85 12.05 12.08a 21.05 11.55 16.91 17.45

LiF � Li_sv_GW 8.94 11.33 22.04 10.21 15.19 15.75 14.20f

L F_GW_new 10.45 13.11 23.77 11.86 16.92 17.51
X 15.54 17.02 28.89 15.88 21.25 22.08

MgO � Mg_sv_GW 4.68 6.64 15.46 5.66 8.20 8.64 7.83g

L O_GW 7.76 9.70 18.84 8.71 11.52 12.00
X 8.91 10.89 19.79 9.76 12.70 13.16

ZnO � Zn_sv_GW(1f) 0.63 2.83 11.09 1.39 3.54 3.98 3.44h

L O_GW 5.33 7.34 17.03 6.05 8.75 9.30
X 5.13 7.52 15.64 6.01 8.15 8.56

ZnO � Zn_sv_GW(2f) 0.63 2.87 11.05 1.54 3.60 4.02 3.44h

L O_GW_new 5.33 7.40 17.00 6.20 8.77 9.29
X 5.13 7.49 15.56 6.09 8.19 8.59

aReference 20.
bReference 92.
cReference 85.
dReference 67.
eReference 93.
fReference 94.
gReference 95.
hData for wurtzite structure.

by RPA-OEP and EXX-OEP, which predicts the largest gaps.
This is true for all the data given in Tables II and III and can be
also seen in Figure 2. While LDA underestimates the gap con-
siderably, EXX-OEP data are quite close to the experimental
reference for gaps below ≈3.5 eV, as observed before.11, 14, 15

However, this agreement can be only accidental, and as the
band gap increases the agreement becomes worse.18 For ex-
ample, EXX-OEP predicts a gap of 14.69 eV for solid Ne
compared to the experimental value of 21.51 eV. Moreover,
there is no physical reason why the EXX-OEP gaps should
be similar to the experimental quasi-particle gaps. The agree-
ment must then be caused by an accidental cancellation be-
tween the correlation contribution to the OEP potential and
the derivative discontinuity. The true EXX gaps that include
the derivative discontinuity correspond to the HF energy lev-
els obtained with the EXX orbitals and are close to the HF
gaps, much larger than the EXX-OEP or experimental gaps.
We list the true EXX gaps in the “OEP+
x” column of
Tables II and III. The smaller RPA-OEP gaps compared to the
EXX-OEP values can be attributed to a smaller difference be-

tween the potential in the bond and interstitial regions and we
return to this point in more detail later. We note that Ge, which
is incorrectly described to be metallic within LDA, becomes a
semi-conductor in RPA-OEP or EXX-OEP. Betzinger et al.21

observed similar improvements for ScN and InN when going
from LDA to EXX-OEP and thus the EXX-OEP and RPA-
OEP schemes are likely to give a qualitatively better descrip-
tion also for other materials incorrectly predicted to be metal-
lic within LDA.

The property that should be compared to the experi-
mental data is the quasi-particle gaps (column “G0W0” in
Tables II and III). One can see from Tables II and III and
Figure 2 that the G0W0@RPA-OEP scheme predicts gaps in
relatively good agreement with the experimental reference.
Overall for semiconductors, a tendency to overestimate the
gap is observed with the exception of the materials contain-
ing Ga (GaN and GaAs) where the predicted gap is too small.
For GaN there is also another experimental value available for
the band gap,96 which is 0.1 eV lower than the data we com-
pare to, and here the agreement with our calculations would
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FIG. 2. The single particle and quasi-particle gaps for different materials
compared to experimental reference data. The Kohn-Sham single particle
gaps are shown for the LDA, EXX-OEP, and RPA-OEP methods. The quasi-
particle values based on RPA-OEP are shown both with the Z renormalization
factor, corresponding to G0W0@RPA-OEP, and without Z. (Note the double
logarithmic scale.)

be improved.89, 90 The errors are quite similar in the other
cases, for example, for AlAs, SiC, and AlP, materials with
a minimum gap of about 2.4 eV the error in the �→X gap is
∼0.2 eV. We observe ∼5% too large gaps also for the ionic
solids MgO and LiF while the gap is about 1–2% too low for
the noble gas solids Ne and Ar. The KS gaps including the
derivative discontinuity 
xc (column OEP+
xc in Tables II
and III), that are obtained when the renormalization factor is
not used, increase the predicted gaps, usually by several tenths
of an eV compared to the G0W0@RPA-OEP data.

