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A numerical implementation of the transition state theory is presented which can be used to

calculate the attempt frequency f0 of arbitrary shaped magnetic nanostructures. The micromagnetic

equations are discretized using the finite element method. The climbing image nudged elastic band

method is used to calculate the saddle point configuration, which is required for the calculation of

f0. Excellent agreement of the implemented numerical model and analytical solutions is obtained

for single domain particles. The developed method is applied to compare f0 for single phase and

graded media grains of advanced recording media. f0 is predicted to be comparable if the

maximum anisotropy is the same in these two media types. VC 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4712033]

I. INTRODUCTION

A detailed knowledge of the thermal stability is of

utmost importance for magnetic nanostructures for various

applications ranging from hard disc media, magnetoresis-

tive random-access memory (MRAM) devices to permanent

magnets. A well established tool which originated in chem-

ical rate theory for determining the thermal stability relies

on the transition state theory (TST). In the TST, the thermal

stability of a minimum energy state M1 is determined by

the application of the Arrhenius-Neel law, s ¼ 1
f0

e
DE
kBT , where

the energy barrier DE separates the minimum energy state

M1 and the saddle point configuration S1. The energy

denotes the total energy which is the sum of the internal

energy plus the Zeeman energy. The internal energy

accounts for the anisotropy energy, the exchange energy,

and the magnetostatic energy. At zero temperature, the sum

of the internal energy plus the Zeeman energy equals the

Gibbs free energy. The thermal stability, which requires the

calculation of the energy barrier and the attempt frequency,

was first calculated for single domain particles in the inter-

mediate to high damping limit (IHD) for an external field

applied exactly parallel to the easy axis.3 For systems

where the symmetry is broken either by an oblique external

field or by an additional anisotropy, various works are pub-

lished giving analytical formulas for the attempt frequency

for different damping limits. For the IHD limit, formulas

for the thermal stability can be found in Refs. 2, 4, 5, and

19. For the limit of very low damping, a formula for the

thermal stability was derived by Smith and De Rozario.19

In order to extend the calculation of the damping limit to all

values of the damping constant, Coffey et al.6 and Déjardin

et al.7 have shown that the Mel’nikov-Meshkov formalism

can be applied to magnetic systems. Analytical formulas for

the intermediate damping regime are given by Garanin et al.9

All the previous mentioned works were restricted to re-

versal via homogeneous rotation. Inhomogenous states were

treated by Braun who calculated the thermally activated rever-

sal in elongated particles.1 Besides analytical formulas for the

attempt frequency, he found that the thermal stability depends

on the domain wall energy in these elongated particles.

The approach of Braun was extended to soft/hard bilayers,

where the saddle point configuration can be described by a

domain wall at the soft/hard interface by Loxley and Stamps.16

All mentioned previous works dealing with the calcula-

tion of the attempt frequency are limited to one or two

degrees of freedom. Within the paper for the first time, these

restrictions are overcome by using a flexible numerical

approach for calculating the attempt frequency. The method

uses the hybrid finite element/boundary element method to-

gether with the transition state theory, which leads to a gen-

eral and flexible tool to treat arbitrary shaped magnetic

elements with large degrees of freedom. Complicated micro-

structures such as hard/soft composite magnets can be

treated for the first time. The results are for utmost impor-

tance for the calculation of the thermal stability of realistic

and state of the art magnetic structures. In addition of the

calculation of the thermal stability, a detailed knowledge of

the attempt frequency is also required if the coercive field of

magnets at finite temperature is calculated. Hence, the work

has impact on various applications ranging from permanent

magnets, magnetic recording, to magnetic logic devices.

The paper is structured as follows. In Sec. II, details of

the implementation of the transition state theory in the finite

element package finite element micromagnetics (FEMME)

(Ref. 23) are given. The implementation method is compared

to analytical solutions in Sec. III. An improved method for the

calculation of f0 is presented in Sec. IV. Summary and discus-

sion are given in Sec. V.

a)Author to whom correspondence should be addressed. Electronic mail:

suess@magnet.atp.tuwien.ac.at.
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II. NUMERICAL CALCULATION OF THE ATTEMPT
FREQUENCY

The numerical implementation is based on Kramers

transition state theory,13 which Langer transposed and

expanded to multidimensional systems in 1967.14 As an

assumption for the transition state theory one has to assume

that the energy barrier separating the stable states is much

higher than the thermal energy KBT.Hence, the transition

rate theory is restricted to low temperature. An other

assumption is that the basic transition state theory is limited

to the intermediate high damping limit. Hence, only mag-

netic systems where the precessional motion of the system

can be neglected can be treated. One consequence of the in-

termediate to high damping limit is that the obtained attempt

frequencies do not depend on the temperature, which is gen-

erally not correct. Besides these limitations, the transition

state theory is successfully applied in various applications

ranging from the calculation of enthalpy of chemical reac-

tions to nucleation processes in condensed matter physics.

