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Abstract

3D magnetostatic Maxwell equations are solved using the direct Johnson-Nédélec FEM-BEM coupling method
and a reduced scalar potential approach. The occurring BEM matrices are calculated analytically and approx-
imated by H-matrices using the ACA+ algorithm. In addition a proper preconditioning method is suggested
that allows to solve large scale problems using iterative solvers.
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1. Introduction

For the design of various applications ranging from
electric motors to write heads in hard disks the so-
lution of 3D magnetostatic Maxwell equations is re-
quired. A straight forward method concerning imple-
mentation is the Magnetic Moment Method (MMM)
[1]. It does not require a mesh in free space and can
easily treat a nonlinear material law. A drawback of
the method is that it leads to fully populated matrices
of the size 3M×3M , whereM is the number of volume
elements. Recently, compression techniques such as
H-matrices were applied in order to reduce complexity
[2]. A well established tool for the solution of partial
differential equations is the Finite Element Method
(FEM) which can be applied to the magnetostatic
problem in its differential form. Various methods were
proposed to solve this open boundary problem, such
as infinite elements [3], ballooning elements [4], par-
allelepipedic shell transformation [5], and asymptotic
boundary conditions [6]. Drawbacks of these meth-
ods are either a certain number of elements in the
outer region or intrinsic systematic errors. For linear
problems the Boundary Element Method (BEM) al-
lows to transform the volume integrals arising from
the open boundary problem into corresponding sur-
face integrals, which reduces the computational com-
plexity of the problem. In order to be able to take
nonlinear material laws into account, the BEM can
be merged with the FEM combining the advantages
of both methods. The FEM efficiently takes into ac-
count the non-linearity of the problem, and the BEM
transforms the boundary condition from infinity to the
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surface of the magnet. Thus no finite elements are
required outside of the magnet in order to solve the
system accurately. For the strayfield calculation of a
given magnetization Fredkin-Koehler proposed an el-
egant way, where FEM and BEM equations are calcu-
lated sequentially [7]. For the solution of the complete
magnetostatic Maxwell problem direct FEM-BEM cou-
pling schemes, as the Johnson-Nédélec coupling pre-
sented in this paper, provide robust algorithms. In
this paper we combine a direct FEM-BEM coupling
scheme with a H-matrix compression technique for the
solution of the magnetostatic Maxwell problem. Fur-
thermore, we present a proper preconditioner which
leads to a fast and reliable solver.

The structure of the paper is as follows. Section 2
summarizes the open boundary problem and its for-
mulation with a reduced scalar potential. The cou-
pling of FEM and BEM is discussed in section 3 fol-
lowed by the construction of the BEM matrix in sec-
tion 4, where the H-matrix method is used in order
to compress the involved boundary matrices. For the
arising system of equations a proper preconditioner
for iterative solvers is proposed in section 5. Finally
section 6 shows numerical results and benchmarks for
different mesh sizes.

2. Reduced Scalar Potential Formulation

We start from magnetostatic Maxwell’s equations
which are defined in the entire space. The full space
is then divided into two partitions, since we use dif-
ferent representations in these regions. The region
Ω+ contains all the magnetic parts of the problem
which are described by FEM, whereas Ω− contains the
surrounding non-magnetic volume described by BEM.
The superscripts + and − are therefore used for phys-
ical quantities within Ω+ or Ω−, respectively (see Fig.
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1). Maxwell’s equations, the material laws in both re-
gions, and the jump conditions at the boundary of the
magnetic parts are given by

rotH = j B+ = µ+H+ (1)

divB = 0 B− = µ−H− (2)

n×
(
H+ −H−

)
= 0 (3)

n ·
(
B+ −B−

)
= 0 (4)

where the current density j is the source of the
magnetic field strength H which is related to the mag-
netic fluxB via the permeability µ. The normal vector
at the boundary n allows to distinguish jump condi-
tions for the normal as well as for the parallel compo-
nent of the magnetic field.

Figure 1: Example geometry for a yoke containing a mag-
netic region Ω+ and the surrounding area Ω−. In this
example the external field is created by a coil located in
Ω−.

