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Wave chaos in the nonequilibrium dynamics of the Gross-Pitaevskii equation
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The Gross-Pitaevskii equation (GPE) plays an important role in the description of Bose-Einstein condensates
(BECs) at the mean-field level. The GPE belongs to the class of nonlinear Schrödinger equations which are known
to feature dynamical instability and collapse for attractive nonlinear interactions. We show that the GPE with
repulsive nonlinear interactions typical for BECs features chaotic wave dynamics. We find positive Lyapunov
exponents for BECs expanding in periodic and aperiodic smooth external potentials, as well as disorder potentials.
Our analysis demonstrates that wave chaos characterized by the exponential divergence of nearby initial wave
functions is to be distinguished from the notion of nonintegrability of nonlinear wave equations. We discuss the
implications of these observations for the limits of applicability of the GPE, the problem of Anderson localization,
and the properties of the underlying many-body dynamics.
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I. INTRODUCTION

Following the experimental realization of Bose-Einstein
condensates (BECs) in dilute ultracold gases, the Gross-
Pitaevskii equation (GPE), has taken center stage to describe
the equilibrium as well as nonequilibrium dynamics of the
condensate at the mean-field level [1]. The replacement of
the many-body wave function by the effective single-particle
condensate wave function has proven to be a remarkably
successful approximation for predicting a large variety of
physical observables [2]. Among the observables are both
ground-state properties and elementary excitations in inho-
mogeneous background potentials [2–9]. The GPE belongs to
the class of nonlinear Schrödinger equations (NLSEs) which
have a broad range of applications ranging from nonlinear
optics to plasma physics and Bose-Einstein condensation
[10]. Effects beyond the GPE have been observed in BECs,
most notably in optical lattices with deep wells and small
occupation numbers per site. In this regime, explicit many-
body descriptions such as the Bose-Hubbard model are more
suitable [11,12]. The nonequilibrium dynamics of BECs,
specifically their expansion in disordered potentials, has
recently received a lot of attention (see, e.g., Refs. [3–9,13–21]
and references therein). One focus is on the observation of
Anderson localization of a quantum gas. For weak disorder
potentials 〈V 〉 � µ, where 〈V 〉 is the variance of the potential
and µ is the chemical potential of the BEC, the GPE was
assumed to be valid during the nonequilibrium expansion
starting from the BEC released from the trap to the dilute
localized state for which the linear one-particle Schrödinger
limit is reached [15,17]. The consequences of the presence
of the nonlinearity for the nonequilibrium dynamics in a
disordered potential described by the GPE deserves a careful
analysis. The NLSE with attractive interactions is known
to feature dynamical instabilities leading to collapse of the
wave packet [2]. Closely related, the GPE with repulsive pair
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interaction in a strictly periodic potential features near the
Brillouin zone boundary a dynamical (modulation) instability
since the effective negative-mass dispersion translates into an
effective attractive pair interaction (see, e.g., Refs. [22–26]
and references therein). Discretized models resembling the
Fermi-Pasta-Ulam-Tsingou1 system of nonlinearly coupled
oscillators have been found to feature stochastic dynamics
and relaxation with an increasing entropy [29–31].

We show in the following that the GPE for realistic
parameters for the expansion of BECs in the quasi-one-
dimensional (quasi-1D) regime displays true wave chaos as
measured by a positive Lyapunov exponent in Hilbert space.
By careful checks of the accuracy of the propagation including
the method of time-reversed propagation, this “physical” chaos
can be distinguished from the numerical chaos previously
observed for the NLSE [29,32]. We furthermore show that
chaos goes beyond the nonintegrability of nonlinear wave
equations. The physical consequences of deterministic chaos
in the GPE for smooth periodic and aperiodic potentials as
well as disorder potentials will be discussed. We argue that
wave chaos in the GPE is a signature for the breakdown of
mean-field theory and delimits the border of its applicability.
The latter does not preclude that certain ensemble expectation
values of a BEC can be approximately accounted for by a GPE.
We conjecture that the chaotic fluctuations are a signature
of excitations and depletion of the condensate. Although
our physical interpretations focus on BECs, our findings are
relevant for other areas of application of the NLSE as well [33].

The paper is organized as follows. In Sec. II we briefly
describe the model for the expansion of a quasi-1D BEC
within the GPE. Numerical methods for the propagation
of the condensate wave functions are reviewed in Sec. III.

