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The specialized exchange-correlation functionals of Wu and Cohen [Phys. Rev. B 73, 235116 (2006)] (WC)
and Hammer et al. [Phys. Rev. B 59, 7413 (1999)] [revised Perdew, Burke, and Ernzerhof (RPBE)] yield good
results for either the lattice constants of solids or the atomization energies of molecules, respectively, but are
rather poor for the opposite quantity. By combining the WC and RPBE functionals, we construct a functional
that performs equally well for both molecules and solids. Our proposed functional, which is still in the form
of the simple generalized gradient approximation, can thus be applied efficiently to systems that involve both
finite and infinite systems, a case that is crucial, for example, in heterogeneous catalysis studies. Therefore,
the chemisorption of CO on transition-metal surfaces was considered, and it is shown that our functional gives
improved results.
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I. INTRODUCTION

Density functional theory1,2 is the most widely used quan-
tum mechanical method for the calculation of the structural
and electronic properties of finite and infinite systems. Density
functional theory allows calculations on very large systems
(containing up to several thousand atoms), which is clearly not
possible with ab initio post Hartree-Fock methods. However, it
is necessary to choose an approximate functional to represent
the exchange-correlation energy since the exact functional is
unknown. For solids, the local density approximation (LDA)2

and the generalized gradient approximation (GGA) are the
most often used functionals. The GGA developed by Perdew,
Burke, and Ernzerhof (PBE)3 is considered to be the standard
one for solids. Recently, several new GGA functionals were
proposed,4–8 which (on average) improve, with respect to LDA
and PBE, the results for the lattice constants and bulk moduli of
solids (see also Refs. 8–12 for extensive tests). Unfortunately,
the improvement of the structural properties is accompanied
by a worsening of the thermochemical properties, e.g., the
cohesive energy of solids or the atomization energies of
molecules (see, e.g., Refs. 7 and 8).

The accuracy that can be reached with GGA functionals
is limited13 due to their rather simple mathematical form
(dependence on the electron density ρ and its derivative ∇ρ).
Currently, it is fashionable to work on higher rungs of Perdew’s
“Jacob’s ladder.”14 These include meta-GGAs (which ad-
ditionally depend on the kinetic energy density),15 hybrid
functionals16 (which mix a certain amount of exact exchange
with a GGA), or even more evolved schemes like the correla-
tion corrections within the random-phase approximation17,18

or Møller-Plesset perturbation theory.19 For molecules, hybrid
functionals are now the standard choice in calculations, but
for periodic solids they are still quite expensive, and their
accuracy for metallic and itinerant magnetic systems is low.20

On the other hand, meta-GGA functionals15 are very promising
for both geometries of solids and atomization energies of
molecules, but a self-consistent implementation of meta-GGA
functionals is not as straightforward as for GGA, which means
that forces, which are necessary for geometry optimization, are
not easily available. Therefore, it is very important for practical
applications of broad interest to find the best approximation

of the second rung of the Jacob’s ladder and to design a GGA
functional that performs as well as possible for solids and
molecules.

Concerning the lattice constants of solids and atomization
energies of molecules (the two representative properties
considered in this work), the trends observed with LDA and
GGA are the following: LDA clearly underestimates the lattice
constants and overestimates the atomization energies. The PBE
functional overestimates lattice constants (almost as much as
LDA underestimates them), but the atomization energies are
significantly less overestimated than in LDA. The new GGAs
[e.g., Wu and Cohen (WC)5 and PBE for solids (PBEsol)6],
yielding more accurate lattice constants, have an exchange
enhancement factor Fx(s) (see Sec. II for definition) that
increases more slowly with the reduced density gradient s than
PBE and thus is closer to LDA. Unfortunately, these “soft”
GGAs overestimate the atomization energies much more than
PBE. GGAs leading to more accurate atomization energies
are “stronger” than PBE [their enhancement factor Fx(s) rises
more rapidly than PBE], for example, revised PBE (RPBE).21

However, the “strong” GGAs largely overestimate lattice
constants (see, e.g., Ref. 22). Therefore, the PBE functional is
considered to be the best compromise for these two properties.