According to Langers approach, the attempt frequency

determines the probability current for the configuration dis-

tribution on the energy surface around the saddle point.

The following steps are required in order to calculate the

attempt frequency by the means of the transition state

theory:

1. The configuration of the system at the minimum and at

the saddle point given as the values of all degrees of

freedom.

2. The value and curvature of the total energy surface at the

minimum and at the saddle point with respect to appropri-

ate canonical variables.

3. The systems’ equation of motion in canonical variables

along the energy surface to describe the dynamics around

the saddle point.

Knowledge of the above properties allows one to calcu-

late the attempt frequency. This can be written as

f0 ¼
kþ
2p

X0: (1)

Here, kþ denotes for the dynamical prefactor taking into

account for the equation of motion of the system and X0 is

the ratio of the well and saddle angular frequencies.

A. Dynamical factor kþ from the
Landau-Lifshitz-Gilbert equation

The dynamical factor kþ is obtained by solving the

noiseless linearized equation of motion. In micromagnetics,

the equation of motion can be written in the form of the

Landau-Lifshitz-Gilbert equation as,

@

@t
~J ¼ � c

1þ a2
~J � Heff

��!� a
1þ a2

c
JS

~J � ð~J � Heff
��!Þ; (2)

where the magnetic polarization ~J and the effective Heff
��!

field

are continuous functions of space. In the following, we

discretize the continuous equation of motion using the finite

element method using the box scheme.11,23 We can write for

the effective field on the node point i,

Heff ;i � �
1

Vi

@E

@Ji

� �
(3)

with Vi being the corresponding volume of spin i and E being

the total energy. The structure of the Landau-Lifshitz-Gilbert

equation leads to a constant length of the magnetic polariza-

tion ~J
�� �� ¼ Js. As a consequence, the number of independent

equations is 2N, where N is the number of spins. In order to

apply the theory developed by Langer, the system has to be

expressed with its canonical variables.14 For a system with

N-spins, the canonical variables on node point i are given

by,10,17

pi ¼ ViJs cosðhiÞ
qi ¼ /i; (4)

where the polar angle angle /i and azimuthal angle hi are

defined as,

Ji
!¼ Js sin hi cos /i; sin hi sin /i; cos hið Þ: (5)

The definition of the canonical variables pi and qi is conven-

ient since the determinate of the Jacobian matrix

det
@ðJi;x; Ji;y; Ji;zÞ
@ðpi; qi; JsÞ

� �
¼ const (6)

is constant and does not depend on the angle /i or hi. This is

in contrast to the formulation where instead of pi and qi, the

spherical coordinates /i and hi are used. In this case,

the determinate of the Jacobian contains a term sinðhi) and

the transition state theory cannot used in the simple form as

given by Eq. (1) but rather would require to include the non

constant Jacobian.

The Landau-Lifshitz-Gilbert equation for spin i in

canonical variables reads,

@pi

@t
@qi

@t

0
BB@

1
CCA ¼ � c

JsVið1þ a2Þ
1

sinhi

�
�JsViasin2hi

@E

@hi
� JsVisinhi

@E

@/i

� @E

@hi
þ a

sinhi

@E

@/i

0
BB@

1
CCA: (7)

Let us denote g2i�1 ¼ pi and g2i ¼ qi. We can write the equa-

tion of motion in the form,

@g2i�1

@t
¼ @pi

@t
¼: f2i�1ðg1;…; g2NÞ; (8)

@g2i

@t
¼ @qi

@t
¼¼: f2iðg1;…; g2NÞ: (9)

Transition state theory considers the linear dynamics around

the saddle point. Linearizing the right hand side around the

saddle point, we obtain

093917-2 Fiedler et al. J. Appl. Phys. 111, 093917 (2012)
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@g1

@t

..

.

@g2N

@t

0
BBBBB@

1
CCCCCA�

f1

..

.

f2N

0
BB@

1
CCA
��������
sp

þ

@f1

@g1

…
@f1
@g2N

..

. . .
. ..

.

@f2N

@g1

…
@f2N

@g2N

0
BBBBBB@

1
CCCCCCA

������������
sp

g1�gsp;1

..

