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Neural networks for local structure detection in polymorphic systems
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(Received 12 July 2013; accepted 26 September 2013; published online 23 October 2013)

The accurate identification and classification of local ordered and disordered structures is an im-
portant task in atomistic computer simulations. Here, we demonstrate that properly trained artificial
neural networks can be used for this purpose. Based on a neural network approach recently developed
for the calculation of energies and forces, the proposed method recognizes local atomic arrangements
from a set of symmetry functions that characterize the environment around a given atom. The algo-
rithm is simple and flexible and it does not rely on the definition of a reference frame. Using the
Lennard-Jones system as well as liquid water and ice as illustrative examples, we show that the neu-
ral networks developed here detect amorphous and crystalline structures with high accuracy even in
the case of complex atomic arrangements, for which conventional structure detection approaches are
unreliable. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4825111]

. INTRODUCTION

Atomistic simulations carried out on high perfor-
mance computers provide a wealth of detailed information on
condensed matter processes. While visualization of these pro-
cesses using computer graphics can yield important insights
and stimulate our imagination, a true understanding of the un-
derlying physical mechanisms requires a quantitative and au-
tomated analysis of the generated data. Such an analysis often
involves the detection of particular atomistic structures based
on their local environment. In the simulation of the crystal-
lization of a supercooled liquid, for instance, it is necessary to
differentiate between atoms that are part of the growing crys-
tal and atoms that belong to the liquid. Similarly, in studying
the microscopic mechanism of structural phase transitions it
is crucial to be able to tell apart different crystal structures on
a local level. Also when one investigates the structure and dy-
namics of defects in solids it is necessary to recognize partic-
ular atomic arrangements and to follow their motion in time.
The ability to distinguish and classify local atomistic struc-
tures is not only important to analyze the output of computer
simulation a posteriori, but also to steer computer simulations
towards interesting regions of configuration space using bias-
ing schemes such as umbrella sampling'-? or metadynamics?
and to define long-lived states in path sampling
simulations.*> Furthermore, automatic local structure detec-
tion schemes are also useful for the analysis of experimental
data obtained with high resolution imaging techniques.®

Computational methods for structure recognition are usu-
ally formulated in terms of order parameters that, ideally, sat-
isfy several important criteria: (a) For a given phase, the or-
der parameter should include all configurations belonging to
that phase and exclude all others (avoiding mis-assignments is
particularly important, if the order parameter is used to drive
a transition); (b) structures should be assigned accurately not
only in a perfect crystal, but also in the presence of thermal
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fluctuations or mechanical distortions; (c) the order parameter
should be local with a well defined and controllable sensitivity
region; (d) the order parameter should also be local in time,
i.e., no time averaging should be required; (e) the order pa-
rameter should be able to distinguish all stable and metastable
phases of a material over a wide range of conditions across the
phase diagram; (f) the method should recognize defect struc-
tures, for instance arising from imperfect crystallization, and
structures forming at surfaces and interfaces; (g) the order pa-
rameter should be invariant with respect to global rotations
and translations as well as to permutations of identical atoms;
(h) the method should be flexible such that it can be easily
adapted to work for other substances or unexpected phases;
(i) finally, the method should be computationally inexpensive
and easy to implement.

During the past decades several computational ap-
proaches have been developed for automatic structure detec-
tion, which fulfill some but not all of the criteria specified
above. In the common neighbor analysis (CNA) method, orig-
inally developed to distinguish emerging structures in freez-
ing Lennard-Jones clusters’ and later used to detect crys-
talline regions as well as defects in various systems,®° lo-
cal structures of individual atoms are assigned based on an
analysis of the environment shared by neighboring atoms. In
the centro-symmetric deviation method (CSD), introduced to
study the nucleation and motion of dislocations in centro-
symmetric materials such as fcc-metals,'? the local distortion
caused by defects is assessed by computing a parameter sen-
sitive to the angle formed by opposite bond vectors. A similar,
but more general approach is followed in the bond angle dis-
tribution method (BAD), in which the distribution of angles
formed by nearest neighbor bonds is used as characteristic
feature to distinguish different crystal structures.!! The most
versatile (and currently most popular) class of methods for
local structure recognition are, however, based on the Stein-
hardt local bond order parameters.'>~! In this approach, ex-
plained in more detail later in the paper, the particular sym-
metries of local structures are picked up by combinations of
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spherical harmonics that are made invariant against rotations,
translations, and permutations of identical particles and serve
as characteristic structural fingerprints for different ordered
and disordered structures.

While the methods mentioned in the previous paragraph
have been successfully applied to a variety of problems, they
often yield unreliable results particularly for complex open
structures and in the presence of elastic deformations and
thermal fluctuations. For instance, it is notoriously difficult
to distinguish local configurations of liquid water and of the
various forms of crystalline and amorphous ice.'® The ability
to do that, however, is needed to study the nucleation of ice in
supercooled water. As discussed by Brukhno et al.,'” standard
Steinhardt bond order parameters are ineffective in detecting
hexagonal and cubic ice because oxygen atoms with differ-
ent tetrahedral hydrogen bonding patterns occur. To resolve
this issue, these authors have introduced the maximum pro-
jection method, which is capable of distinguishing between
liquid water and hexagonal and cubic ice, albeit at the price of
introducing a preferred direction and thus breaking rotational
invariance. As a remedy to this situation, Reinhardt et al.'®
suggested a parameter based on particular Steinhardt bond or-
der parameters and used it to drive nucleation of ice in super-
cooled water. In these simulations it proved necessary to ex-
plicitly remove unphysical chain structures that were forced
on the system by a bias on the order parameter. Another or-
der parameter to distinguish liquid water from hexagonal and
cubic ice was developed by Chau and Hardwick'®?° based
on detecting local tetrahedral structures. Recently, Sanz et al.
demonstrated®! that the averaged bond order parameters g
and g suggested by Lechner and Dellago' can be used to
distinguish liquid water, hexagonal ice Ih, and cubic ice Ic
from each other. None of the order parameters developed so
far for water and ice, however, are capable of discriminating
between all phases of ice and liquid water.

Here, we treat the assignment of local structures as a
pattern recognition problem that can be addressed with ma-
chine learning algorithms. We show how an appropriately
trained neural network can be used to accurately detect lo-
cal ordered structures and demonstrate the practical applica-
bility of the algorithm by distinguishing the different phases
of the Lennard-Jones system and of water in a broad range
of conditions. Our approach is inspired by the neural network
based method for representing potential energy surfaces for
condensed matter systems recently developed by Behler and
Parrinello.””? In this method, the total energy of the system
is written as a sum of local contributions, each of which is
determined by applying a neural network to a set of numbers
characterizing the local environment of individual atoms. The
structural fingerprints used as input for the neural network
are provided by a collection of symmetry functions that are
sensitive to distances and angles in a small region around the
central atom and are furthermore invariant with respect to ro-
tations, translations and permutations. In our neural network
for structure recognition, we use similar symmetry functions
but they are sensitive only to the positions of the atoms in
a small and well defined region around a given atom. When
properly trained using configurations with known structures,
the neural network succeeds in recognizing structures even
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in polymorphic systems with rich phase diagrams, for which
conventional structure assignment methods fail. The method
proposed here is flexible and can easily be adapted to a variety
of substances.