In order to reduce the number of degrees of free-
dom one introduces a scalar potential by splitting the
total magnetic field into an external part Hext (which
is created by currents outside of Ω+) and the curl-
free induced magnetic field which can be expressed
as the gradient of a scalar potential u. Inserting this
definition of the magnetic field into the Eqn. (1) -
(4) leads to the following system of equations for the
scalar potential u. We introduce the normal derivative
of the potential at the surface of the magnetic parts
as φ = ∂u

∂n :

H = Hext −∇u (5)

∇ ·
(
µ+∇u+

)
= ∇ ·

(
µ+Hext

)
(6)

∇2u− = 0 (7)

u+ − u− = 0 (8)

µ+φ+ − µ−φ− =
(
µ+ − µ−

)
n ·Hext (9)

If there are no currents within Ω+, an alternative
formulation of the scalar potential can be used. In this
case, the internal field H+ is curl-free and can there-
fore be directly expressed as the gradient of a total
scalar potential, which leads to some slightly modified

equations [8]. Since the total magnetic field can be cal-
culated directly, numerical errors due to the subtrac-
tion of the external field are avoided. The drawback of
this method is that due to the different descriptions in
Ω+ and Ω− the potential is discontinuous at the sur-
face of the magnet and additional complications occur
if the region Ω+ is not simply connected.

3. FEM-BEM coupling

For sake of simplicity, we restrict ourselves to lin-
ear systems. Since µ is constant the divergence oper-
ator on the right-hand side of Eqn. (6) only acts on
Hext which gives 0.

Starting with the FEM equations for the internal
problem, we use a Galerkin approach with polynomial
test and shape function Λi(x) for each node i of the
problem. Transforming Eqn. (6) into the weak for-
mulations, performing an integration by parts, and
considering that for linear systems the source term
on the right-hand side vanishes, leads to the following
system of equations:∫

Ω

µ+∇Λi · ∇u+ dΩ−
∫
Γ

µ+ Λi∇u+ · n dΓ = 0 (10)

Using a FEM-only approach would require to define
either Dirichlet or Neumann boundary conditions in
order to get a solvable system. Since we do not know
these boundary conditions, we introduce the normal
derivatives of the potential at the boundary as new in-
dependent variables φ and add additional BEM equa-
tions to the system, which then has a unique solution.

For these additional equations, one recognizes that
the outer potential u− fulfills the Laplace equation.
With the help of the fundamental solutionG = 1

4π
1

|x−y| ,
u− can be expressed by the third Green’s identity in
terms of its Cauchy data (the potential and its normal
derivative) on the boundary Γ:

1

2
u− =

∫
Γ

(
u−∇G−∇u−G

)
ndΓ (11)

Mathematically, the coupling method resulting from
this approach, was first analyzed by Johnson and Nédélec
[9, 10] (the 1

2 factor is only valid for smooth surfaces
and has to be modified at edges [11]). The terms on
the right-hand side are called double-layer and single-
layer potential. For a general Galerkin-BEM, formula
(11) is multiplied by a test function Ψm(x) and inte-
grated over the boundary. In our implementation, we
use delta distribution as test functions for the BEM
equations Ψm(x) = δ(x−xm), which leads to a point-
matching approach that only evaluates the equations
at the centers of each boundary triangle. The main
advantage of this approach is that the computation
of the occurring boundary integrals is easier and less
time-consuming.
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Finally, we discretize our formulas by using linear
shape functions Λj for the potential u and piecewise-
constant shape functions 1n for its normal derivative
φ. Furthermore, u− and φ+ can be eliminated by use
of the jump conditions (8) and (9). Our discretized
variables as well as the test function used within the
Galerkin formalism look like the following:

u+(x) =
∑
j

uj Λj(x) φ−(x) =
∑
n

φn 1n(x) (12)

Combining FEM and BEM equations to one to-
tal system of equations we end up with a quadratic
system M which fully defines our problem:

(
M11
ij M12

in

M21
mj M22

mn

)(
uj
φn

)
=

(
RHS1

i

0

)
(13)

The individual elements of the matrices can be cal-
culated as follows. Remember that for the FEM part
these matrices are sparse whereas the BEM formalism
leads to dense matrices:

M11
ij =

∫
Ω

µ+∇Λi · ∇Λj dΩ (14)

M12
in = −

∫
Γ

µ+ Λi 1n dΓ (15)

M21
mj =

1

2
Λj(xm)− 1

4π

∫
Γ

Λj(y)
xm − y

|xm − y|3
n dΓy

(16)

M22
mn =

1

4π

∫
Γ

1n(y)

|xm − y|
dΓy (17)

RHS1
i =

∫
Γ

(µ+ − µ−)n ·HextΛi dΓ (18)

The indices i, j run from 1 to the number of nodes of
the geometry, whereas n,m run from 1 to the num-
ber of boundary elements. Since only boundary nodes
contribute to the boundary integrals in M12 and M21

all matrix elements which correspond to nodes within
the volume are equal to 0.

