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We present a steepest descent energy minimization scheme for micromagnetics. The method searches on

a curve that lies on the sphere which keeps the magnitude of the magnetization vector constant. The step

size is selected according to a modified Barzilai-Borwein method. Standard linear tetrahedral finite

elements are used for space discretization. For the computation of quasistatic hysteresis loops, the steepest

descent minimizer is faster than a Landau-Lifshitz micromagnetic solver by more than a factor of two.

The speed up on a graphic processor is 4.8 as compared to the fastest single-core central processing unit

(CPU) implementation. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4862839]

I. INTRODUCTION

A. Hysteresis in micromagnetics

Energy application and the quest for rare-earth free or rare-

earth reduced permanent magnets8,16 renewed the interest in

micromagnetics of permanent magnets.15 Most state-of-the-art

micromagnetic solvers integrate the Landau-Lifshitz Gilbert

(LLG) equation of motion in time. However, the accessible time

scale of micromagnetics simulations is in the range of nanosec-

onds. This time scale is irrelevant for permanent magnet appli-

cations. The measurement time for hysteresis loops of

permanent magnets is in the range of seconds. Therefore, micro-

magnetic solvers that minimize the energy directly instead of

solving a time dependent equation might be more suitable for

the analysis for magnetization reversal in permanent magnets.

Hysteresis in non-linear system results from the path

formed by subsequent local minima. Kinderlehrer and Ma9

computed hysteresis loops in ferromagnets from the continu-

ation of solutions for decreasing and increasing applied

fields. Due to the constraint, that the magnetization vector

has to keep its length, a constrained non-linear optimization

problem at each point of the hysteresis loop has to be solved.

In permanent magnet applications (e.g., wind turbines,

electric motors), the sweeping time of the external field is in

the range of seconds, which is orders of magnitude lower

than the gyromagnetic precession (in contrast to, e.g., mag-

netic recording). Thus, we believe that the precession term

can be dropped. So, in this paper, we do not compare the

phenomenological equation of motion with energy minimi-

zation, rather than a numerical optimization approach with

(adaptive) time integration, both, for Eq. (9).

B. Minimization techniques

Originally, LaBonte11 computed equilibrium magnetic

states in micromagnetics numerically. He used a finite

difference scheme, in order to discretize the Gibbs free energy

of a Bloch-wall in a ferromagnetic film. At each step of an itera-

tive procedure, he selected a computational cell and rotated the

magnetization vector of the cell in the direction of the effective

field: The normalized magnetization vector is replaced by the

normalized effective field. Kosavisutte and Hayashi10 showed

that the original LaBonte method can be accelerated by the use

of over- and under-relaxation. These methods rotate the magnet-

ization towards the effective field. The effective field is propor-

tional to the gradient of the energy. Therefore, these methods

are steepest descent minimization schemes with a particular

choice of step-length and a subsequent normalization step.

In unconstrained minimization, the use of conjugate

directions rather than steepest descent direction method

improves the convergence. Cohen and co-workers4 intro-

duced a conjugate gradient method for the computation of

molecular orientation of liquid crystals. The orientation vec-

tors in liquid crystals have a fixed length similar to the mag-

netization in ferromagnets. There are two modifications to the

classical conjugate gradient method: (1) The gradients are

projected onto a plane normal to the current orientation vec-

tor. (2) After the line search, the solution vector is normal-

ized. In micromagnetics, a similarly modified conjugate

gradient method has been applied, Viallix and co-workers19

computed Bloch walls and Bloch lines in ferromagnetic films.

Alouges and co-workers1 computed equilibrium configura-

tions and switching fields of small ferromagnetic particles.

Recently, steepest descent methods have been revisited for

large scale minimization problems.6 In combination with a spe-

cial choice of a step length,5 steepest descent methods might

even out-perform preconditioned conjugate gradient methods.

In this work, we use a variant of these newly developed

steepest descent methods and apply it to finite element

micromagnetics. In order to take into account the constraint

on the magnitude of the magnetization, we use a curvilinear

search7 approach on the sphere. We compare the perform-

ance of the minimization algorithm with fast LLG solvers

for computation of the hysteresis loop of permanent magnets.a)Electronic mail: lukas.exl@univie.ac.at.
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Further, we report on the graphic processor unit (GPU)

implementation of the algorithm.

II. METHOD

We are interested in finding local minima of the total

Gibbs free energy, i.e., we want to solve

min /tðmÞ subject to kmk ¼ 1; (1)

where the total energy /t consists of stray field, exchange,

anisotropy, and external energy.

A. Steepest descent direction

Let g : m 7!m=kmk denote the map onto the unit

sphere. We get for the variational derivative of h :¼ /t � g
for unit magnetization, i.e., kmk ¼ 1,

d
dm

hðmÞ ¼ JT
g ðmÞ

d
dm

/tðgðmÞÞ

¼ d
dm

/tðmÞ � m � d
dm

/tðmÞ
� �

m; (2)

where JgðmÞ is the Jacobian of g at m.

The steepest ascent direction d
dm hðmÞ corresponds to the

orthogonal projection of d
dm /tðmÞ onto the orthogonal com-

plement of m. Using Lagrange’s formula, i.e.,

a� ðb� cÞ ¼ ða � cÞb� ða � bÞc; (3)

we can rewrite Eq. (2)

d
dm

hðmÞ ¼ m� �m� d
dm

/tðmÞ
� �

: (4)

Assume now that /t is a spacial approximation of the

total Gibbs free energy, e.g., by finite element discretization.