The remainder of this article is organized as follows. In
Sec. II, we introduce the method and explain in detail how the
neural network is constructed and trained. The neural network
is then applied to two test cases in Sec. III. We first use it to
distinguish the various structures in the Lennard-Jones sys-
tem and compare the performance of the neural network with
that of Steinhardt bond order parameters. After that, we ap-
ply the neural network to the more challenging problem of
distinguishing various phases of liquid water and ice over
wide ranges of pressures and temperatures. Using the neural
network, we compute the free energy for the nucleation of an
ice crystal in supercooled water. A discussion of the strengths
and limitations of the method is provided in Sec. IV.

Il. NEURAL NETWORK FOR STRUCTURE
RECOGNITION

Our approach for assigning local structures is based on
the neural network method for energy and force calculations
recently put forward by Behler and Parrinello.?>?? In this
method, which provides the accuracy of density functional
theory at a fraction of its cost, the total energy of the system
is expressed as a sum of contributions from local regions cen-
tered around individual atoms. Each region is characterized
by a set of generalized coordinates, called symmetry func-
tions, which are functions of the atomic coordinates and serve
as input for a feed-forward neural network. Based on these
structural fingerprints, the neural network then predicts the
local energy contribution of each atom, essentially by inter-
polation. Here, we adopt this approach and use the informa-
tion encoded in the symmetry functions to detect local atomic
structures. In Secs. II A-II D, we first describe the neural net-
work, then discuss the definition of the symmetry functions,
which are designed to be sensitive to the local environment of
a given atom, and finally explain how the neural network is
trained.

A. Feed-forward neural network

A neural network can be viewed as a complex nonlin-
ear (scalar- or vector-valued) function that depends on a set
of input variables and a possibly very large set of parameters,
which can be tuned to obtain the desired behavior. Inspired
by systems of biological neurons such as the brain, the ba-
sic concept of a neural network is depicted in Fig. 1. A feed-
forward network such as the one used in our work consists
of three parts: The input neurons, one or more calculation
layers, and the output nodes. The input interface receives the
external information and corresponds to the part of a biolog-
ical neural network in which sensory stimuli are converted
into signals. The information is then passed to the calculation
layers, where the input signals are weighted and processed.
The last part of the neural network is the output interface,
where the final data processing step occurs and the informa-
tion is converted into the desired output form. The size and
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FIG. 1. Four layer feed-forward neural network with / x H x H x O topol-
ogy for local structure identification. Here, I, H, and O refer to the number of
neurons in the input layer, the hidden layers and the output layer, respectively.
For a given configuration r, depicted schematically on the left hand side with
the central atom shown in yellow, a set of symmetry functions {G,(r)} is com-
puted. These symmetry functions serve as input for the first layer of the neural
network, from which the data are passed to the hidden layers. Each neuron,
or node, in the calculation layers takes the values of the neurons of the previ-
ous layer, as indicate by the black arrows, and performs a weighted sum over
them. The weights, assigned during the training phase, define the relative im-
portance of the connections between neuron pairs. After the sum is formed,
a bias is added to the value of each neuron as indicated by the red arrows.
Also the bias values are determined during the training of the network. For
each node, the result is then fed into an activation function, which determines
how active a neuron is, i.e., how much it contributes to the output. Finally, the
output layer converts the processed information into a vector in which each
component signals the occurrence of one of the possible structures.

topology of a neural network is specified using the notation
I x H x H x O, where I, H, and O denote the number of
nodes in the input, hidden, and output layers, respectively.

Based on this network topology, the structure recogni-
tion works as follows. Consider a given system configuration
r={ri, r,..., ry} consisting of the Cartesian coordinates of
all N atoms. For simplicity we assume that there is only one
atom species in the system, but we emphasize that the method
can easily be generalized to more atom species. To determine
the local structure around atom 7 one first computes a set of /
symmetry functions {Gl[’](r)}, which depend on the Cartesian
coordinates of the atoms in the vicinity of atom i. The symme-
try functions, explained in detail below, are designed to char-
acterize the local environment of a given atom. The symmetry
functions are then turned over to the first layer, where for each
of the neurons of this layer a weighted sum, ), wf,}l) G, over
the input (i.e., the symmetry functions) is computed. Here, the
synaptic weight wml,) connects the input neuron / with the neu-
ron m of the first hidden layer. Each sum is then shifted by a
bias (or threshold) 5D and then passed through an activation
function ¢(x), thus yielding the output of the first hidden layer
of neurons,

1
al’ =Y wl)G+b) ). (1)
=1

The output of the first hidden layer is then propagated to the
second hidden layer and processed in a similar way using the
weights w2) and biases b2,

H
2, 2) (1 2
o = o (S wla +52). ®
m=1
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Finally, the output of the neural network, given in form of
the vector y = {y1, ¥2,..., Yo} of O components, is obtained
by carrying out another set of weighted sums, shifting them
by the biases bf) and feeding the results into the activation
function @,

H
Vo=@ Z wfn)a,(lz) + bf) . 3)
n=1

While we use the hyperbolic tangent as activation function for
all neurons in the hidden layer, ¢(x) = tanh (x), the identity
function @(x) = x is employed as an activation function for
the output neurons. This choice of activation functions was
found to work well in the case of the neural networks for en-
ergy computation.?* The output vector y has one component
for each of the O possible structures the network is trained to
recognize. If the network detects structure i, component y; is
large, while all other components are small. The complete ac-
tion of the neural network on the symmetry functions G; can
be written as

~ 3 2
=9 whe D whne
n m

Z wr(r:l)Gl + b;,})
!

+b32 )+ ). )

Due to the form of the activation function ¢(x), the output val-
ues y, of the neural network depend on the input G; in a com-
plex nonlinear way. The large number of weights and biases
provides the neural network with the flexibility required to re-
produce with high accuracy, a given functional dependence of
the output from the input. In the training phase, carried out as
explained below, the weights and biases are adjusted such that
the neural network correctly classifies the training set consist-
ing of configurations with known structures.

B. Symmetry functions

The information about the spatial arrangement of the
atoms within a certain cutoff of a given atom i is encoded
in the so-called symmetry functions {Gl[l](r)}, which depend
on the Cartesian coordinates of the atoms in this region. The
functions, which are constructed to be invariant with respect
to rotations, translations, and permutations of identical atoms,
need to be defined carefully such that they carry sufficient de-
tails to reliably detect and classify structures. By tuning the
parameters of these functions, they can be made sensitive to
the various symmetries the environment of atom i can have.
The following types of symmetry-functions have been proven
sufficient for accurate structure detection in the two test cases
studied in this work:

G =) fe(Ry), )
J#i
Gy =3 e Y fu(Ry), (©)
Jj#i
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Gy = Z cos (k Rij) fe(Rij), )
J#i

G = % > (1 + 1 cos Bi)f
ki

x e MRGHRIARR) £ (R fo(Ri) fo(Rji), (8)

. 1
Gy = 5 > (1 + Acos ;)
ki

x e MRIERD £ (Ri) fo(Rir), ©

, 1
Go'(r) = 57 Y (1+3c080)° fulRiy) fulRi), (10)
ki

, 1
Ghl(r) = 5 3 sinln(@ijx — el fe(Rip) fe(Rip), (1)
Jok#i

Gl = % > sinln(@ix — )l fo(Rip) fo(Rir). (12)
Jok#i

Here, the summation indices run over all neighboring atoms
within a certain cutoff of the central atom i. As illustrated in
Fig. 2, R;; is the distance from particle i to j and 6 is the an-
gle spanned by the triplet of atoms i, j, and k. The quantities
Ry, o, 1, A, and k are tunable parameters, which need to be
chosen carefully in order to reflect the symmetries character-
izing the possible local structures. While symmetry functions
G[li](r) to Gg](r) were adopted from Ref. 25, where they were
introduced for energy calculations, we developed functions

Ggl(r) to Gg](r) specifically for structure recognition.
Since one usually wants to detect structures in the im-
mediate surrounding of a given atom, it is important that the

FIG. 2. The symmetry functions Gl[i](r) around atom i, shown in yellow, are
constructed using combinations of atomic distances R;; and angles 6. Only
atoms within a certain cutoff R, contribute to the symmetry functions of the
region centered around atom i.