4. Calculation of BEM matrices

The occurring BEM matrices are calculated ana-
lytically as given in Ref. [12]. (An alternative but
more special solution was given by Lindholm [11]).
The single and double-layer potential (E and D) at
the point x created by a triangle ∆ using the Greens’
function of the 3 dimensional Laplacian are given by

E(x) =
1

4π

∫
∆

f(y)

|x− y|
dΓy (19)

D(x) =
1

4π

∫
∆

f(y)
x− y

|x− y|3
n dΓy (20)

where f(y) stands for the shape function of the used
elements. For our implementation we confine our-
selves to piecewise constant shape function for the
single-layer potential and linear shape functions for
the double-layer potential. Since these integrals are
translation- and rotation-invariant, we use a transfor-
mation Φ to rotate the triangle into the x1-x2-plane
and to move the reference point x onto the x3 axis
(see Fig. 2). Doing this, we can write a general poly-
nomial shape function as f(y) =

∑
jk fjk y

j
1 y

k
2 and

we can break the problem down to the calculation of
the integrals for the individual monomials that occur
within the sum:

Ejk(x) =
1

4π

∫
∆

yj1y
k
2√

y2
1 + y2

2 + x2
3

dy1dy2 (21)

Djk(x) =
x3

4π

∫
∆

yj1y
k
2√

y2
1 + y2

2 + x2
3

3 dy1dy2 (22)

Figure 2: Diagram schematizing the triangle area used for
the integration process.

The divergence theorem
∫

∆
divG dΓ =

∫
γ
Gn dγ

can be used to further simplify the calculation by
transforming the surface integrals to line integrals [13].
One can finally derive a recursive formula for the higher
order surface integrals that only depends on lowest or-
der line integrals which can be solved analytically as
well as on the lowest order double-layer term D00.
Furthermore D00 can be expressed as the surface an-
gle corresponding to x and ∆ which allows a simple
geometric interpretation of these terms. For the con-
struction of the surface angle one connects x with the
three corners of the triangle. The intersection points
of these connection lines with the unit sphere define
the corners of a spherical triangle on the unit sphere.
The area of this triangle finally gives us the value of
D00 (see Fig. 3).

Using the recursive formula [13] allows to calculate
the occurring integrals for shape functions of any or-
der. For sake of clarity we now demonstrate how this
recursion is derived for the lowest order single-layer
potential that is used in our algorithm. If we set G =(
y1
r ,

y2
r

)
with divG = 1

r +
x2
3

r3 and r =
√
y2

1 + y2
2 + x2

3
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Figure 3: D00 can be interpreted as the surface of the tri-
angle on the unit sphere.

the divergence theorem gives:∫
∆

1

r︸︷︷︸
4πE00

+ x2
3

∫
∆

1

r3︸ ︷︷ ︸
4πx3D00

=

∫
γ

(y1

r
,
y2

r

)
n dγ (23)

We can now calculate the interaction matrix elements
of the piecewise constant single-layer shape functions
E00, by means of the line integral on the right-hand
side of equation (23) as well as of the surface angle
D00.

The main numerical problem when dealing with
BEM matrices is that they are dense, and thus exten-
sive computation time and storage capacity is needed
to handle them. This problem can be overcome by use
of H-matrices [14], where some blocks of the dense ma-
trices (M21, M22) are replaced by low rank approxi-
mations. If a block can be simplified or not depends on
the admissibility criterion which tells whether the size
of the corresponding pointsets is smaller than the dis-
tance between source and destination pointset. If the
admissibility criterion is fulfilled, the corresponding
block describes far-field interaction and thus can be
approximated without introducing a significant error.
On the other hand if source and destination pointsets
are very close to each other, then the corresponding
matrix is stored as a full matrix in order to obtain a
sufficient accuracy.

We use the ACA+ algorithm which allows to ob-
tain low-rank approximations without having to eval-
uate all elements of the original block [15]. Therefor
the approximated system matrix of rank k is expressed
as M̃n×m = Un×k Vk×m. U and V are created by
sequentially extracting lines and columns of the orig-
inal matrix Mm×n. Lines and columns of the matrix
are chosen in a way that the biggest elements of the
error matrix R = M− M̃ are eliminated.

5. Preconditioning

In order to solve the system of equations, we use
an iterative solver (KINSOL [16]) which is an efficient
method for large non-linear systems. It performs an
Inexact Newton iteration for general non-linear prob-
lems. Each step of the non-linear iteration requires the

solution of a linear system of equations. For this pur-
pose KINSOL uses the Generalized Minimal RESidual
(GMRES) Krylov subspace method.