An attempt to construct a GGA that improves both
quantities was already made by Ruzsinszky et al.,23 who
constructed the second regularized gradient expansion (RGE2)
functional, whose enhancement factor is larger than that of
PBEsol for s > 1. It slightly improves the atomization energies
over PBEsol, but at the same time, the results for the structural
properties are less accurate. Overall, this functional does worse
than PBE for atomization energies and is only marginally better
than PBE for lattice constants.

In this work we will demonstrate that after a careful analysis
one can design a GGA functional that outperforms PBE for
both geometry of solids and atomization energy of molecules
and reaches an accuracy comparable to the recently proposed
meta-GGA functional of Perdew et al.15 We also applied it to
the famous problem of CO chemisorption on transition-metal
surfaces,24 where, so far, all tested GGAs fail badly either for
the adsorption energy or for the surface energy and calculations
based on the random-phase approximation (RPA)24 or a meta-
GGA functional25 could only recently break this trend.
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FIG. 1. (Color online) The s dependency of Fx for LDA and
various GGAs.

II. THEORY

We propose an exchange functional following a similar
strategy to that, e.g., in Ref. 4, which is based on the mixing
of two known functionals, namely, the RPBE21 and the WC5

functionals, which are among the most accurate GGAs for
the atomization energies of molecules and lattice constants of
solids,9,11 respectively. These two functionals have the same
correlation functional (the one from PBE) and differ only in
the exchange energy (which is one order of magnitude larger
than the correlation energy), which simplifies the analysis. A
GGA exchange functional can be characterized in terms of its
enhancement factor Fx(s), where s = |∇ρ| /[2(3π2)1/3ρ4/3]
is the reduced density gradient. The corresponding energy is
defined as

EGGA
x [ρ] = −3

4

(
3

π

)1/3 ∫
ρ4/3(r)Fx[s(r)]d3r. (1)

Figure 1 shows the RPBE and WC enhancement factors as
well as the LDA and PBE ones.

Now, we construct the following enhancement factor
F HTBS

x , which starts like WC for small s and recovers RPBE
at large s:

F HTBS
x (s) =

⎧⎪⎨
⎪⎩

F WC
x (s), s � s1,

FG
x (s), s1 < s � s2

F RPBE
x (s), s > s2,

, (2)

where, in a spirit similar to Ref. 4 (see also Swart et al.26),

FG
x (s) = G(s)F RPBE

x (s) + [1 − G(s)]F WC
x (s), (3)

with the following spline function:

G(s) =
6∑

i=1

ci(s1,s2)si−1, (4)

whose coefficients ci(s1,s2) are determined such that F HTBS
x

and the derivatives dF HTBS
x /ds and d2F HTBS

x /ds2 are con-
tinuous at s1 and s2. Figure 1 shows F HTBS

x with s1 = 0.6
and s2 = 2.6. When s1 and s2 tend to zero, RPBE results are
recovered, while for large s1, the WC results are obtained. Here
we search for values of s1 and s2 such that both the atomization
energies and lattice constants are optimal.

For this purpose, we considered for the lattice constants
the large test set of 60 solids that we used previously in
Refs. 8 and 11, while for the atomization energies, the
AE20 test set proposed by Kurth et al.27 was chosen. The
calculations for solids were performed with the WIEN2K

code,28 which solves the Kohn-Sham equations using the
full-potential (linearized) augmented plane-wave and local
orbitals method.29,30 The atomization energies of molecules
were calculated using the DEMON code,31 which uses Gaussian
basis sets.

III. RESULTS AND DISCUSSION

The calculations on the molecules and solids using the
enhancement factor F HTBS

x [Eq. (2)] for exchange and PBE
for correlation have been done for s1 ranging from 0 to 4.5 and
different values of �s = s2 − s1 ranging from 0.2 to 2. For
small �s values the rapidly increasing enhancement factor
leads to irregularities that are gone with �s = 2, a value we
fix.