J. Chem. Phys. 139, 164105 (2013)

symmetry functions are only sensitive to atomic positions in a
small and well defined region. We, therefore, use cutoff func-
tions that are sharper than the soft cosine-cutoff used in neural
networks for energy calculations.?” The Fermi cutoff function

[1 + CXP{ac(R - Rc + 66)}]_1 if R < Rm

J(R) {O else,

(13)
is close to unity for small arguments and then decreases from
1 to 0 in an interval of width 1/c, centered at R. — €.. In the
limit of large values of &, the cutoff function f.(R) turns into
a step function with the step located at R, — €. In addition,

we defined the cutoff functions

£.(R) = cos? [n(R— W] ifpu— <R<p+4,
0 else,
(14)
and
cos?[V(R —a)] ifa — 7w < R <a,
ifay < R < ay,
fo(R) = (15)

b1

cos? [V(R — a;)] z,

0 else,

ifa, < R < a, +

which are used in the angular symmetry functions Gg I(r) and
G[gi](r). Here, 1, 1, v, a, and a, are free parameters that can
be adjusted to make the cutoff functions sensitive only to spe-
cific distance ranges. Some symmetry functions with typical
parameters are shown in Fig. 3.

For the neural network to work accurately, the param-
eters of the symmetry functions need to be selected such
that the symmetry functions carry a maximum amount of
structural information about the environment of a given atom.
To select appropriate parameters while keeping the number of
symmetry functions low, we first compute the distribution of
many symmetry function candidates for the various phases of
interest. Then, for each symmetry function, we determine the
overlap between the distributions obtained for the different
phases and finally select the symmetry functions which best
differentiate between the phases, i.e., those corresponding to
small overlaps. The symmetry functions are also scaled to the
best working range of the neurons, which is from —1 to 1 for
the activation functions used in our work.

From the set of symmetry functions determined in this
way it is possible to eliminate redundant information by car-
rying out a sensitivity analysis of the neural network.?6->® For
this purpose, one determines the derivative of the output of the
network with respect to its input. A derivative close to zero
then indicates that the corresponding input node has little ef-
fect on the output and can be eliminated without compromis-
ing the accuracy of the network. Typically, we remove input
notes for which the derivatives for all output nodes are smaller
than 0.1% to 1% of the largest value. After the removal of the
redundant symmetry functions the neural network needs to
be retrained. Using this approach it is possible to reduce the
number of symmetry functions required to fully characterize
local structures to about 30—40.
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FIG. 3. Various symmetry functions with typical parameter values. The two
top panels show the distance dependence of the terms in the two purely radial
symmetry functions G, and G3. The two bottom panels show the angular
parts of G4 and G7. The cutoff function parameters €. = 0.2, o, = 30, and
R, = 4.43352 were used.

C. Training the neural network

Once the symmetry functions are defined, the neural net-
work needs to be trained to recognize and distinguish the de-
sired structures. During the training procedure, the weights
and biases are tuned based on the information contained in
a training set, which consists of a large number of atomic
configurations with known structure. Thus, each entry of the
training set 7 consists of a configuration r and the corre-
sponding structure vector ¥,

T = {r(f)’ y(f)}, (16)

where the superscript T numbers the entries in the training set.
The structure vector 7, which corresponds to the output vec-
tor of the neural network, encodes the information about the
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type of structure of configuration ). If configuration % is
of structure type p, the component j;f) of the structure vector

is assigned the value )7},’) = +0.9 and all other components p’

are assigned the value yjf,’ = —0.9.

The training set can be prepared by running straightfor-
ward molecular dynamics (MD) simulations for the various
phases and extracting local atomic environments from con-
figurations sampled along the MD trajectories. Assuming that
during a particular MD run the system remains in the phase
from which the simulation was started, all atomic arrange-
ments taken from that run can be assigned the same structure.
Since in the course of the MD run the system can, in princi-
ple, turn into a different phase and change its structure, it is
important to verify whether the original structure still exists
at the end of the simulation. This can be done by visual in-
spection or by the calculation of some global order parameter
for the entire system. In the unlikely case that a transition to
a different phase has occurred, configurations from this simu-
lation should not be included in the training set. To make sure
that the training set is sufficiently diverse, training configura-
tions for a particular phase should be sampled from several
MD simulations carried out at different pressures and temper-
atures. Also, it has proven to be important to avoid correla-
tions between entries in the training set. Thus, local environ-
ments extracted from the same trajectory should be signifi-
cantly separated in time. Typically, the training set comprises
tens of thousands of entries. Training sets of this size are nec-
essary to guarantee that most thermal fluctuations typical for
each phase are included in the training set.

Based on the information contained in the training set 7,
the network is then trained such that for the configurations
in the training set the output vectors y of the neural network
best match the corresponding structure vectors j. The train-
ing procedure can be viewed as an optimization problem, in
which the weights w*) and the biases b® are tuned to mini-
mize the deviation of the predicted structures from the known
structures. The target function for the minimization can be ex-
pressed as the mean square deviation

1 Nt O 5
2 _ )y _ 50 , 17

where the sum over the index T runs over all N entries of
the training set and y(#*) is the output of the neural network
evaluated for structure .

We have tested several machine learning methods to
minimize x? including back-propagation®’ and a nonlinear
least squares algorithm.?® We found, as Behler and Parrinello
did,?*?? that the extended Kalman filter (EKF)?!-3? converges
quickly and does not easily get trapped in local minima.
This learning method originates from signal processing the-
ory, where it is used to filter out noise of signals, and has been
widely and successfully used for neural network training.33~33
The main idea of the extended Kalman filter is to introduce an
error covariance matrix, which is then improved iteratively.
The iteration is stopped when the mean square deviation x>
is sufficiently converged. Finally, the predictive quality of the
neural network is tested by computing the mean square de-
viation between predicted and true structure vectors for an
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independent test set, typically of size similar to that of the
training set. For a detailed discussion of the Kalman filter see
Refs. 31 and 32.

D. Implementation details

In implementing the extended Kalman filtering method,
several precautions must be taken to obtain an accurate and
robust neural network for structure prediction. The Kalman
filter learning technique is an online learning scheme, im-
plying that each basic iteration step, in which one entry of
the training set is processed, leads to an update of the entire
network state (weights and biases). After the learning proce-
dure has cycled through all entries of the training set, i.e.,
after one epoch, and before the next iteration starts, the or-
der of the entries of the training set is randomly permuted to
avoid correlations. The predictive quality of the network can
be improved by a modification of the training scheme called
multistreaming.>? In this technique, the entries of the train-
ing set are bundled into batches consisting of several entries
each. The Kalman filter is then applied to entire batches rather
than to individual training set entries. While this method im-
proves the outcome of the training of the Kalman filter, it also
increases the computational effort required for the training
procedure.