We now compare our RPA-OEP calculations to the data
previously published, specifically to Ref. 37. While we find
good agreement for Ar and Si, our data are larger by at least
0.5 eV for LiF. This difference is larger than the differences
between the EXX-OEP data, which agree to about 0.1 eV.
It is difficult to pin down exactly the origin for the large
difference for LiF, we note, however, that the plasmon-pole
approximation for the dielectric function was employed in
Ref. 37. Moreover, the data in Ref. 37 are not fully converged
with respect to the k-point sampling and basis set size.

It is interesting to determine how the G0W0 results
change when the RPA-OEP single particle orbitals and ener-
gies are used as compared to the standard input based on local
or semi-local functionals. Comparing to data previously pub-
lished, we find that using RPA-OEP as an input leads to larger
values for the gaps, and tests for Si, C, and BN show that we
obtain values similar to self-consistent GW data, where the
single particle energies are updated in both the Green’s func-
tion and in the dielectric matrix, and which is known to over-
estimate the gaps.67 Actually, the standard G0W0 calculations
based on semi-local functionals exhibit two properties: (i) the
band gaps tend to be underestimated in general and (ii) the
errors in the gaps are not constant but depend on the qual-
ity of the DFT functional in describing the properties of the
materials. For example, it was observed that the errors in the
gap approximately follow the errors in the dielectric constant
ε. When the gap is more strongly underestimated, the screen-
ing (and ε) is overestimated and the QP corrections are too

TABLE IV. The RPA dielectric constants of solids as obtained with the
RPA-OEP procedure compared to the experimental values. A 6 × 6 × 6
k-point sampling was used to obtain the data.

Material εRPA-OEP εexpt.

C 5.25 5.70
BN 4.11 4.50
SiC 6.07 6.52
Si 10.87 11.90
AlP 6.99 7.54
GaN 5.03 5.30
Ge 14.67 16.2
ZnO 3.67 3.74
LiF 1.87 1.90
MgO 2.77 3.00

low.67 Our calculations show that RPA-OEP does not suffer
from the second point and the errors in ε are more consistent
between materials. Indeed, as shown in Table IV, the dielec-
tric constants are consistently underestimated. The screening
is then too weak and the G0W0@RPA-OEP gaps tend to be
too large. While we have obtained a consistent starting point
for the G0W0 calculations, there is little benefit in the final
absolute accuracy; one would have to go beyond the GW ap-
proximation to improve the agreement with the experiment.

Before closing this section, we discuss the case of ZnO
which is problematic since the LDA gap is very small and
the convergence of the quasi-particle gap is very slow with
the size of the basis set used.67, 97, 98 For the zinc-blende struc-
ture our calculations give an LDA gap of only 0.63 eV, while
it increases to 1.54 eV for RPA-OEP and again considerably
to 2.87 eV using the EXX-OEP method. This increase in the
KS gap leads to a better agreement of the dielectric constant
with the experimental data compared to the RPA value of
εRPA-PBE = 5.12 based on the Perdew-Burke-Ernzerhof XC
functional99 presented in Ref. 67. This improves the value of
the G0W0 gap which, after k-point and basis set extrapola-
tions, is 3.60 eV. Therefore, even for ZnO, the final error in
the gap is similar to the errors obtained for other semicon-
ductors or ionic solids. We note that performing only k-point
extrapolation (or using, say an 8 × 8 × 8 k-point grid) and
no basis-set extrapolation, as is the usual practice, would give
a value at least 0.15 eV lower. For ZnO the increase of the
gap relates to a better description of the 3d shell of Zn. The
3d electrons are moved to more negative binding energies in
the OEP procedure, which reduces the interaction between the
O p and Zn d electrons and concomitantly increases the gap
between the O p dominated valence band states and Zn s con-
duction band states. Although not quite as pronounced as for
ZnO, GaAs shows a similar behavior with a significant in-
crease of the KS gap from LDA to RPA-OEP.