.

g2N�gsp;2N

0
BB@

1
CCA:

(10)

The first derivatives of the energy with respect to the spin

components at the saddle point are zero, thus, the first term

on the right hand side is zero as well. The second term we

define as Hdyn

Hdyn :¼

@f1
@g1

…
@f1

@g2N

..

. . .
. ..

.

@f2N

@g1

…
@f2N

@g2N

0
BBBBBB@

1
CCCCCCA

������������
sp

: (11)

The last term we define as vector �k ¼ gk � gsp;k. The time

derivative of ~� equals the left hand side of Eq. (10). So

Eq. (10) can be written as

@~�

@t
� Hdyn~�: (12)

This is a linear system of differential equations which has

2N eigenvalues kk with corresponding eigenvectors �k
!0

. The

solutions are of the form

�k
!¼ �k

!0
ekkt: (13)

With the exception of one eigenvalue, all other eigenvalues

of the matrix Hdyn at the saddle point are negative. This sin-

gle positive eigenvalue is the kþ that we need for the calcula-

tion of the attempt frequency.

For the numerical calculation of Hdyn, the function f ¼ fi

has to be derived with respect to the coordinate x ¼ gi. This

was calculated numerically using finite differences and a

seven point stencil method.

f 0ðxÞ � �f ðx� 3hÞ þ 9f ðx� 2hÞ � 45f ðx� hÞ þ 45f ðxþ hÞ � 9f ðxþ 2hÞ þ f ðxþ 3hÞ
60h

: (14)

The step size used in the numerical results was h ¼ 0:005.

B. Statistical factor X0 from the Hessian matrix

The statistical factor X0 relates the curvature of the total

energy with respect to the canonical variables at the saddle

point and at the minimum. The curvature is obtained by cal-

culating the second derivative of the energy,

H : ¼

@h1

@g1

� � � @h1

@g2N�2

..

. . .
. ..

.

@h2N�2

@g1

� � � @h2N�2

@g2N�2

0
BBBBB@

1
CCCCCA

¼

@2E

@g1@g1

� � � @2E

@g2N�2@g1

..

. . .
. ..

.

@2E

@g1@g2N�2

� � � @2E

@g2N�2@g2N�2

0
BBBBBB@

1
CCCCCCA:

(15)

X0 is the square root of the ratios of the determinants of the

Hessian matrices at the minimum and the saddle point

X0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det Hmin

jdet Hspj

s
: (16)

It is important to note that the theory of transitions as devel-

oped by Langer is only valid for canonical variables. Sup-

pose that instead of the canonical variables pi; qið Þ, the polar

angles hi;/ið Þ are used to describe the system (see, e.g., Ref.

18) and its derivatives @2E
@hi@/i

. Then, the obtained f0 is correct

only if the magnetic state at the minimum and the saddle

point fulfills hi ¼ p=2 for all spins. This prerequisite is, for

example, fulfilled for a single domain particle having the

easy axis pointing along the x-axis and an external field

applied along the y-axis as in Ref. 18. The same argument

applies for the calculation of kþ.

For the numerical calculation of the derivative, the same

finite difference scheme was used as described in Sec. II A.

C. Climbing image nudged elastic band method

The calculation of the statistical prefactor X0 and the

calculation of kþ require knowledge of the saddle point con-

figuration. A very accurate calculation of the saddle point

configuration is essential for the calculation of the attempt

frequency. The nudged elastic band method was used in

order to calculate the saddle point configuration.8,21 It was

found that the accuracy of the nudged elastic band method is

not sufficiently high in order to calculate reliably the attempt

frequency. In order to improve the accuracy of the saddle

point determination, a climbing image elastic band method

was implemented.12

III. VALIDATION OF THE METHOD

A. Small magnetic cube

In order to test the numerical calculation of the attempt

frequency, we compared the analytically obtained attempt

frequency for a single domain particle with uniaxial anisot-

ropy to the numerically obtained one. For the numerical

model, the following parameters were used: damping con-

stant a ¼ 1, anisotropy constant K1 ¼ 1:0 MJ=m3, magnetic

saturation polarization Js ¼ 0:5T, and exchange constant

093917-3 Fiedler et al. J. Appl. Phys. 111, 093917 (2012)
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A ¼ 10 pJ=m. The model size is 0.6� 0.6� 0.6 nm3. 12 fi-

nite elements were used to discretize the cube. The easy axis

of the cube was assumed to be parallel to the x-axis. The

external field was applied parallel to the y-axis. Results were

compared with those obtained using the analytically derived

expression for the attempt frequency given in Ref. 18.