It is well known that the extended Kalman filter method
suffers from numerical rounding errors, which may lead to
a rapid divergence at some point in the learning procedure.
Two common approaches exist to overcome this instability.*?
The first method updates the square root of the error covari-
ance matrix rather than the covariance matrix itself, producing
a very robust iteration prescription. Here, we follow a much
simpler approach and introduce some artificial noise in form
of a small constant that is added to all diagonal elements of
the error covariance matrix at each iteration. This not only
improves the stability of the algorithm, but also prevents the
networks from getting trapped in local minima of the target
function.

To accelerate the training procedure in the starting stage,
the initial values of the weights are not assigned at random but
are pre-conditioned following an extension of the method pro-
posed in Ref. 36 for neural networks with two hidden layers.?’

lil. APPLICATIONS

In this section, we demonstrate the application of the neu-
ral network for structure recognition using the Lennard-Jones
system and water/ice as illustrative examples.

A. Lennard-Jones system

For the Lennard-Jones system conventional order param-
eters based on spherical harmonics'>™"> provide an accurate
way to distinguish between the liquid and the various crys-
talline phases. We first apply the neural network approach
to this system for comparison. All quantities are given in re-
duced Lennard-Jones units, i.e., distances are given in units of
o, energies in units of € and time in units of \/ma2 /e, where €

J. Chem. Phys. 139, 164105 (2013)

and o are the Lennard-Jones parameters and m is the particle
mass.

1. Training set

Depending on temperature and pressure, the Lennard-
Jones system exists in the liquid state or in one of several
crystalline states including the hexagonal close packed struc-
ture (hcp), the face centered cubic structure (fcc), the body
centered cubic structure (bcc), and a recently discovered dis-
torted bee-structure (I-43d ).38 In order to obtain a neural net-
work that reliably distinguishes between these phases in all re-
gions of the phase diagram where they are at least metastable,
a training set including all typical local configurations and the
fluctuations around them is required. We have generated such
a training set by carrying out molecular dynamics simula-
tions for various densities and temperatures both in the NV T
and NPT ensembles with periodic boundary conditions and
a cutoff of 2.6 for the Lennard-Jones pair interaction. The
dynamics of the system was followed with time-reversible
integrators using a Nosé-Hoover chain thermostat’**’ and
a time step of At = 5 x 1073, In the simulations in the
NPT ensemble, we only allowed the rectangular simulation
box to fluctuate isotropically, i.e., all box vectors are scaled
equally keeping their angle fixed. The system sizes were cho-
sen such that a perfect crystal of the desired structure fits
in the simulation box. In particular, these particle numbers
are thp = 1440, Nfcc = 1372, Nbcc = 1458, N]_43d = 2000,
and Njq = 1450. For each phase, we computed roughly 20
trajectories of length T = 1.5 x 10° at different pressures
and temperatures. To obtain an accurate neural network it has
proven particularly important to train the network with in-
formation obtained for a broad range of pressures/densities.
Here, we use configurations obtained at 7 = 0.15 and
T = 0.92 and pressures ranging from P = —5 to P = 15.

From these molecular dynamics simulations we picked
30000 local configuration for each phase and to avoid cor-
relations between them we used only every 100th MD step.
From each configuration we extracted only a few local envi-
ronments to further reduce correlations. Each local environ-
ment is then assigned the structure of the simulated phase.
The assigned structure is encoded in the structure vector
as described in Sec. II. If, for instance, the assigned struc-
ture is hcp, the corresponding structure vector is given by
¥ =1{0.9,-0.9, —0.9, —0.9, —0.9}, and other structures cor-
respond to a different positive component. Note that the value
of 0.9 rather than 1.0 is selected, because the activation func-
tions of the neural network are normalized to return values
in the interval from —1 to 1. In total, the training set includes
150 000 local configurations with respective structure vectors.
This particular way of assigning the structure type to the lo-
cal configurations implicitly assumes that during the entire
length of the molecular dynamics simulation there is no phase
change, not even locally or transiently. We have verified, both
by visual inspection and by monitoring the energy and other
quantities, that indeed no phase transitions take place in our
simulations. From the same MD simulations we also extracted
a test set of 22 000 configurations in total.
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FIG. 4. Several spatial distribution functions for different phases of the
Lennard-Jones system. (a) Radial distribution functions g(R), (b) angular
distribution functions for particles within a cutoff of Rpy.x = 1.5, (¢) an-
gular distribution functions in the shell with distance between Rpyin = 1.5
and Rmax = 2.42. Simulations of 3 x 10* equilibration steps and 3 x 10*
production steps were carried out in the NPT ensemble at 7 = 0.92 and
P =5.68.

2. Symmetry functions

An accurate neural network for the recognition of local
configurations relies on symmetry functions that carry suffi-
cient information on the geometric features of local atomic
arrangements. Appropriate symmetry functions can be con-
structed based on the distributions of distances and angles
in the local environment of a given atom as depicted in Fig.
4. The positions and widths of the maxima and minima of
the radial distributions functions shown in panel (a) guide
the selection of the parameters governing the radial part of
the symmetry functions (in particular the symmetry functions
of types 2 and 3). For instance, a symmetry function sen-
sitive to particles at distance R = 1.55 should provide in-
formation to distinguish between hcp and fcc from liquid
and bcc. Similarly, symmetry functions responsive to dis-
tances of R = 1.9 should carry important information be-
cause the radial distribution functions of all crystalline phases
have a maximum at this position, which is also the distance
at which the local environments of fcc and hcp start to dif-
fer. The angular distributions of the first and second shell
around the central atoms, shown in panels (b) and (c) of Fig.
4, supply useful information for the definition of the angu-
lar parts of the symmetry functions. In the first shell, angles
o = 115°,120°, and 150° appear to be important while in the
second shell the angles o = 50°, 80°, 130°, and 115° should
be considered. Based on such considerations, we have defined
a set of 45 symmetry functions designed to detect the geo-
metrical features of the various structures. The parameters of
these symmetry functions are listed in Table I. For the cut-
off function given in Eq. (13) we have used €, = 0.20 and
a, =300"1.

J. Chem. Phys. 139, 164105 (2013)

TABLE I. Parameters of the symmetry functions for the Lennard-Jones sys-
tem. The cutoff parameters used in this case are R, =2.60, o, = 300!, and
€. =020.