B. Valence band widths

While the EXX-OEP band gaps are consistently larger
than RPA-OEP and LDA, a different situation occurs for the
valence band widths (VBWs). As shown in Table V, the
VBWs as obtained with EXX-OEP are generally narrower
than the RPA-OEP band widths, for example, the difference
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TABLE V. Valence band widths in eV for different materials as obtained
with the LDA, EXX-OEP, and RPA-OEP method. The values depend very
weakly on the cut-off and k-point sampling employed, hence we show the
data obtained for 6 × 6 × 6 k-points.

Material LDA RPA-OEP EXX-OEP

C 21.31 21.63 21.42
Si 11.96 11.90 11.66
Ge 12.81 12.70 12.44
GaAs 12.79 12.70 12.36
SiC 15.36 15.47 15.25
Ne 22.90 23.28 23.30
Ar 14.63 14.95 14.92

amounts to 0.21, 0.28, and 0.25 eV for C, Si, and Ge, re-
spectively. In the case of Ne and Ar, the two methods give
VBWs which are almost identical (to within 30 meV). This is
expected since screening in Ne and Ar is very weak and thus
the EXX-OEP potential is similar to the RPA-OEP potential.
For semiconductors the LDA and RPA-OEP VBWs are rather
similar and the EXX-OEP are smaller. Taking the VBW of Ge
as an example, the values obtained with LDA, RPA-OEP, and
EXX-OEP are 12.78, 12.69, and 12.44 eV, respectively. The
reduced VBWs in the EXX-OEP case have been attributed
to a more localized electron density.14, 15 The localization is
reduced in the RPA-OEP case, and the VBWs increase back
to a value similar to the LDA data. The k-point mesh has a
small effect on the KS values with the change in the EXX-
OEP VBW being larger (the change is 0.02 eV for EXX-OEP
and 0.005 eV for RPA-OEP for C when going from 4 × 4
× 4 to 6 × 6 × 6 k-point sampling).

In Table VI we compare our EXX-OEP band widths at �

with the results published previously for some materials.14–16

Generally we find good agreement with deviations on the or-
der of several tens of meV. We note that in some cases the
band width is somewhat dependent on the PAW potential em-
ployed. For example, the quoted value of 11.66 eV for Si has
been obtained with the Si potential with 12 valence electrons
as given in Table I. Taking only the 3s and 3p orbitals as va-
lence, the band width increases to 11.77 eV. The value with
12 valence electrons is, in fact, “technically” more accurate
and agrees well with previous calculations.

C. Potentials

We now discuss the differences between the local KS po-
tentials and densities obtained by the LDA, EXX-OEP, and

TABLE VI. EXX-OEP valence band widths in eV at � for different mate-
rials compared to previously published results.

Material This work Ref. 14 Ref. 15 Ref. 16

C 21.42 21.52 21.51 . . .
Si 11.66 11.58 11.58 11.47
Ge 12.44 12.48 12.46 12.43
GaAs 12.36 12.33 12.33 12.40
SiC 15.25 15.23 15.23 . . .
GaN 15.67 15.64 15.64 . . .
AlN 14.83 14.86 14.85 . . .