1The model is in literature known under the name Fermi-Pasta-
Ulam [27]. We follow here the suggestion by T. Dauxois [28] to
recognize the important contribution of M. Tsingou to this pioneering
computational study.
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Nonintegrability and wave chaos are discussed in Sec. IV,
followed by numerical results in Sec. V. Conclusions and
conjectures are given in Sec. VI.

II. GROSS-PITAEVSKII EQUATION FOR AN EXPANDING
(QUASI)-1D BEC

The GPE for the inhomogeneous condensate wave function
ψ(�r,t) = 〈ψ̂(�r,t)〉, the nonvanishing expectation value of the
field operator ψ̂(�r,t) that becomes finite at the Bose-Einstein
phase transition, is given by

ih̄
∂ψ(�r,t)

∂t
=

(
−h̄2∇2

2m
+ V (�r) + g3D|ψ(�r,t)|2

)
ψ(�r,t).

(1)

The effective interparticle nonlinear coupling constant in three
dimensions,

g3D = 4πh̄2as

m
, (2)

is expected to account for the condensate dynamics under the
conditions of low excitations, that is, weak depletion of the
condensate, and of weak coupling. Moreover, Eq. (1) assumes
short-range interactions at low energies such that the particle-
particle interaction can be described by a contact interaction
whose strength is proportional to the s-wave scattering length
as. The mean-field approximation is assumed to be valid in the
dilute regime n1/3as � 1, where n is the particle density. We
consider in the following a (quasi)-1D system, for example, a
cigar-shaped trap where the radial and longitudinal frequencies
are related as ωr � ωl and we assume the chemical potential
µ to be small compared to the transverse quantization energy
µ � h̄ωr . Thus, the BEC is described by a 1D order parameter.
In the transverse direction the dynamics is confined to the
ground state. The 1D GPE is then given by

ih̄
∂ψ(x,t)

∂t
= − h̄2

2m

∂2

∂x2
ψ(x,t) + V (x)ψ(x,t)

+ 2h̄ωrasN |ψ(x,t)|2ψ(x,t). (3)

The number of atoms N enters explicitly because we normalize
the order parameter (in the following termed wave function) as∫

dx|ψ(x,t)|2 = 1. The potential V (x) is an external potential
to be described in more detail below. Measuring energies in
units of the longitudinal oscillator energy h̄ωl , length in units
of the oscillator length l0 = (h̄/mωl)1/2, and time in units t0 =
1/ωl , the GPE takes in these (oscillator) units the form

i
∂ψ(x,t)

∂t
= −1

2

∂2ψ(x,t)

∂x2
+ U (x)ψ(x,t)

+ g|ψ(x,t)|2ψ(x,t), (4)

with U (x) = V (xl0)/h̄ωl , g = 2(ωr/ωl)aN , and a = as/l0. In
the following we refer to the effective Hamiltonian of the
linear Schrödinger equation as HL = − 1

2
∂2

∂x2 + U (x) and to
the nonlinear part of the Hamiltonian as HNL = g|ψ |2.

Most of the numerical simulations presented in the fol-
lowing are performed for ultracold gases of Rb87 initially
stored in a cigar-shaped trap with the following parameters:
N = 1.2 × 104 and as = 5.82 nm, and following Ref. [7] ωl =
5.4 × 2π Hz and ωr = 70 × 2π Hz. Accordingly, the unit of

time is t0 = 29.47 ms and the unit of length is l0 = 4.64 µm.
The associated nonlinearity is

g0 = 2
ωr

ωl

aN ≈ 390 (5)

for later reference. Note that the rather high numerical value
for g0 is due to the explicit inclusion of the number of particles
N and does not contradict the assumption of weak coupling.
For these parameters µ � h̄ωr is not fulfilled, however, it is
assumed that the BEC is in the quasi-1D regime such that
a 1D order parameter is sufficient to describe the dynamics
(see, e.g., Refs. [6,7,17,18] where the dynamics is essentially
confined to its ground state in the transverse direction).

The GPE [Eq. (4)] can be derived as the Euler-Lagrange
equation from a Lagrangian functional in the fields ψ(x,t)
and ψ̇(x,t). The corresponding Hamiltonian functional is
given by

H [ψ] =
∫

dx

(
1

2
|∂xψ |2 + U |ψ |2 + g

2
|ψ |4

)
. (6)

The total energy functional E = H [ψ] must be conserved
during the expansion of the BEC. This conservation law
provides a stringent test for numerical stability of the long-time
propagation.