G, n (2 Ry (0)
1 1.38889 1.310
2 2.00000 1.820
3 3.12500 1.745
4 3.12500 2.180
5 4.08163 1.970
6 8.00000 1.940
7 8.00000 2.030
8 8.00000 2.075
9 12.5000 1.115
10 12.5000 1.880
11 12.5000 2.030
12 12.5000 2.570
13 22.2222 2.090
14 50.0000 2.150
15 50.0000 2.375
16 50.0000 2.600
17 200.000 2.300
18 200.000 2.510
19 800.000 2.420
G3 k(o™

20 0.5

21 1.5

22 2.0

23 3.5

24 4.5

25 6.5

26 8.5

27 10.5

28 12.0

29 14.5

30 18.0

G n™hH ¢ (1) A (1) w (o)
31 2.50000 7 —1 1.95
32 2.85714 16 —1 1.10
33 3.33333 12 1 2.00
Gy a (D) n (1)
34 0.2 9.0
35 0.6 8.4
36 0.6 4.8
37 0.8 99
38 0.9 9.0
39 1.3 7.8
40 1.4 9.6
41 2.0 9.6
42 2.3 8.7
43 2.7 8.7
44 2.8 13.2
45 2.9 18.0

3. Neural network training

Based on the training set and the symmetry functions de-
scribed above, we have determined the weights and bias val-
ues for a 45 x 35 x 35 x 5 network using the Kalman filter-
ing technique. In this learning procedure, which takes a few
days of computation time using a highly parallelized CUDA*!
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FIG. 5. Typical learning curve of a neural network used to detect different
phases in the Lennard-Jones system. The root mean square error (RMSE)
between the predicted and target structure vectors of the training set (green
curve) and the test set (red crosses) are shown as functions of the number
of parameter updates in the Kalman filter learning procedure. The number
of epochs, i.e., the number of times the procedure has looped over the entire
training set, is displayed on the x-axis at the top.

program running on a cluster of GPUs (Graphics Processing
Units), a total of 3050 parameters are optimized. The num-
ber of output nodes is given by the number of phases one
would like to distinguish and the number of input nodes is
equal to the number of input functions. We selected the num-
ber of hidden nodes to be of the same order of the number of
input nodes. We have also tried neural networks with differ-
ent numbers of hidden layers and different numbers of nodes
in these layers, but have found that the topology given above
results in the most accurate structure prediction.

In the Kalman filtering technique we used for the learning
procedure, the parameters of the neural network are adapted
iteratively. The iteration is stopped when the root mean square
error (RMSE) between the predicted and the target structure
vectors does not change by more than a certain threshold in
subsequent iterations, or epochs, of the Kalman filtering pro-
cedure. The iteration is also stopped if over-fitting takes place,
which may occur if due to the large number of parameters the
learning algorithm tries to generate a unique path through the
network for each entry in the training set, instead of doing
this for a class of entries. One knows that over-fitting takes
place, if the RMSE of the training set continues to decrease
in the course of the iteration while the RMSE for the test set
increases. A typical learning curve of the neural network, i.e.,
the RMSE as a function of the number of parameter updates,
is shown in Fig. 5. As can be inferred from the figure, the
RMSE converges to a finite value rather than to zero due to the
selected symmetry functions, which do not contain sufficient
information for a perfect structure assignment. The RMSE of
the test set and the training set is essentially identical, i.e., no
over-fitting occurs.

4. Structure detection

Results for the structure assignment carried out with the
neural network for the Lennard-Jones system are shown in
Fig. 6. The color-coded bars in this figure indicate the frac-
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FIG. 6. Distribution of structures assigned by the neural network for the test
set (left) and the training set (right) for the Lennard-Jones system. For each
of the different phases indicated on the x-axis, the heights of the color-coded
bars correspond to the fractions of structures that have been assigned the type
specified by the color at the bottom.

tion of structures that have been assigned a particular type.
The colors of the bars specify to which type a structure is as-
signed and the labels on the x-axis indicate the phase from
which the structure is taken. As can be inferred from the fig-
ure, the results obtained for the test set (left) are of the same
quality as the results for the training set (right), demonstrat-
ing that no over-fitting has occurred in training the network.
For all phases, structures are assigned with an accuracy bet-
ter than 90%. The fraction of misassigned structures is par-
ticularly small for structures from the liquid phase and the
1-43d phase, while for the hcp and bee phases a few percent of
the structures are assigned the wrong type, probably because
at lower densities the local structures can deviate consider-
ably from the perfect crystalline arrangement due to thermal
fluctuations.

For comparison, we have also determined local structure
types for the Lennard-Jones system using Steinhardt bond or-
der parameters constructed from spherical harmonics.'> More
specifically, we use the bond order parameters g4 and gg ob-
tained from the Steinhardt bond order parameters g4 and gg
by averaging over the first neighbor shell."> As shown pre-
viously, these order parameters provide a practical and accu-
rate way to distinguish between all phases occurring in the
Lennard-Jones system. A scatter plot of the order parame-
ters g4 and gg computed for the configurations in the train-
ing set is shown in the left panel of Fig. 7. The dots in the
scatter plot are colored according to the phase from which the
respective configurations were taken. To distinguish between
the various structures, we divided the (g4, gg)-plane in regions
as denoted by the lines in Fig. 7. Each configuration is then
simply assigned the structure corresponding to the region in
which the respective (g4, gg)-pair is located. (An alternative
way to assign structure type consists in determining the fre-
quency at which (g4, ge)-pairs occur in the various phases and
then selecting the phase with the highest frequency.”) Results
of the structural analysis carried out in this way for the train-
ing set are shown in the right panel of Fig. 7. While liquid
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FIG. 7. Left: Scatter plot in the (ga, ge)-plane of local structures taken
from the different phases of the Lennard-Jones system. The lines delimit the
regions used for the structure assignment. Right: Distribution of structures
assigned based on g4 and ge. For each of the different phases indicated on
the x-axis, the heights of the color-coded bars correspond to the fractions
of structures that have been assigned the type specified by the color at the
bottom.

and fcc structures are recognized very accurately, the struc-
ture assignment is less accurate for hep and, in particular, for
bee and 1-43d structures. Thus, the order parameters g4 and
G do not contain sufficient information on these structures as
is also evident from the pronounced overlap of the hcp, bcc,
and 1-43d phases in the (g4, gg)-plane. In comparison to the
structure assignment based on g4 and gg, the neural network
yields a roughly uniform accuracy for all phases with a higher
precision on the average.

B. Water and ice

As shown in Sec. III A 4, local bond order parameters
based on spherical harmonics perform well in detecting the
various simple crystalline structures such as those occurring
in the Lennard-Jones systems. They are less accurate, how-
ever, when applied to more complex structures such as liquid
water and the various phases of ice.!” While modifications of
these order parameters have been successfully used to distin-
guish hexagonal and cubic ice (ice Th and ice Ic) from liquid
water,”!**? the high pressure phases of ice (ice IL, IIL, ...) are
not separated sufficiently in this projection. Distributions of
the averaged Steinhardt bond order parameters gs, g, gs, and
G10 calculated for the various phases of ice, and shown in the
right panel of Fig. 8, display a pronounced overlap. If spread
out in the two-dimensional (§4ge)-plane, the distributions for
ice Th, ice Ic, and liquid water separate (see left panel of Fig.
8). Hence, these three phases can be distinguished from each
other based on G4 and s, as observed recently by Sanz et al.?!
The distributions for the ice II, III, and V, however, do not
separate such that the averaged order parameters do not pro-
vide sufficient information to discriminate between these high
pressure phases. Note that to generate the plots of Fig. 8 we
have used configurations obtained for only a few temperatures
and pressures, thus the overlap of the distributions becomes
even stronger if wider regions in the P-7-plane are consid-
ered. One reason for the inability of the Steinhardt bond or-
der parameters to distinguish between the high pressure forms
of ice is that these phases include oxygen atoms with differ-
ent spatial environments. The unit cell of ice III, for instance,
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FIG. 8. (Left) Scatter plot in the (4, gs)-plane for structures taken from liq-
uid water and from different phases of ice. To calculate the bond order pa-
rameters only the positions of the oxygen atoms were taken into account. All
results are obtained from NV T simulations carried out at 7 = 270 K and
densities om, = o1 = 910 kg/m?, oy = 1145 kg/m?, o = 1115 kg/m?, oy
= 1210 kg/m®, and o1iq = 985 kg/m>. (Right) Distributions of g4, G, Gs, and
G10 obtained for the same systems.

features two distinct oxygen positions and for ice V there are
even four unique oxygen positions.