By the definition

HðmÞ :¼ �m�r/tðmÞ; (5)

a steepest descent method would calculate a new iteration

mnþ1 from a given normalized approximation mn by

mnþ1 ¼ mn � sn mn � HðmnÞ; (6)

for a certain step size sn. Note that the new approximation

mnþ1 is not normalized in general.

B. Curvilinear search on the sphere

In our iteration method, we replace the steepest descent

direction by

�mn þmnþ1

2
� HðmnÞ; (7)

yielding the iteration scheme

mnþ1 ¼ mn � s
mn þmnþ1

2
� HðmnÞ: (8)

This update scheme preserves the length of the iterates, i.e.,

kmnþ1k ¼ kmnk, which can be easily checked by multiply-

ing Eq. (8) by mn þmnþ1. Moreover, the new state mnþ1 can

be computed by explicit formulas.7

We want to stress that the update scheme (8) can be

seen as an implicit integration rule for the flow equation

@tm ¼ �m� �m� d
dm

/tðmÞ
� �

; (9)

which is, up to constants, the Landau-Lifshitz equation with

only damping, since the effective field is defined as

heff ¼ �d/t=dm.

C. Step length selection

The first step size s0 is calculated by an inexact line

search and all subsequent steps sn by the so-called

Barzilian-Borwein (BB) rule.2 We therefore define gn

:¼ rhðmnÞ ¼ mn � ð�mn � r/tðmnÞÞ; sn�1 :¼ mn �mn�1

and yn�1 :¼ gn � gn�1. The step size sn is determined such

that Dn :¼ s�1
n I is an approximation of the Hessian of h at

mn, i.e., the secant equation Dnsn�1 ¼ yn�1 holds. The two

possible solutions to this equation are

s1
n ¼
ðsn�1ÞTsn�1

ðsn�1ÞTyn�1
; s2

n ¼
ðsn�1ÞTyn�1

ðyn�1ÞTyn�1
: (10)

One possibility is to alternately switch between s1
n and s2

n.

However, in our numerical tests we used the more elaborate

strategy proposed for step selection in gradient projection

methods.12

Note that the BB rule yields a non-monotonic method;

as globalization strategy, we therefore used inexact line

search if the new computed energy was still larger than the

previous 20 energies.

III. RESULTS

A. Comparison with LLG solver

Here, we compare the steepest descent solver with a

state-of-the-art finite element solver. We computed the

demagnetization curve of a spherical Nd2Fe14B particle with

a diameter of 20 nm. The number of tetrahedral elements is

80 000. The edge length of a tetrahedron is 0.76 nm, which is

smaller than the exchange length
ffiffiffiffiffiffiffiffiffiffiffi
A=K1

p
¼ 1:35 nm for

Nd2Fe14B.14 Owing to the small particle size and the fine

mesh, the problem is stiff. Stiffness in micromagnetics has

been identified by the collaborative motion of many mag-

netic moments18 at once. Generally, stiffness leads to slow

convergence when explicit solvers are used.

The steepest descent solver and the LLG solver compute

the magnetostatic field via a magnetic scalar potential. The

LLG solver uses a hybrid finite element/boundary element

method for the computation of the magnetostatic field. The

boundary element method is accelerated using hierarchical

matrices. For ease of porting the software to the GPU, we

use a space transformation method3 instead of the acceler-

ated boundary element method for the treatment of the open

boundary problem in the steepest descent solver. In the LLG

17D118-2 Exl et al. J. Appl. Phys. 115, 17D118 (2014)
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solver, we set the torque term to zero. Time integration is

performed using a preconditioned, implicit method with

adaptive time step selection.17

The external field is ramped from 0 to �6 T in steps of

0.01 T. In the static solver, the external field is decreased

when the l2 norm of the projected gradient is smaller than

10�6, i.e., rhTrh < 10�12, cf. Eq. (2). In the dynamic

solver, the field is changed at a rate of �0.01 T/ns, which is

slow enough to calculate a good approximation to the analyt-

ical value of the coercive field. The damping constant in the

dynamic approach is not relevant because an adaptive time

step scheme is used. The field is applied at 45� with respect

to the uniaxial anisotropy axis.

Table I compares the time to reach the solution and the

number of function evaluation for two algorithms. The func-

tion evaluations denote the energy gradient evaluations for

the steepest descent method and the effective field evaluation

in the LLG solver. The computed coercive field is close to

the analytic value (half the anisotropy field) for both simula-

tion methods. Although the LLG solver requires less func-

tion evaluations, the steepest descent method is faster by a

factor of 2.13. In the steepest descent method, more then

90% of the time is spent for solving the linear system for the

magnetic scalar potential.

B. GPU implementation

The steepest descent method was also implemented on a

GPU. The implementation of the steepest descent method is

based on sparse matrix operations and basic linear algebra.

The required linear algebra operations are listed in Table II.

We use OpenBLAS for the single core CPU implementation

and the PARALUTION library13 (version 0.3.0) for GPU

implementation.

We compared the time to reach the solution for com-

puted the demagnetization curve. The CPU was an Intel i7.

The GPU was a NVIDIA m2070. We obtained a speed-up of

4.8 on the GPU as compared to the fastest single core CPU

implementation.

IV. CONCLUSION

The hysteresis loop of permanent magnets can be com-

puted using energy minimization techniques. Steepest

descent methods with modified Barzilai-Borwein step length

selection outperform state-of-the-art LLG solvers. With fast

sparse matrix libraries, the proposed solver shows reasonable

performance on graphic cards.
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