In Fig. 1(b), two magnetization states of the homogene-

ous cube are shown: on the left, the initial state is depicted,

with magnetization pointing close to the easy axis. On the

right, the magnetization is shown at the saddle point of the

energy, where the magnetization is perpendicular to the easy

axis. The magnetization vectors of all nodes are shown. Due

to the small structure size, all spin vectors are almost per-

fectly parallel to each other, indicating that we should expect

a good agreement with the analytic result.

In order to compare the numerical results directly with

the analytical results, the attempt frequency is plotted as a

function of the external field strength as shown in Fig. 1(a).

The simulations agree very well with the analytical solution.

It should be noted that both the analytical solution and the

numerical simulation are not valid for zero external field,

since the expressions for field lowered symmetry are used.

As a consequence, the spike-like increase at zero external

field is an artifact and has no physical meaning.

B. Elongated particle

As a second example, we calculate the attempt fre-

quency of an elongated particle. The simulated geometry

of the elongated grain is: length 25 nm, width

1.6� 1.6 nm. This shape is similar to the magnetic grains

used as the recording media in modern hard disks, only

slimmer (die lateral dimension of a grain of a hard disc is

about 6� 6 nm). According to the analytical theory of

Ref. 16, the cross section area does not influence the

attempt frequency. Hence, in order to save computational

time, we model the grain of a recording media with a

smaller cross section, but we can expect that the results

can be used for realistic grains.

The following parameters were used for the graded

media grain example: damping constant a ¼ 0:2, anisotropy

constant increasing quadratically from zero to

K1 ¼ 3:6 MJ=m
3
, magnetic saturation polarization

Js ¼ 0:5T, and exchange constant A ¼ 10 pJ=m. The mate-

rial parameters are the same as in Ref. 22.

Fig. 2 shows the simulated grain with quadratically

increasing K1. The directions of the easy-axis and the applied

perpendicular external magnetic field are shown. The mag-

netic state at the minimum of the energy is shown on the left

side of the figure, and the saddle point is shown on the right

side.

As in Sec. III A, the attempt frequency was calculated

as a function of a perpendicular applied field. In order to ver-

ify reliability, the simulations were repeated with different fi-

nite element meshes.

Fig. 3 shows the attempt frequency of four different

finite element meshes, with different numbers of volume ele-

ments. As can be seen, the results of the attempt frequency

do not converge to a single value as the finite element mesh

size is decreased. Furthermore, the obtained value of the

attempt frequency is one order of magnitude larger than the

value reported in Ref. 22. The reason for these discrepancies

is discussed in Sec. IV.

FIG. 1. (a) The numerically calculated attempt frequency of a small mag-

netic particle is compared with the analytical result as a function of the

external applied field (H field applied along y-axis, easy axis parallel to

x-axis). (b) The magnetic state at the minimum (left) and at the saddle point

(right) are shown.

FIG. 2. Model of the graded media grain which is soft magnetic at the top

and hard magnetic at the bottom. (left) energy minimum state (right) saddle

point configuration.

093917-4 Fiedler et al. J. Appl. Phys. 111, 093917 (2012)

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

131.130.30.233 On: Wed, 30 Jul 2014 12:15:57



IV. IMPROVED METHOD USING ANALYTICAL FITS

The reason for the numerical errors of the attempt fre-

quency can be found in the calculation of X0, which consists

of (the square root of) a ratio of determinants as given by

Eq. (16). The calculation of the determinant of the symmet-

ric matrix H equals the product of all its eigenvalues k1, …,

k2N , where N is the number of finite element node points.

Hence, we can write X0 in the form

X0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQ

kmini

j
Q

kspi
j

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQ
kminiQ
kspi

����
����

s
:

All eigenvalues of Hmin at the minimum are positive. At the

saddle point, there is only one negative eigenvalue. The

number of eigenvalues increases with increasing number of

finite elements. Hence, small numerical errors in the calcula-

tion of the eigenvalues multiply together to form a consider-

able total error.

Fig. 4 shows the ratio of the eigenvalues. The x-axis rep-

resents the index i of the eigenvalues, and the y-axis repre-

sents the natural logarithm of the ratios of eigenvalues,

kmin;i=ksp;i. In Fig. 4, the eigenvalues are sorted according to

modulus, where the eigenvalue with the index i ¼ 1 has the

smallest modulus, and i ¼ 2N is the eigenvalue with the larg-

est modulus. As shown in Fig. 4, only ratios of eigenvalues

with small i are not close to or equal to 1. All the ratios of

the eigenvalue with i� 100 are very close to one, which

results in lnðkmin;i=ksp;iÞ � 0 for i� 100.