For linear system one can define a condition num-
ber of the system matrix M which is directly related
to the convergence speed of the iterative method and
can be expressed as cond(M) = ||M|| ||M−1|| (with a
proper matrix norm). We empirically found that the
condition number is directly proportional to the sus-
ceptibility of the simulated material for various mod-
els (see Fig. 6). Therefore, especially for systems with
high permeability, computation time can be decreased
significantly by use of a proper preconditioner.

In our current implementation, we use the pre-
conditioning feature of the solver suite, that does a
right-preconditioning, where one rewrites the original
matrix equation as (MP−1)(Px) = RHS, with a pre-
conditioner matrix P and the unknowns x = (uj , φn).
This leads to a new system matrix MP−1 for the it-
erative solver with a smaller condition number.

The preconditioner matrix P is a good approxima-
tion of the system matrix M, but it is easier to solve.
The most time consuming part of solving the system
of equations is due to the dense boundary matrices.
For BEM matrices it can be proven that simple diag-
onal scaling reasonably improves conditioning [17].

For the coupled system numerical studies showed
that using only the diagonal elements of the single-
layer matrix as well as only the elements contributing
to the 1

2 factor within the double-layer matrix leads to
a sparse approximation of the system matrix M which
can be used as an efficient preconditioner:

P =

(
M11
ij M12

in
1
2Λj(xm) diag

(
M22
mn

)) (24)

For all our test geometries, computation times could
be decreased dramatically, and additionally it does no
longer depend on the used susceptibility. Results are
presented in the following section.

6. Results

In this section, the algorithm is applied to calcu-
late the induced magnetization of a magnetic sphere
with susceptibility χ exposed to a homogeneous ex-
ternal field and a yoke magnetized by an electric coil.
Since the solution for the magnetic sphere in an ex-
ternal field can be calculated analytically, it is well
suited to check the accuracy of our algorithm. The
second example shows a more advanced application
of our algorithm.

6.1. Sphere
The analytical calculation of the homogeneously

magnetized sphere (with a magnetization M) shows
that the induced field Hd is also homogeneous within
the sphere and its value is − 1

3M . Adding the mate-
rial law M = χH, where H is the total field H =

4



Hd +Hext and χ is the magnetic susceptibility of the
material, directly leads to the analytical result:

M =
3χ

3 + χ
Hext (25)

The comparison of the numerical results with Eqn.
(25) shows that the mean magnetization (averaged
over the volume of the sphere) differs by around 0.1%
using 10535 elements. In order to demonstrate the
performance of the presented algorithm we measured
runtime and maximal memory consumption for dif-
ferent number of elements (see Table 1). For high
susceptibilities the problem becomes more difficult to
solve due to the large condition number. For prac-
tical applications the largest relevant susceptibility is
around χ = 105, which we therefor use for our studies.
The calculated magnetization for a sphere with 1074
elements is shown in Fig. 4.

Figure 4: Simulation results for the magnetization of the
magnetic sphere in a homogeneous external field. The
Magnetization is nearly perfectly aligned to the external
field which is applied in z direction.

No. elements 1074 10535 337505 1546384
runtime [s] 1.470 26.45 1590.3 25324.1

memory [MB] 194 248 1499 5503

Table 1: Performance values of the sphere example for dif-
ferent grid sizes.

6.2. Coil and yoke
This more complex example shows a cylindrical

coil around a magnetic yoke. The external field Hext

is created by a coil and is directly calculated by the
Biot-Savart law. We again measured solver runtime as

No. elements 1077 10205 109384 1180305
runtime [s] 5.027 28.33 734.3 14035.4

memory [MB] 218 374 1025 5782

Table 2: Performance values of the yoke example for dif-
ferent grid sizes.

well as maximum memory consumption for different
discretizations (see Table 2). The calculated magne-
tization for χ = 106 can be seen in Fig. 5.

Figure 5: Simulation results for a magnetic yoke magne-
tized by an electric coil. 10205 elements were used for the
discretization of the yoke. The color of the arrows shows
the x component of the magnetization.

The calculated condition numbers as well as the
computation time of the equation solver with and with-
out preconditioning is illustrated for the yoke example
in Fig. 6.

7. Conclusion

We have introduced a FEM / BEM coupling method
which combines the advantages of both methods. The
algorithm is applied to a magnetostatic problem with
open boundary. The arising dense boundary matrices
are approximated by H-matrices in order to speed up
computation and to decrease memory consumption.
Furthermore an effective preconditioner has been pro-
posed in order to improve the convergence of the iter-
ative solver. Finally the performance of the algorithm
is demonstrated by two different example calculations.
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