FIG. 3. Difference of the EXX-OEP and LDA local potentials (left) and the
RPA-OEP and LDA potentials (right) of diamond in the (01̄1) plane. Dark
color represents negative values (EXX-OEP or RPA-OEP potential more at-
tractive than LDA), positive values are shown with light colors. The contours
are drawn for integer values of the difference (in eV). Black dots indicate the
atomic positions. (Note that the potentials in OEP methods are only deter-
mined up to a constant shift.)

RPA-OEP methods. For semiconductors such a comparison
has been made before,11, 14, 15, 20, 46 and the main findings can
be summarized as follows: The EXX-OEP potential is more
attractive than the LDA potential in the bonds but more re-
pulsive in the interstitial regions. The LDA potential is more
spherically symmetric around the atoms, whereas the EXX-
OEP potential shows more radial structure. These differences
in the potentials are reflected also in the density, for example,
the EXX-OEP density is larger in the bond regions; this can be
attributed to the fact that EXX is one-electron self-interaction
free.

Our data share these main features discussed in previous
publications. For example, Fig. 3(a) shows a slice of the dif-
ference between the EXX-OEP potential and LDA potential
in the (01̄1) plane of diamond. The darker regions indicate a
deeper EXX-OEP potential, this can be seen for the bond re-
gion between two atoms (between the black dots). The EXX-
OEP potential is more repulsive in the interstitial regions,
as shown by light gray on the right-hand side of Fig. 3(a).
Figure 4 shows the potentials along the [111] direction
(shifted to coincide at the intersection of the bond and the
PAW atomic sphere). One can see that LDA gives smaller
difference than EXX-OEP in the potential between the bond
and interstitial regions. Moreover, the larger asymmetry of the
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FIG. 4. The local XC KS potential along the [111] direction in diamond
as obtained with LDA, EXX-OEP, and RPA-OEP schemes. The potentials
were shifted so that the values coincide at the intersection of the atomic PAW
sphere with the bond.
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EXX-OEP potential around the atoms compared to the LDA
potential can be clearly observed.

The RPA-OEP potentials and densities were compared to
the LDA results by Godby et al.46 Also there a deeper poten-
tial in the bonding region was observed and assumed to be
the origin of the larger RPA-OEP gap compared to LDA. The
difference of the RPA-OEP and LDA potentials for diamond
is shown in Fig. 3(b) and, on first sight, it is very similar to
the difference between EXX-OEP and LDA. However, there
is a significant difference in the interstitial region where the
RPA-OEP potential is more similar to the LDA potential. In
fact, as can be seen in Fig. 4, the RPA-OEP potential varies
very little in the interstitial regions, especially compared to the
EXX-OEP potential. This can be attributed to the fact that the
GW self-energy includes also the response of the surround-
ing electron density (at the RPA level), not accounted for in
the exchange-only case.35, 47, 52 When the differences between
the bonding and interstitial regions are compared, the EXX-
OEP is clearly less attractive in the interstitial region. As the
interstitial regions are dominated by unoccupied orbitals, the
higher EXX-OEP potential increases their energy relative to
the occupied states, which dominate the bonding regions. This
effect increases the KS gap of the system with EXX-OEP
compared to RPA-OEP. The differences in the EXX-OEP and
RPA-OEP potentials lead also to changes in the electronic
states. For example, as shown in Figure 5, the more repul-
sive EXX-OEP potential in the interstitial region (around 3 Å
in Figure 5) leads to a reduction of the charge density of the
state at the conduction band minimum. This increase of the
EXX-OEP potential compared to RPA-OEP in the interstitial
regions relative to the bonding regions is a general property
and we observe it for other systems as well.