The numerical evidence in Fig. 4 illustrates the insensi-

tivity of the saddle point to the majority of eigenmodes and

the thermal significance of modes with the smallest eigen-

values. As noted in Ref. 15, a domain wall pinned at an

interface supports a broad range of travelling spin waves

that are essentially unperturbed by the wall structure, and a

set of modes localized to the domain wall. The modes local-

ized to the wall have the smallest eigenvalues and represent

the most relevant fluctuations for thermal depinning of the

wall.

Braun has shown that for elongated particles, the loga-

rithm of the ratio of eigenvalues scales with i
1þi2 (see formula

(4.12) of Ref. 1).

In order to reduce the numerical error which is intro-

duced by the higher order eigenfrequency, we fit the values

of lnðkmin;i=ksp;iÞ to the following function:

f ðiÞ ¼ a � i

1þ i2

� �b

; (17)

where a and b are parameters determined by a mean square

fit to the numerical data for 5 < i < 60. In Fig. 5, the black

line represents the ratios of eigenvalues, calculated by the

numerical simulation, and the red line is the fitted function,

which values of parameters a and b are given in the inset.

The calculation of X0 is done by calculating

X0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQc

i¼0

kmini

kspi
�
QN

i¼cþ1 efitðiÞ
��� ���r

. We found for a wide range

FIG. 3. The attempt frequency as a function of the external field strength is

shown for a graded media grain. The external field is applied perpendicular

to the easy axis. The results are shown as a function of the number of finite

elements.

FIG. 4. Logarithmic ratios of eigenvalues as a function of the eigenvalue

index i. (number of finite elements¼ 1316, Hext is 0.02 T.)

FIG. 5. Contributions to calculation of X0: up to index 50, the original data

are taken (black line), and from index 50 onwards, the values of the fitting

function are used (red line).
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of c (10 < c < 100) that the value of X0 is not significantly

influenced by the actual chosen value of the parameter c.

The calculation of the attempt frequency of the graded

media grain is repeated with the improved method using

the fit function. Fig. 6 shows that the mesh dependency of

the results is decreased by this method. If the value of the

attempt frequency is extrapolated for an external field

approaching zero we can estimate the attempt frequency to

be in the order of f0 � 1850GHz 6 650GHz. Comparing this

estimate of the attempt frequency with the estimate of the

attempt frequency obtained by Langevin dynamic simula-

tions (in Ref. 22, for the same system, a value of

f0 � 1638GHz 6 46GHz is estimated), despite the various

assumptions, which are used in both methods, a considerable

good agreement can be found.

From an application point of view, it is interesting to

compare the attempt frequency of a grain with graded anisot-

ropy to the attempt frequency of grain for which anisotropy

is uniform throughout. Fig. 7 shows the attempt frequency of

a single phase grain, where all the material parameters are

the same as for the graded media grain of Fig. 6 except that

the anisotropy is a constant K1 � 3:6 MJ/m3. This value

equals the maximum anisotropy constant of the graded

media grain of the previous results.

V. RESULTS AND DISCUSSION

A numerical implementation of the transition state

theory was described with application to two example prob-

lems: reversal of a single phase and graded media magnetic

grains. The implementation makes use of the micromagnetic

package FEMME. This method allows for the calculation of

the long term thermal stability of magnetic nanostructures

without any free parameters. The input parameters of the

model are the exchange constant, the anisotropy constant,

the spontaneous saturation magnetization, the damping con-

stant, and the geometry of the magnet. The advantage of the

presented method over Langevin-dynamic simulation is that

the thermal stability of large magnetic nanostructures can be

calculated. Furthermore, Langevin-dynamic simulations are

restricted to time scales of several nano-seconds due to com-

putational effort.

In previous work, it was shown that so called exchange

spring media exhibit superior writeability as compared to

single phase media, without lowering the energy barrier.20

The energy barrier was assumed to determine the thermal

stability. In this paper, we show the exact relation of the

energy barrier and the thermal stability by calculating

the attempt frequency. In the present paper, we show that the

attempt frequency and energy barrier are comparable for a

single phase media and a graded media grain with single

phase grain anisotropy is the same as the maximum anisot-

ropy in the graded media grain. Hence, it was shown that

these two media types indeed have very similar thermal

stabilities, but the coercive field for the graded media grain

is about a factor of seven smaller than the single phase grain.
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