Figure 2 shows the (often sigmoid) evolution of the relative
error of the atomization energies for several molecules of the
AE20 test set as a function of s1. For s1 < 0.4 the deviations
from the RPBE results are small, while in the region 0.5 <

s1 < 1.8 the errors often increase much more and a transition
from the good RPBE to the poor WC results is observed. For
even larger s1, only a small increase is observed, and for s1 > 4
the results remain essentially unchanged.

The opposite trend is observed in Fig. 3 for the relative
error of the lattice constants of solids. We see that for low
s1 we obtain large errors (up to 5.5% for NaCl) and a poor

FIG. 2. (Color online) The relative error of atomization energies
for a few selected molecules of the AE20 test set27 versus s1 (with
�s = 2).
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FIG. 3. (Color online) The relative error of lattice constants for a
few selected compounds of the 60-solids test set vs s1 (with �s = 2).

“RPBE-like” behavior. In general, increasing s1 reduces the er-
rors significantly, and the good “WC-like” behavior is obtained
at s1 = 2. This is to be expected since the largest value of s in
strongly bound solids is about 2 for Li (and slightly smaller for
other alkali solids), as was shown previously.32 Furthermore, it
was demonstrated that these large values of s occur in the core-
valence separation region, which is the “important region”
that determines the lattice constant of close-packed solids.
For more open structures like Si, there is a second important
region, namely, the large interstitial space where the tails of
the valence wave functions dominate, but in this region s also
remains below 1.5. The analysis given above explains why any
further increase of s1 does not change the results. When we
further analyze all 60 solids, we find that when we exclude
all compounds that contain group Ia elements, only s1 < 1
has an effect on the results. Furthermore, small s1 values may
even reduce the errors in some cases (see, for example, Ca in
Fig. 3).

From these results we can see that acceptable s1 values for
solids are at least larger than 0.5−2.0, while for molecules s1

should be below 0.5−1.0. In order to make these statements
quantitative we show in Fig. 4 the dependence of the mean
absolute relative error (MARE) of our functional for molecules
and solids versus s1. For the lattice constants (solid and
dotted lines, left axis) the MARE decreases with increasing
s1, whereas it increases for the atomization energies (dashed
curve, right axis). A balanced compromise is reached for
s1 = 0.6 (indicated by the dashed-dotted vertical line). For
the solids we show two curves, namely, the MARE for the
complete test set of 60 solids (dotted curve) and the one in
which we omitted all solids (eight cases) containing group
Ia elements (solid line). In particular, for the latter our new
HTBS functional achieves an outstanding performance for
both, molecules and solids (indicated by the squares), reaching
the good quality of the highly specialized WC (stars) and
RPBE (triangles) functionals where they work best. WC and
RPBE are the two extreme cases: none of them is able to
describe both quantities, atomization energies for molecules

FIG. 4. (Color online) The MARE of atomization energies for
the AE20 test set (dashed line, right axis) and the MARE of lattice
constants (left axis: solid line, 52 solids without solids containing
group Ia elements; dotted line, full 60-solids test set) vs s1 (with
�s = 2). The symbols indicate the errors of specific functionals:
triangles, RPBE; stars, WC; circles, PBE; and squares, HTBS.

and lattice constants for solids, with an acceptable accuracy,
although they are, by far, the best functionals for one of the two
properties. Obviously, PBE (its MARE is shown by circles)
is some compromise with intermediate errors for the two
quantities. However, since the errors are quite large, one could
also phrase it that PBE is “equally bad” for both quantities and
our HTBS functional performs much better.