In an effort to enhance the recognition for ice struc-
tures, several techniques have been suggested. Chau and
Hardwick!'® have developed an order parameter based on de-
tecting the occurrence of local tetrahedral structures in ice. (A
scaled version, which is defined in the range O to 1, is given
in Ref. 20.) This method is very accurate for the distinction of
ice Th or ice Ic from liquid water, but fails for the higher den-
sity forms of ice. Similarly, the maximum projection method
of Brukhno et al.'” can be used to distinguish between liquid
water, and hexagonal and cubic ice only. Here, we demon-
strate that an appropriately trained neural network can be used
to distinguish locally between liquid water and several phases
of ice (Ih, Ic, II, III, and V) over wide ranges of pressure and
temperature.

1. Training set

All calculations for ice and liquid water are carried out
with the TIP4P/Ice model,** which is fitted to experimental
properties of low and high density ice. In this model, each
water molecule is represented by four sites rigidly connected
with each other and interacting pairwise via Coulomb and
Lennard-Jones potentials. Polarization effects are neglected.
The TIP4P/Ice model reproduces all ice phases consisting of
intact water molecules and leads to a phase diagram with the
correct topology and coexistence lines that are only slightly
displaced with respect to the experimental phase diagram.**
The model also accurately reproduces the densities of the ice
phases and of the liquid phase.

Using molecular dynamics simulations, we have gen-
erated training and test sets that consist of configurations
for the six studied water phases over a wide range of tem-
peratures and densities, such that configurations of highly
metastable structures are also included. We have carried out
simulations in the NV T and isotropic NPT ensembles in-
tegrating the equation of motion with a slightly modified
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version of the Verlet-like algorithm proposed by Kamberaj
et al.,” based on the Trotter decomposition schemes applied
by Miller et al.*® and Martyna et al.*® In these integration
schemes, the canonical and isothermal-isobaric ensembles are
implemented through thermostat chains based on the Nosé-
Hoover*”:*® and the Andersen*® approaches. Long range elec-
trostatic interaction are treated using Ewald summation with
1152 k-space vectors.

For each phase, we have generated molecular dynamics
trajectories for different pressures and densities encompass-
ing the entire range of mechanical stability. System sizes were
chosen such that the simulation box accommodates a defect-
free crystal of the respective type. In particular, molecule
numbers of Ny, = 896, Ni. = 1000, Ny = 960, Ny = 768,
Ny =756 and Njq = 940, were used for ice Ih, ice Ic, ice
II, ice III, ice V, and the liquid, respectively. Initial condi-
tions were constructed for each crystalline phase using the
space group of a cell, its cell parameters (side length and
angles) and the fractional coordinates taken from literature.
Particular care has to be taken to generate the proton or-
der/disorder appropriate for each ice phase. While the pro-
ton ordered crystals are simply produced using the fractional
coordinates for all oxygen and hydrogen atoms provided in
the literature, the disordered phases have to be generated in a
way that obeys the Bernal-Fowler ice rules.’® Here, we have
used the method developed by Ayala and Tchijov®! to gener-
ate permitted hydrogen atom disorder of proton ordered ar-
rangements. Starting from a perfect proton ordered crystal,
hydrogen atoms are shifted along closed loops of neighboring
H-bonded molecules. In order to reach a sufficient degree of
disorder, this procedure is repeated for a minimum number of
iterations and until a zero net dipole moment is achieved.

The proton ordered hexagonal ice cells were taken from
Ref. 52. From this arrangement, disordered ice Th was gen-
erated by applying the method described above. Cubic ice Ic
crystals were generated according to Lekner.>® The proton or-
dered ice II crystals were generated according to Ref. 54. The
atomic coordinates and hydrogen site occupancies for ice IX,
the proton ordered counter part of ice III, were taken from
Refs. 55 and 56. And finally, ice V/XIII were set up accord-
ing to Refs. 56 and 57.

Each molecular dynamics trajectory was 100 ps long and
every 0.1 ps the environmental information of a randomly
chosen oxygen atom was stored and used to generate an en-
try for the training or test set. A total of 100 trajectories were
computed yielding 10° configurations. The training and test
sets were then generated by computing the symmetry func-
tions for each configuration and assigning to it the structure
type of the simulated phase. This way to construct the training
and test set relies on the assumption that during the molecular
dynamics simulation the entire sample remains in the original
phase and defects or excursions to other phases do not occur
even transiently.

2. Symmetry functions

To define symmetry functions capable of capturing the
important details of local structures we have computed radial

J. Chem. Phys. 139, 164105 (2013)

(a)

8
ice lh ——
7 ice lc
ice Il
6 ice Ill
ice V
5 liquid ——
€ 4
je2]
3 /\Jm
2 g-/’
1
0
2 3 4 5 6 7 9 10
(b) R (A) (C)
0.035 T T T 0.02 —
0.08
0.025 0.015
— 0.02 J
) oot 1| f /\
0.015 | \
‘ | \
/ \
0.01 0.005
0.005 \\
0 0
30 60 90 120 150 180 30 60 90 120 150 180

o (deg) o (deg)

FIG. 9. Radial and angular distribution functions for different phases of wa-
ter. (a) Oxygen-oxygen radial distribution functions goo(R) for low density
and high density forms of ice as well as liquid water. All curves except the
one for liquid water are shifted for better readability. (b) Distributions of the
0O0O0-angle for atoms within a distance of Rcy = 3.25 A from the central
atom. (c) Distributions of the OOO-angle for atoms within the shell 3.5 A<R
<55 A around the central atom. All curves were determined in NV T sim-
ulations at temperatures Ty, = Tic = 210 K, Tip = Tip = Tiiq = 270 K and
Ty = 240 K. For the densities the values oin = 01c = Q1iq = 1000 kg/m3 and
on = om = ov = 1200 kg/m3 were chosen.

distribution functions as well as the distributions of OOO-
angles for all phases considered here. The results of these cal-
culations are shown in Fig. 9. As one can infer from Fig. 9(b),
for distances smaller than 3.25 A the angles o = 50°, 72°, 83°,
105°, 125°, and 154° appear to be useful symmetry function
parameters, whereas in the shell of distances between 3.5 A
and 55 A o = 45°, 61°, 120°, 136° are good can-
didates. Based on these distribution functions, we have
defined the symmetry functions listed in Table II. For
these symmetry functions we have used a neighbor cut-
off of R, = 6A and the parameters €, = 0.2 A and o,
=30 A", respectively. We have also prepared a set of sym-
metry function parameters for a much larger cutoff of R,
= 8.234 A. In both cases, only the positions of the oxygen
atoms are used to compute the symmetry functions. Includ-
ing also hydrogen positions or, equivalently, information on
dipole orientations, may improve the accuracy of the detection
further.