III. NUMERICAL METHODS

The propagation of an initial condensate wave function
ψ(x,t = 0) according to the GPE [Eq. (4)] proceeds by
discretization of space and time. The space discretization must
be performed carefully since simple discretization schemes
may unintentionally convert the integrable continuous GPE
into a discrete nonlinear system that displays chaos. For
example, using the simplest finite difference scheme with
δx = xi+1 − xi, Eq. (4) with U = 0, takes the form

i∂tψi = − 1

2δx2
(ψi+1 − 2ψi + ψi−1) + g|ψi |2ψi. (7)

Equation (7) shows chaos [29] and has been used to study
stochastic dynamics and thermalization in the mean-field
Bose-Hubbard system [31] while its continuous limit is
known to be integrable [29]. Since we want to study the
continuous system we have to avoid such discretization
artifacts by employing a more elaborate discretization. Our
spatial discretization is based on the finite-element discrete
variable representation (FEDVR) (see Refs. [34–37] and
references therein). We split the space into finite elements
which are discretized with the help of a discrete variable
representation (DVR) basis. The basis consists of Lagrange
interpolating polynomials determined via a grid consisting of
the zeros of Legendre polynomials and the end points of each
element. The elements are connected via bridge functions, thus
guaranteeing the continuity of the wave functions. Integrals
are approximated via the Gauss-Lobatto quadrature. In the
FEDVR the local operators (e.g., the potential operators)
are diagonal. The kinetic operator within a single element
is a full Nb × Nb matrix when Nb is the number of basis
functions. Within the FEDVR the Hamiltonian is a sparse
matrix when the number of elements and basis functions are
chosen appropriately.
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For temporal propagation we tested several different
propagators: the second-order difference [38,39] (SOD), the
Runge-Kutta [40], the real space product split operator [39,41]
(equivalent to the symplectic operator [42] SABA1), the
Crank-Nicholson [38], and the Lanczos propagators [39,43].
The Runge-Kutta and SOD algorithms have proven to be
most accurate in terms of energy conservation. In most of
our calculations we use the SOD algorithm. It is an explicit
conditionally stable integration scheme given by the recursion
relation

ψ(x,t + dt) = ψ(x,t − dt) − i2dtĤψ(x,t), (8)

where Ĥ is given by

Ĥ = −1

2

∂2

∂x2
+ U (x) + g|ψ(x,t)|2. (9)

The numerically more expensive fourth-order Runge-Kutta
algorithm is used for cross-checking. Comparison with a fifth-
order Runge-Kutta algorithm allows an accuracy estimate in
|ψ |2 to be of the order of 10−15 for each time step.

Both SOD and Runge-Kutta are not symplectic. The
Hamiltonian structure of the GPE would suggest to use a
symplectic integrator. Such integrators preserve, by design, the
volume in phase space which is characteristic for the dynamics
of Hamiltonian systems. However, it has been demonstrated for
the NLSE and the Korteweg-deVries equation and conjectured
for infinite dimensional Hamiltonian systems in general that
the use of symplectic time integrators is less important than
high accuracy of spatial derivatives [44,45]. For the results
presented in the following we use the time increment dt =
4 × 10−6 and five basis functions for finite-element widths
of typically dx = 0.08 in a box of size x ∈ [−1000,1000].
(For the long time propagations presented in Sec. V C the
box size is x ∈ [−1600,1600].) We use hard-wall boundary
conditions for our numerical box. The numerical box is chosen
sufficiently large such that the spreading wave packet ψ(x,t)
does not effectively reach the walls of the box within the time
of propagation.

Apart from energy conservation, an additional sensitive test
of the numerical stability of the propagation algorithm is the
time reversal of propagation. Expressing the propagation of
the initial condensate wave function ψ(x,0) as

ψ(x,t) = Ut [ψ(x,0)], (10)

the time-reversed propagation

ψ(x,0) = U−t [ψ(x,t)] (11)

should recover the initial state. For the linear Schrödinger
equation (LSE), reaching the initial state via Eq. (11) is
easier than for the NLSE due to the intrinsic stability of the
linear dynamical evolution. For the NLSE, Eq. (11) provides
a measure for the accumulation of numerical noise, that is, a
measure for “numerical chaos.” [32]. In order to distinguish
true deterministic (“physical”) chaos from numerical noise,
we probe the accuracy of Eq. (11) by quantifying how close
the backward-propagated wave function will be to the initial
state ψ(x,0).

Another stringent test results from the scaling property of
the GPE. We subject the space and time coordinates to the
scaling (γ > 0):

t → t̄ = t/γ,
(12)

x → x̄ = x/
√

γ .