The performance of the tested functionals for the atom-
ization energy of the 20 molecules and lattice constant and
bulk modulus of the 60 solids are shown in Tables I and II,
respectively. The relative errors of the lattice constants are
shown in Fig. 5, where for each functional the solids have
been ordered such that the relative error goes in the direction
of the positive values from bottom to top (in Fig. S1 of the
supplementary material33 the ordering is the same for each
functional). The values of the lattice constants and bulk moduli
can be found in Table SI of the supplementary material.33 For
the atomization energy of molecules all errors for the HTBS
functional are significantly smaller than for PBE and come
close to RPBE. As expected, the GGAs for solids namely,
WC,5 AM05 (Armiento and Mattsson4), and PBEsol,6 show
very poor performance for molecules. In order to check that
our conclusions for the atomization energy do not depend on
the testing set we also considered the test set of six molecules
(called AE6) proposed by Lynch and Truhlar,34 which was
shown to be a representative set of much larger test sets
of molecules. The results, shown in Table III, confirm our
statement that the HTBS functional performs as well as the
RPBE functional. Since the lattice constants and bulk moduli
of solids containing group Ia elements are not well described
by the HTBS functional (see above) and such cases are quite
overrepresented in the full data set, we present the statistics
for solids with (60 solids) and without group Ia elements (52
solids). Even for the full test set we note that our functional
is as good as PBE, and when we neglect cases with group Ia
elements, a similar performance as with the WC functional
can be achieved.
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FIG. 5. (Color online) Relative error (in %) in the calculated lattice constants a0 with respect to the experimental values (see Table SI of
the supplementary material33). For each functional, the solids have been ordered such that the relative error goes in the direction of the positive
values from bottom to top. Thus, in one row there might be different solids for each functional. The orderings are shown on the right.
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TABLE I. Atomization energy (in kcal/mol) for the molecules of
the AE20 test set. ME is the mean error (in kcal/mol), MAE is the
mean absolute error (in kcal/mol), MRE is the mean relative error (in
%), and MARE is the mean absolute relative error (in %).

Molecule RPBE PBE WC AM05 PBEsol HTBS Expt.

H2 105.6 104.7 104.0 111.2 106.6 105.1 109.5
LiH 53.5 53.6 52.9 56.7 54.8 52.2 57.8
OH 107.0 110.6 112.7 116.5 115.1 108.0 106.4
H2O 228.2 235.8 241.5 251.3 246.7 232.6 232.2
HF 138.5 143.1 147.2 153.8 150.2 142.6 140.8
Li2 20.9 20.6 20.2 20.2 21.2 20.7 24.4
LiF 133.5 139.2 142.4 144.1 143.7 134.6 138.9
Be2 8.5 10.4 11.3 10.0 11.7 8.8 3.0
CO 257.4 268.3 274.9 279.4 278.9 260.4 259.3
N2 231.3 241.7 244.4 245.1 248.4 225.8 228.5
O2 132.4 142.8 150.3 156.5 154.9 137.8 120.5
F2 43.4 51.2 57.5 62.3 60.5 49.2 38.5
P2 112.9 120.0 125.8 127.6 127.9 117.5 117.3
NO 161.1 171.3 176.3 179.0 180.4 161.0 152.9
NH3 294.4 302.9 307.2 317.1 313.9 294.9 297.4
Cl2 58.3 64.4 69.9 71.7 72.0 64.2 58.0
C2H2 399.3 413.8 421.9 430.7 429.0 401.7 405.4
C2H4 554.4 571.3 581.6 596.2 592.1 559.2 562.6
CH4 410.9 420.0 425.9 439.6 434.0 414.1 419.3
HCN 312.7 325.2 330.7 335.2 336.1 311.3 311.9
ME −1.0 6.3 10.7 16.0 14.7 0.9
MAE 4.5 7.6 12.2 16.5 15.6 4.5
MRE 8.5 16.1 20.6 21.8 23.6 10.8
MARE 12.8 18.9 23.7 23.7 25.7 14.5

As a real challenging test of our new functional, we
present in Fig. 6 the results of the chemisorption energies
Eads of CO on Rh and Pt(111) surfaces vs the corresponding
surface energies Eσ for several functionals. As demonstrated

TABLE II. Summary of the performance of functionals for the
lattice constant and bulk modulus of solids for two different test sets:
(a) with group Ia elements and (b) without them. See Table I for
the definitions of ME, MAE, MRE, and MARE. The values of the
lattice constants and bulk moduli can be found in Table SI of the
supplementary material.33

PBE WC HTBS

(a) (b) (a) (b) (a) (b)