3. Neural network training and structure detection

Using the training set and the symmetry functions de-
scribed in Sec. III B 2 we have trained two different neural
networks to distinguish local structures of ice Ih, Ic, II, 111, V,
and of liquid water. The two networks differ in the network
topology, 35 x 30 x 30 x 6 and 39 x 35 x 35 x 6, and also
in the cutoff radius, R, = 6 A and R, = 8.234 A. With these
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TABLE II. Parameters of the symmetry functions for water and ice modeled
with the TIP4P/Ice potential for the cutoff radii R, = 4.4335 ;\, R. =60 A,
and R, = 8.234 A. The other cutoff parameters are o, = 30 A~! and e,
= 0.2 A. For each of the three cutoff radii R. we used the same pa-
rameters, but did not use all of the symmetry functions. In particular, for
R, =4.4335 A we excluded symmetry functions 2, 3, 5, 8, 16, 39, and 49, for
R. = 6.0 A we excluded symmetry functions 10-12, 14, 17, 19, 28, 29, 32,
and 36-40, and for R, = 8.234 A we excluded symmetry functions 10-12,
14,17, 19, 28, 29, 32, 36-38, and 40.

G> n (A% R; (A) Gs K (A~
1 0.049857 2.533440 20 0.157888
2 0.138492 2.533440 21 0.315776
3 0.406998 3.103464 22 0.473664
4 0.553970 3.768492 23 0.631552
5 0.797717 6.143592 24 1.420993
6 1.246432 2.960958 25 1.736769
7 1.246432 4.148508 26 1.894657
8 1.246432 5.241054 27 2.526209
9 2.215880 2.960958 28 3.947202
10 2.215880 3.198468 29 4.262978
11 2.215880 3.958500

12 2.215880 4.14850

13 4.985730 2.770950

14 4.985730 3.055962

15 4985730 3.293472

16 4.985730 4.766034

17 19.94292 2.913456

18 19.94292 3.103464

19 19.94292 3.768492

Gy n(A=?% ¢ (D A (D)

30 0.031578 10.0 —1

31 0.031578 10.0 1

32 0.045111 4.5 —1

33 0.052629 6.0 —1

34 0.083099 5.5 —1

35 0.143535 14.0 1

36 0.185751 3.75 —1

37 0.210517 6.50 1

38 0.242905 2.5 —1

39 0.332396 1.4 —1

Gs o (1) n (D) ai(A) ar (&) v(AhH
40 0.38 0.2350 2.00 3.15 5

41 1.22 0.1375 2.00 3.15 5

42 0.35 0.1000 2.00 6.00 5

43 0.75 0.2275 2.00 6.00 5

44 0.63 0.1825 2.00 6.00 5

45 0.70 0.1000 3.00 4.00 5

46 0.58 0.1000 3.15 6.00 5

47 1.05 0.1075 3.15 6.00 5

48 0.63 0.1825 3.15 6.00 5

49 1.05 0.1000 4.00 6.00 5

cutoffs the local regions encompass two and three neighbor
shells, respectively. Results obtained with these two neural
networks are shown in Fig. 10. For the smaller cutoff the de-
tection accuracy is between 85% for ice V and 98% for ice II1.
With the larger cutoff the detection accuracy is nearly 100%
for all phases. The spatial resolution, however, is reduced with
the larger cutoff.
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FIG. 10. Distribution of structures assigned by the neural network for the
test set (left) and the training set (right) for liquid water and ice Ih, Ic, II, III,
and V. For each of the different phases indicated on the x-axis, the heights of
the color-coded bars correspond to the fractions of structures that have been
assigned the type specified by the color at the bottom. Results were obtained
foracutoff of R, = 6 A (top) and for a cutoff of R, = 8.234 A (bottom).

4. Crystallization of supercooled water

In order to demonstrate the practical applicability of the
neural network for structure detection, we have used it to
study the freezing of supercooled water to hexagonal ice. The
free energetics of this nucleation process has been studied pre-
viously using metadynamics>® and umbrella sampling.'17-3
Here, we determine the free energy of the system using the
size n of the largest crystalline cluster as order parameter.
To compute this order parameter for a particular configura-
tion, first all water molecules are assigned a structure type
by applying the neural network. Then, crystalline molecules
are grouped into connected clusters and the order parameter
is given by the number n of molecules in the largest of these
crystalline clusters. Two molecules are considered to be con-
nected if their oxygen atoms are closer than 3.8 A.

In these simulations we have used a neural network for
structure detection trained specifically to distinguish only lig-
uid water from ice I, without discriminating between ice Ih,
and ice Ic. Furthermore, a cutoff radius of R, = 4.43352 A
was used, implying that only information from the first neigh-
bor shell was included in computing the symmetry functions.
In order to improve the accuracy of the structure detection
near the surface of the crystalline nucleus, we have also in-
cluded crystalline nuclei of cubic and spherical shape embed-
ded in liquid water, as well as liquid/solid slab geometries in
our training set. We generated these configurations fixing a
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FIG. 11. Free energy BF(n) as a function of the size n of the largest crystalline cluster for a system of N = 2880 TIP4P/Ice water molecules at temperature
T = 235 K and pressure P = 1 bar corresponding to 13% undercooling. The pictures at the bottom show snapshots of the system in different stages of the
transition from liquid water to hexagonal ice, ice Ih. Crystalline hexagonal and cubic molecules and the bonds between them are shown in green and blue,
respectively. Note that all crystalline molecules are shown and not only those belonging to the largest crystalline cluster. The orientation of the each simulation

box is such that the visibility of the crystalline structure is enhanced.

fraction of the molecules to their respective positions in the
perfect lattice using harmonic springs. Then we heated the
system to melt the mobile molecules and subsequently re-
laxed it at 235 K with removed springs. Note that for the
analysis, however, we have used a neural network that can
distinguish between hexagonal and cubic ice.

To determine the free energy as a function of the size n of
the largest crystalline cluster, we have used an umbrella sam-
pling procedure with overlapping windows with hard walls.
We study a system consisting of N = 2880 molecules at tem-
perature 7 = 235 K and pressure of P = 1 bar, corresponding
to 13% supercooling with respect to the melting temperature
Toere = 270 £ 3 K of TIP4P/Ice model.®® We chose this partic-
ular temperature such that the critical nucleus is of a size that
fits in the simulation box. For this temperature, the growth rate
of the crystalline nucleus is still sufficiently high such that the
simulations are not hindered by the sluggish dynamics of wa-
ter at low temperatures.

For each window, corresponding to a certain range of
the order parameter, we have sampled NPT configurations us-
ing the hybrid Monte Carlo (HMC) method,®' in which new
configurations are generated by performing NV E molecular
dynamics simulations. These short dynamical trajectories are
computed without bias and the constraints on the order pa-
rameter imposed by the windows are taken into account only
in the Monte Carlo acceptance step. We have integrated the
equations of motion with a modified version of the algorithm
of Miller et al.,*® which follows the algorithm of Omelyan.®
This algorithm requires two force evaluations per integration

step and exactly conserves phase space volume as required
by the hybrid Monte Carlo scheme. Five molecular dynamics
steps of length At = 7.2 fs are carried out for each short tra-
jectory, yielding an acceptance probability of roughly 50%.
To improve the sampling efficiency of the simulation we also
carry out exchanges of configuration between adjacent win-
dows following the replica exchange procedure of Auer and
Frenkel.'* We have carried out 5 x 10° equilibration HMC
steps and 107 production HMC steps in each of the 40 win-
dows. Histograms of the order parameter obtained from the
each window separately are combined with the self-consistent
histogram method” and the free energy is then obtained as the
logarithm of the resulting distribution.