We note that the differences in the valence densities ob-
tained from the LDA, EXX-OEP, and RPA-OEP potentials
are in qualitative agreement with densities obtained by LDA,
HF, Coulomb hold plus screened exchange (COHSEX), and
scQPGW in Ref. 100. Namely, the HF valence density is in-
creased in the bonding region, as it is with EXX-OEP com-
pared to LDA. The RPA-OEP, COHSEX, and scQPGW den-
sities in that region are in between the other two approaches.
In the interstitial region, the HF density is reduced. Also in
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FIG. 5. The electron charge density of the orbital at the valence band max-
imum (VB max, at �) and at the conduction band minimum (CB min, at X)
of diamond along the [111] direction as obtained by LDA, EXX-OEP, and
RPA-OEP.
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FIG. 6. The difference between the EXX-OEP, LDA, and HSE total valence
electron densities and the RPA-OEP valence electron density in diamond
along the [111] direction.

our case, the EXX-OEP densities are very similar to the self-
consistent HF densities, differing only around the cores be-
cause of the different one center terms.

It is interesting to ask how well do different function-
als describe the electron density. If we assume that the RPA-
OEP density is close to the exact one, we can use it as
a reference. As stated before, the LDA predicts a density
which is too low in the bonding region of, for example,
diamond. This is not unexpected since the strongly cova-
lent character of bonding is far from the uniform electron
gas limit and self-interaction errors are present in the LDA.
The usual approach to alleviate some of the self-interaction
error in the XC functional is to include a fraction of the
non-local Hartree-Fock-like potential, as done, for exam-
ple, in the Heyd-Scuseria-Ernzerhof (HSE) functional.101–103

However, the screening is quite weak in diamond and
the RPA-OEP density is close to the EXX-OEP density in
the bonding region, as shown in Fig. 6. Including 25% of the
exact-exchange, as done in the HSE functional, is not suffi-
cient to bring the HSE density much closer to the RPA-OEP
density. A different image appears for Si, where the screening
is stronger, consequently the RPA-OEP and EXX-OEP den-
sities differ more in the bonding region, see Fig. 7. In this
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FIG. 7. The difference between the EXX-OEP, LDA, and HSE total valence
electron densities and the RPA-OEP valence electron density in bulk Si along
the [111] direction.
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case the RPA-OEP density is closer to the LDA density than
to the EXX-OEP one and the recipe to use 25% of the exact-
exchange is quite successful as the HSE density is close to the
RPA-OEP one. Interestingly, HSE agrees well with RPA-OEP
for the description of the density in the interstitial regions of
Si, C, and of other systems, e.g., Ne (not shown).

VI. DISCUSSION AND CONCLUSIONS

We have presented results obtained within two OEP
schemes, the EXX-OEP which includes only the exchange di-
agram, and RPA-OEP (with the scQPGW self-energy) which
also includes RPA screening. Our main focus was to obtain
the KS potential and “band gaps,” both the single particle
Kohn-Sham gaps and the true gaps including the contribution
of the derivative discontinuity. Clearly, the contribution of the
derivative discontinuity to the band gap is large, usually be-
tween 20–50% for the RPA functional,37, 46 and therefore the
KS single particle gap is too small compared to the QP gap
observed experimentally. As stressed before, the agreement
of the EXX-OEP gaps with experimental data is merely ac-
cidental and does not hold for systems with an experimental
gap above approximately 3.5 eV.18 In fact, when the deriva-
tive discontinuity contribution is added to the EXX-OEP data,
the gap approaches the HF gap, known to be much too large.

A clear trend in the KS single particle gaps is observed
for all considered materials, the LDA gap is smaller than the
RPA-OEP one, and the EXX-OEP gap is the largest. This can
be explained from the variations in the local potentials, and
we show this schematically in Figure 8. We note that the OEP
potential can be obtained only up to a constant shift but the
differences in the potentials clearly show more attractive and
more repulsive regions. The LDA and RPA-OEP potentials
are similar in regions of low density, the RPA-OEP potential,
however, is more attractive in the bonding region where the
density of the valence band states is large. This lowers the
position of the valence band states and increases the gap com-
pared to LDA. While the EXX-OEP and RPA-OEP potentials
are similar in the bonding region, there are significant differ-
ences in the interstitial regions where RPA-OEP is more at-
tractive. As the interstitial regions are dominated by the con-
duction band states, the more repulsive EXX-OEP potential
increases the energy of the conduction band states so that the
EXX-OEP gap becomes even wider than the RPA-OEP gap.
The changes in the potentials are also reflected in the electron
density, leading, e.g., to an increase of the density of the di-

FIG. 8. A schematic illustration of the increase of the KS gaps between the
LDA, RPA-OEP, and EXX-OEP approaches. Blue and red denotes the va-
lence and conduction band states, respectively.

amond valence band maximum in the bonding region, shown
in Fig. 5.