The GPE becomes, after multiplication by γ ,

i
∂

∂t̄
ψ(x̄,t̄) = −1

2

∂2

∂x̄2
ψ(x̄,t̄) + Ū (x̄)ψ(x̄,t̄)

+ γg|ψ(x̄,t̄)|2ψ(x̄,t̄), (13)

with Ū (x̄) = γU (
√

γ x). The normalization of the condensate
wave function after rescaling

ψ̄(x̄,t̄) = γ 1/4ψ(x̄,t̄) (14)

leads to the rescaled GPE:

i
∂

∂t̄
ψ̄(x̄,t̄) = −1

2

∂2

∂x̄2
ψ̄(x̄,t̄) + Ū (x̄)ψ̄(x̄,t̄)

+ ḡ(γ )|ψ̄(x̄,t̄)|2ψ̄(x̄,t̄), (15)

with ḡ(γ ) = √
γ g. Converged numerical solutions that are

not subject to numerical noise will satisfy the scaling behavior
[Eq. (15)] for every positive value of γ . Scaling is equivalent to
a continuous variation of the spatiotemporal grid. One further
consequence of Eq. (15) is that scaling corresponds to free
tuning of the nonlinearity in the absence of Ū . Therefore,
thresholds for critical strength of nonlinearity, if they exist at
all, can occur only in the presence of external potentials.

IV. INTEGRABILITY, NONINTEGRABILITY, AND
WAVE CHAOS IN THE GPE

For nonlinear wave equations, the GPE being an exam-
ple of which, integrability is closely associated with the
existence of solutions via the inverse scattering transform
(IST). Briefly, the initial value problem (IVP) of the nonlinear
wave equation possesses an integrable solution if the solution
can be determined by IST. In such a case, the nonlinear
wave equation is associated with a system of auxiliary linear
ordinary differential equations (LODEs) for which ψ(x,t)
acts as a “potential” and whose direct and inverse scattering
solution solves the original IVP (see, e.g., Refs. [46–48]).
The time t acts here as a “deformation parameter.” While
this criterion for integrability is explicit and constructive, it
does not, however, provide a priori a sufficient criterion for
nonintegrability.

For the GPE, a few special cases are known: For vanishing
external potential, U (x) = 0, and infinite domain (−∞ < x <

∞), the GPE is integrable and the corresponding LODEs are
the Zakharov-Shabat (ZS) system [46–48]. While for attractive
interparticle interactions (g < 0), the ZS system features both a
continuum and bound states corresponding to soliton solutions
of the GPE, for repulsive interactions (g > 0), the case of
interest in the following, the ZS spectrum is purely continuous
corresponding to a dispersing (decaying) condensate wave
function ψ(x,t). For hard-wall Dirichlet boundary conditions,
the GPE with U (x) = 0 was conjectured to be nonintegrable.
[30].
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For nonvanishing external potentials [U (x) �= 0], no gen-
eral results on the existence of integrable solutions of the GPE
are known. For a few special cases, integrability has been
demonstrated. These cases include the harmonic potential,
U (x) ∝ x2, with time-dependent nonlinearities [49–51], and
linear potentials, U (x) ∝ x, with time-independent nonlinear-
ity [52,53].

One test for integrability is the Weiss-Tabor-Carnevale
(WTC) test for nonautonomous NLSEs with time- and space-
dependent dispersion, nonlinearity, and dissipation [47]. The
WTC test is based on the Painlevé conjecture (see, e.g.,
Refs. [47,48]) and provides a necessary condition for integra-
bility (see Ref. [54] for specific potentials and nonlinearities).
Another integrability condition is based on the Lax pair method
yielding, in general, different criteria [55]. However, both
integrability conditions agree in that for constant dispersion
and nonlinearity and vanishing dissipation the potential U (x)
may be at most linear in x. For disordered potentials in the
NLSE it was shown that quasiperiodic motion may persist
for weak nonlinearities that can be considered as a small
perturbation [56].