Lattice constant
ME (Å) 0.049 0.045 −0.001 −0.005 0.041 0.012
MAE (Å) 0.054 0.050 0.029 0.028 0.054 0.028
MRE (%) 1.02 0.95 −0.06 −0.16 0.80 0.21
MARE (%) 1.15 1.07 0.64 0.63 1.16 0.62

Bulk modulus
ME (GPa) −2.2 −2.3 11.4 13.3 7.2 9.3
MAE (GPa) 12.8 14.4 14.8 16.9 14.7 15.9
MRE (%) −3.4 −3.2 4.9 6.3 −0.5 3.0
MARE (%) 9.5 9.8 9.1 9.6 12.0 10.3

TABLE III. Atomization energy (in kcal/mol) for the molecules
of the AE6 test set. See Table I for the definition of ME, MAE, MRE,
and MARE.

Molecule RPBE PBE WC AM05 PBEsol HTBS Expt.

SiH4 308.3 313.0 316.9 329.7 323.4 312.1 322.4
SiO 186.1 195.6 202.1 205.1 204.6 190.5 192.1
S2 107.7 114.7 121.1 122.8 123.2 114.4 101.7
C3H4 694.8 720.0 735.4 751.1 748.3 701.5 704.8
C2H2O2 633.0 663.3 682.9 697.0 695.5 643.9 633.4
C4H8 1128.1 1168.5 1195.8 1224.1 1218.9 1144.7 1149.0
ME −7.5 12.0 25.1 37.7 35.1 0.6
MAE 9.6 15.1 27.0 37.7 35.1 7.1
MRE −0.8 3.4 6.5 8.8 8.3 1.6
MARE 2.8 4.4 7.0 8.8 8.3 3.2

recently24 and also verified by our calculations, common
GGA results fall on a straight line. “Weaker” GGAs describe
well Eσ , while “stronger” GGAs yield good Eads, a situation
similar to atomization energies vs lattice constants. Clearly,
our HTBS functional breaks this trend. It retains the rather
good Eσ from WC but improves significantly on Eads to yield
results at least as good as PBE. Of course, the RPA results,24

which require two orders of magnitude more computational
effort (and are still non-self-consistent and for nonrelaxed
geometries), are still more accurate than HTBS. In a recent
study, Sun et al.25 have shown that the meta-GGA revised
Tao-Perdew-Staroverov-Scuseria (revTPSS)15 leads to results
for Eσ that are similar to LDA [which is the best semi(local)
functional for this quantity] and to results for Eads that are
close to PBE. Similarly to HTBS, revTPSS (which additionally
depends on the kinetic-energy density) represents overall an
improvement over common semilocal functionals.

In summary, a systematic analysis allowed us in the present
work to develop a GGA functional that competes in accuracy
with the best specialized GGAs for molecules and solids. This
gain in accuracy comes at the acceptable price of the functional
overestimating lattice constants of solids containing alkali

FIG. 6. (Color online) The chemisorption energy Eads of CO on
Rh and Pt(111) (for a 2 × 2 surface cell) vs the surface energy Eσ for
several GGA functionals. The RPA and experimental data are taken
from Ref. 24.
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atoms. We proved that this new GGA functional performs very
well for molecules and solids and is therefore very promising
for calculations on very large systems involving both finite and
infinite systems (e.g., heterogeneous catalysis).
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Nordström, Phys. Rev. B 64, 195134 (2001).

31M. E. Casida, C. Daul, A. Goursot, A. Koester, L. G. M. Pettersson,
E. Proynov, A. St-Amant, D. R. Salahub, S. Chrétien, H. Duarte, N.
Godbout, J. Guan, C. Jamorski, M. Leboeuf, V. Malkin, O. Malkina,
M. Nyberg, L. Pedocchi, F. Sim, and A. Vela, DEMON-KS Version
3.5, deMon Software, Montreal (Canada), 1998.

32P. Haas, F. Tran, P. Blaha, K. Schwarz, and R. Laskowski, Phys.
Rev. B 80, 195109 (2009).