The main subject of our work was the investigation of the
true final quasi-particle gaps, which can be compared to the
experimental fundamental gap, i.e., the difference between the
experimental electron affinity and ionization potential. To ob-
tain the theoretical prediction of the gap, two methods can be
used. First, the standard Green’s function approach, G0W0,
where the self-energy correction to the gap is renormalized
by a scaling factor Z that derives from the energy dependence
of the self-energy. Second, one can calculate the contribution
to the derivative discontinuity of the XC potential, which in
this case—as derived by Niquet and Gonze—differs from the
G0W0 expression by the lack of this Z renormalization fac-
tor. We prefer the standard G0W0 expression where Z is in-
cluded and which thus takes into account the energy depen-
dence of the self-energy. Moreover, as discussed previously,
the absence of the Z factor is, strictly speaking, not justified,
as also demonstrated by the two plane wave model calcula-
tions of Lannoo et al.72 Furthermore, the errors of the gaps
are quite large when Z is not included.

One can expect that the self-consistency introduced by
the OEP procedure will lead to a more consistent starting
point for the quasi-particle calculations, as compared to the
standard GGA or LDA input. This is indeed the case, and
we obtain similar errors for the gaps for all the materi-
als studied, including problematic cases, such as ZnO and
Ge. The only major drawback is that the G0W0@RPA-OEP
gaps are consistently larger than the experimental funda-
mental gaps. At first sight, this is hardly satisfactory, since
the computational cost of the method is about one order of
magnitude larger than for standard G0W0@PBE calculations.
And G0W0@PBE calculations in many cases yield seem-
ingly better agreement with experiment. When we compare
to other computational approaches, we note that recent re-
sults for GWTC−TC@HSE calculations (including a vertex in
the screening) also yielded consistently too large band gaps
that are, in fact, within about 0.1 eV of the present values.104

Compared to the GWTC−TC@HSE the present approach is
fairly cheap: evaluation of the electron-hole interaction in the
screening WTC−TC requires solving the Bethe-Salpeter equa-
tion, an order N5 step. This is prohibitively expensive for large
systems. Viewed from that perspective, the RPA-OEP method
seems to present a very convenient shortcut and certainly pro-
vides an excellent and concise starting point for subsequent
GW or RPA total energy calculations, without the need for
the expensive N5 Bethe-Salpeter step.

Since two quite different theoretical approaches yield
consistently too large gaps, one might ask whether the present
values are in fact not accurate. While there will be some con-
tribution from electron correlation diagrams not accounted
for here or in Ref. 104, e.g., electron-electron or hole-hole
ladders, the residual error might be related to the neglect of
the electron-phonon part of the electron self-energy, which
was not considered in this work or Ref. 104. In fact, it has
been shown that the electron-phonon interactions can affect
the value of the gap significantly; for example, a reduction
of ≈0.4 eV was obtained recently for the direct band gap
of diamond.105–107 Since our direct gap in diamond is also
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≈0.4 eV larger than the experimental value, accounting for
electron-phonon interactions would lead to a better agreement
with experiment. Interestingly, also the gaps of ionic materi-
als, in particular LiF, are overestimated in our calculations,
which might also be related to the electron-phonon contribu-
tions (see also Ref. 108). Thus to make a final judgment of
the quality of the band gaps of the G0W0@RPA-OEP scheme,
electron-phonon interactions should be accounted for. This is,
however, beyond the scope of the present work.
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