The free energy F(n) as a function of the size n of largest
crystalline cluster obtained from our simulations is shown in
Fig. 11. The shape of this free energy profile with a barrier
separating the supercooled state for small values of n from
the completely crystalline state at large values of 7 is typical
for a phase transition proceeding via nucleation and growth.
In the picture of classical nucleation theory, which provides
a qualitative description of nucleation processes, the barrier
is due to the free energetic cost required to form an interface
between the crystal nucleus and the surrounding metastable
phase. Only after the crystalline nucleus reaches the so called
critical size does the lower free energy of the crystalline phase
prevail and the free energy decreases from this size on. This
qualitative picture of the mechanism for crystallization is con-
firmed by the snapshots in the bottom row of Fig. 11, showing
the system at different stages of the crystallization process.
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Note that the kink in the free energy profile visible at about n
= 140 is most likely the result of insufficient sampling possi-
bly due to slow shape equilibration.

Our calculations, carried out at 7 = 235 K and pressure
P =1 bar, yield a barrier height of 34 kgT and a critical crys-
talline nucleus consisting of n ~ 300 molecules. By running
molecular dynamics simulations starting from configurations
with sizes n = 110, 130, and 240 we confirmed that the crys-
talline clusters tended to shrink as expected for subcritical
nuclei.?! In trajectories started from configurations with clus-
ters of sizes n = 400 and 415, i.e., beyond the free energy
barrier, the cluster size evolved very slowly such that the sys-
tem did not commit to the completely liquid or fully crystal-
lized state on the nanosecond time scale of our simulations.
For the system sizes studied here we could not go to larger
initial crystallites, for which the complete crystallization is
expected to be faster. Note that the critical size obtained from
our free energy calculation is smaller than the critical cluster
size of 615 molecules found by Li et al.** at 235 K for the mW
model, which has a melting point of 274.6 K.%3 These critical
nuclei were identified from a dynamical criterion based on
committor calculations such that no information on the height
of the free energy barrier is available in this case. This dis-
crepancy in the size of the critical nucleus might be due to dif-
ference in the water model, specifically in the melting point,
the surface tension, and in the heat of melting, but also to the
different ways used to detect crystallinity.

Previous computer simulation studies carried out by
Brukhno et al.'” as well as Li et al.** have indicated that
during the formation of hexagonal ice the crystalline nucleus
may include regions of cubic ice. In contrast, our simula-
tions yielded only crystalline nuclei with purely hexagonal
structure. Single molecules with cubic environments were
found only on the surface of the nucleus as can be seen
in Fig. 11.

IV. SUMMARY AND CONCLUSIONS

In summary, we have developed an artificial neural net-
work for the detection and the classification of local atomic
structures. Different classes of atomic arrangements are dis-
tinguished based on a set of symmetry functions that capture
the essential structural features and are invariant with respect
to translations, rotations, and permutations of identical atoms.
These symmetry functions are fed into the input layer of the
neural network, which then performs a series of summations
and nonlinear operations that finally yield an output vector,
in which each component corresponds to one of the struc-
tures to be recognized. Typically, our neural networks have
3040 input nodes (one for each symmetry function) and 2
hidden layers with about 40 nodes each. They depend on a
few thousand parameters that provide the flexibility required
to adapt the neural network to a variety of different structures.
The parameters are tuned during a learning phase, in which
the neural network is trained based on a training set consist-
ing of several tens of thousands of local atomic configura-
tions with known structure types. Such a training set, and an
independent test set used to assess the quality of the struc-
ture recognition, can be prepared with molecular dynamics or
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Monte Carlo simulations performed in the pure phases. The
neural networks developed here can be used to analyze the
results of molecular dynamics and Monte Carlo simulations
a posteriori, but also to drive such simulations to important
but rarely visited regions of configuration space. Applying
such a bias is, for instance, useful in studying nucleation phe-
nomena that involve rare barrier crossing events. By applying
the neural network method to the Lennard-Jones system as
well as to water/ice we have demonstrated the this approach
works well not only for simple phases but also for complex,
open structures for which conventional structure recognition
methods fail. Note, however, that the neural network devel-
oped here is designed for the classification of structures into
known structure types rather than for the discovery of new
structures.

In the development of a neural network for structure
recognition an appropriate definition of the symmetry func-
tions is the most crucial step and the performance of the
method strongly depends on the quality of the symmetry
functions. The symmetry functions need to be designed
such that they provide sufficient information to distinguish
the various structures. Structural features gleaned from
distributions of distances and angles can be useful in this
process. While in this work we have used only symmetry
functions of the type developed by Behler and Parrinello for
energy calculations,”?? the structure recognition may be
enhanced by adding also other structural fingerprints such
as the Steinhardt bond order parameters to the input for the
neural network. In the application of the neural network the
computation of the symmetry functions is usually the com-
putationally most time-consuming step while the processing
done by the neural network is relatively inexpensive. There-
fore, it is advantageous to keep the number of symmetry
functions as low as possible. A sensitivity analysis, which
determines how strongly the output of a network depends on
a particular input, may help to eliminate redundant symmetry
functions without sacrificing the accuracy of the structure
detection.

Another important factor in the development of a neural
network for structure detection is the generation of an appro-
priate training set. This set of configurations needs to include
arrangements similar to all structures to which the neural net-
work is eventually applied. Since the neural network is noth-
ing else than a complicated fitting function, atomic structures
that differ markedly from all structures included in the train-
ing set will not be assigned correctly. In practice, this im-
plies that structures for the training set must be collected from
simulations carried out over a broad range of pressures and
temperatures. We have also found that it is important that con-
figurations included in the training set are statistically inde-
pendent from each other.

The range within which atoms are considered for the
calculation of the symmetry function influences both the ac-
curacy as well as the spatial resolution of the structure recog-
nition. While including structural information from a large
region around the central atom increases the accuracy of
the method, it reduces its resolution and leads to unwanted
averaging effects particularly near inhomogeneities such as
interfaces and defects. Thus, particularly in the study of
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nucleation phenomena where interfaces between different
phases play an important role, it is advisable to choose cut-
offs that do not exceed those of other detection methods typ-
ically including atoms up to the second neighbor shell.'>-1
The general method developed here may be applied also to
detect defects such as interstitials, vacancies, and dislocations,
in which case a small cutoff is particularly important.

As mentioned in Sec. III B 4, in the example of the crys-
tallization of water we have improved the accuracy of the
structure detection near the solid-liquid interface by adding
configurations containing such an interface to the training
set. These training configurations were generated by fixing
molecules in crystalline regions of spherical, cubic, or slab-
like geometry to their lattice site, while equilibrating the un-
constrained liquid surrounding the crystalline parts. While
here we have used this scheme only to improve the distinc-
tion between molecules with liquid and crystalline environ-
ments, one could use configurations containing interfaces also
to specifically train the neural network to recognize typical
interface structures and identify molecules belonging to the
interface layer.
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