In the following we consider potentials U (x) of physical
interest which do not satisfy the known criteria of integrability.
They include disordered, periodic, and aperiodic potentials.
We characterize the resulting properties of the GPE by a
stronger criterion than nonintegrability, that is, the appearance
of wave chaos. As a measure for wave chaos we employ the
existence of a positive Lyapunov exponent which indicates
exponential sensitivity to initial conditions. In analogy to
classical (particle) chaos, where the distance of initially close
trajectories is followed in phase space, we follow the distance
of initially close wave functions in Hilbert space. The metric in
Hilbert space is the L2 norm. Accordingly, we use a distance
function:

d (2)(ψ1,ψ2; t) = 1

2
〈ψ1 − ψ2|ψ1 − ψ2〉

= 1

2

∫ ∞

−∞
dx |ψ1(x,t) − ψ2(x,t)|2. (16)

The Lyapunov exponent follows as the limit

λ = 1

2
lim
t→∞ lim

d (2)(ψ1,ψ2;0)→0
ln

d (2)(ψ1,ψ2; t)

d (2)(ψ1,ψ2; 0)
. (17)

In analogy to chaos for point particles, λ is only well-defined
in terms of a coupled double limit. The distance function d (2)

[Eq. (16)] for normalized functions and norm-conserving
evolution reduces to

d (2)(ψ1,ψ2) = 1 − Re〈ψ1|ψ2〉. (18)

It is bounded by 0 � d (2) � 2. The upper bound corresponds to
ψ1 = −ψ2. The value 1 is reached for complete orthogonality
and thus corresponds to the “maximal” separation in Hilbert
space. Therefore, we expect that an exponential separation
of initially “nearby”, that is, almost identical, wave functions
will eventually saturate at values d (2) ≈ 1. Equation (17) can
be viewed as a measure for the exponential separation of
trajectories in Hilbert space on the hypersphere S of unit
radius defined by wave functions of unit norm. In practice, λ is
numerically determined by the slope of that segment of growth
on a semi-log plot that is approximately linear. The choice

of initial displacements d (2)(ψ1,ψ2; t) admitted in Eq. (16)
is constrained by the Hamiltonian structure of the GPE with
its corresponding energy shells, that is, H [ψ1] = H [ψ2] = E.
With this constraint, the evolution of ψ1, ψ2 proceeds on a
hypersphere in Hilbert space of fixed E.

It is instructive to first explore the short-time behavior of
d (2)(ψ1,ψ2; t). The point of reference is the LSE, for which
d (2) is strictly conserved, d (2)(ψ1,ψ2; t) = d (2)(ψ1,ψ2; 0). Vari-
ation of d (2) is therefore a direct measure for the influence of
the nonlinearity. For the nonlinear GPE, we obtain for initial
real wave functions ψ1(x,0) and ψ2(x,0) up to second order
in t

Re〈ψ1(t)|ψ2(t)〉 = c0 + c2t
2 + O(t4), (19)

with

c0 = 〈ψ1(0)|ψ2(0)〉 = 1 − d (2)(ψ1,ψ2; 0) (20)

and

c2 = g

2

∫
dx ψ1(x,0)[n1(x,0) − n2(x,0),HL]ψ2(x,0)

− g2

2

∫
dx ψ1(x,0)[n1(x,0) − n2(x,0)]2ψ2(x,0), (21)

with ni(x,0) = |ψi(x,0)|2 the condensate density. The square
bracket in the first term of Eq. (21) denotes the usual quantum
mechanical commutator. For strongly interacting condensates
where the interaction energy is large compared to the single-
particle energies, the g2 term in Eq. (21) dominates. The initial
quadratic increase of the distance function d (2) with time is
universal and independent of integrability, nonintegrability, or
wave chaos. The short-time behavior of the distance function
for a freely expanding condensate [U (x) = 0] released from
a harmonic trap displays the growth with t2 followed by
saturation (Fig. 1). We conjecture that this saturation is a
signature of the integrability of the GPE for U (x) = 0.

0

0.0002

0.0004

0.0006

0 0.5 1 1.5 2 2.5 3
t

d(2)(ψ1,ψ2; t)

FIG. 1. (Color online) Distance function d (2)(ψ1,ψ2; t) [Eq. (16)]
for a freely expanding BEC [U (x) = 0] with nonlinearity g0 released
from a harmonic trap (blue solid line). The initial normalized states
ψ1, ψ2 are slightly perturbed ground states of the interacting system
in the harmonic trap with a small linear perturbation [same states as
will be used and explained in more detail in Eq. (23) in Sec. V]. The
initial distance function is d (2)(0) ≈ 2.8 × 10−7. The black dashed
line corresponds to d (2)(ψ1,ψ2; t) according to Eqs. (18) and (19).
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A slightly different problem, expansion of a condensate in
zero potential [U (x) = 0] inside a box defined by Dirichlet
boundary conditions, was investigated by Villain and Lewen-
stein [30]. Motivated by the structural similarity to the famous
Fermi-Pasta-Ulam-Tsingou model, they observed stochastic
behavior as extracted from a normalized statistical entropy. For
sufficiently strong nonlinearity a trend toward equipartition of
energy among the modes of the LSE was found. The authors
identified the free GPE with Dirichlet boundary conditions
as nonintegrable. We have investigated the behavior of the
distance function d (2) for this system. We follow Ref. [30]
and choose as an initial state a Gaussian wave packet ψG(x)
with width σ = 1 in a box of length L = 20. This initial
state is slightly distorted by a small linear admixture of
strength α,