33See supplemental material at [http://link.aps.org/supplemental/
10.1103/PhysRevB.83.205117] for values of the lattice constants
and bulk moduli.

34B. J. Lynch and D. G. Truhlar, J. Phys. Chem. A 107, 8996 (2003);
108, 1460 (2004).

205117-6

http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.78.1396
http://dx.doi.org/10.1103/PhysRevLett.80.890
http://dx.doi.org/10.1103/PhysRevLett.80.890
http://dx.doi.org/10.1103/PhysRevLett.80.891
http://dx.doi.org/10.1103/PhysRevLett.80.891
http://dx.doi.org/10.1103/PhysRevB.72.085108
http://dx.doi.org/10.1103/PhysRevB.72.085108
http://dx.doi.org/10.1103/PhysRevB.73.235116
http://dx.doi.org/10.1103/PhysRevB.78.197101
http://dx.doi.org/10.1103/PhysRevB.78.197102
http://dx.doi.org/10.1103/PhysRevLett.100.136406
http://dx.doi.org/10.1103/PhysRevLett.100.136406
http://dx.doi.org/10.1103/PhysRevLett.102.039902
http://dx.doi.org/10.1103/PhysRevLett.101.239701
http://dx.doi.org/10.1103/PhysRevLett.101.239702
http://dx.doi.org/10.1063/1.2912068
http://dx.doi.org/10.1103/PhysRevB.81.125136
http://dx.doi.org/10.1103/PhysRevB.75.115131
http://dx.doi.org/10.1103/PhysRevB.75.115131
http://dx.doi.org/10.1063/1.2835596
http://dx.doi.org/10.1103/PhysRevB.79.085104
http://dx.doi.org/10.1103/PhysRevB.79.209902
http://dx.doi.org/10.1103/PhysRevB.79.209902
http://dx.doi.org/10.1103/PhysRevB.79.155107
http://dx.doi.org/10.1103/PhysRevB.79.155107
http://dx.doi.org/10.1002/(SICI)1096-987X(19990115)20:1<63::AID-JCC8>3.0.CO;2-A
http://dx.doi.org/10.1063/1.1904565
http://dx.doi.org/10.1103/PhysRevLett.103.026403
http://dx.doi.org/10.1063/1.464913
http://dx.doi.org/10.1103/PhysRevLett.103.056401
http://dx.doi.org/10.1103/PhysRevB.80.045402
http://dx.doi.org/10.1103/PhysRevB.80.045402
http://dx.doi.org/10.1063/1.3126249
http://dx.doi.org/10.1063/1.3126249
http://dx.doi.org/10.1063/1.2187006
http://dx.doi.org/10.1063/1.2403866
http://dx.doi.org/10.1063/1.2403866
http://dx.doi.org/10.1103/PhysRevB.59.7413
http://dx.doi.org/10.1103/PhysRevB.59.7413
http://dx.doi.org/10.1103/PhysRevB.75.195108
http://dx.doi.org/10.1021/ct8005369
http://dx.doi.org/10.1021/ct8005369
http://dx.doi.org/10.1038/nmat2806
http://dx.doi.org/10.1103/PhysRevB.83.121410
http://dx.doi.org/10.1063/1.3213193
http://dx.doi.org/10.1063/1.3213193
http://dx.doi.org/10.1002/(SICI)1097-461X(1999)75:4/5<889::AID-QUA54>3.0.CO;2-8
http://dx.doi.org/10.1002/(SICI)1097-461X(1999)75:4/5<889::AID-QUA54>3.0.CO;2-8
http://dx.doi.org/10.1103/PhysRevB.64.195134
http://dx.doi.org/10.1103/PhysRevB.80.195109
http://dx.doi.org/10.1103/PhysRevB.80.195109
http://link.aps.org/supplemental/10.1103/PhysRevB.83.205117
http://link.aps.org/supplemental/10.1103/PhysRevB.83.205117
http://dx.doi.org/10.1021/jp035287b
http://dx.doi.org/10.1021/jp0379190