ψ1,2(x,0) = N1,2(1 ± αx)ψG(x), (22)

with normalization constants N1,2. We test the sensitivity of
d (2)(t) to α [i.e., to d (2)(0)] by choosing two different values
for α: α = 5 × 10−4, which gives a similar initial d (2)(0)
as in Fig. 1, and α = 5 × 10−5, for which d (2)(0) is two
orders of magnitude smaller. The numerical results confirm
the expectation that d (2)(t) is linearly proportional to the
initial distance d (2)(0) (constant shift in a logarithmic plot; see
Fig. 2). For the strength of the nonlinearity we consider both
a moderately strong value g/L ≈ 79ε1, where ε1 = π2/2L2

is the ground-state energy of the LSE in the box comparable
to the value (g/L ≈ 61ε1) in Ref. [30], and a much stronger
nonlinearity (g/L ≈ 1582ε1), corresponding to g0 [Eq. (5)].
The energy unit in Ref. [30] is related to our energy unit as
ε1 = 0.0123h̄ωl . The time unit T1 = 4L2/π ≈ 500t0 is long
compared to our “oscillation” time scale t0 characterizing the
initial state.

For both nonlinearities the distance function d (2)(t) in-
creases quadratically with a slope approximately proportional
to the nonlinearity (see Fig. 2), in qualitative accord with
the short-time behavior [Eqs. (18) and (19)], however with
much reduced slope. The growth seen in Fig. 2 proceeds
slowly. The quadratic increase is fundamentally different
from the exponential increase observed in the following
sections. This allows identifying within nonintegrable sys-
tems those that do not exhibit wave chaos, as in Ref.
[30], and those that do, as the systems discussed in the
following.

The overall quadratic rise is modulated by fluctuations
which result from partial revivals of the underlying LSE (see
inset of Fig. 2). One prominent oscillation period is T1/8
corresponding to the inverse energy spacing between the two
lowest LSE states of even parity [30]. Another prominent
period T1/4 results from the classical periodic orbit in the
box. The nonlinearity leads to a proliferation of frequencies
by side-band coupling.

The important conclusion is that the nonintegrable dynam-
ics of the free GPE in a box with hard walls is, despite its
complex appearance and the trend toward equipartition among
the linear modes, nonchaotic as measured by the exponential
separation of nearby trajectories in Hilbert space. Chaos
requires the presence of nonvanishing external potentials U (x).

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

10−5 10−4 10−3 10−2 10−1 100

d
(2

)
(ψ

1
,ψ

2
;t

)

t/T 1

(a)

α = 5 × 10−4

α = 5 × 10−5

0

0.1

0.2

0.3

0 0.2 0.4 0.6 0.8 1

d
(2

)
(ψ

1
,ψ

2
;t

)

t/T1

(b)

g/L≈ 1582 1

g/L≈ 1582 1

g/L≈ 79 1

g/L≈ 1582 1

FIG. 2. (Color online) (a) Log-log plot of the distance function
d (2)(ψ1,ψ2; t) [Eq. (16)] as a function of t for two initially nearby
Gaussian wave packets in the box of length L obtained from
propagation of the GPE with moderate nonlinearity (g/L ≈ 79ε1) and
strong nonlinearity (g/L ≈ 1582ε1). For g/L ≈ 1582ε1 two different
distortion parameters α [see Eq. (22)] were used, α = 5 × 10−4 and
α = 5 × 10−5 (marked by arrows in the figure). Time is measured in
units of T1 = 2π/ε1. For reference, the exponential growth in case
of wave chaos with a Lyapunov exponent as in Fig. 4 is shown as a
dotted line. (b) The curve with g/L ≈ 1582ε1 and α = 5 × 10−4 in
linear scale.

V. NUMERICAL EXAMPLES FOR WAVE CHAOS

We present in this section examples for expansion of
BECs in potentials U (x) of experimental relevance. For
the generation of nearby initial states we use the following
scenario: The BEC is created in a harmonic trap; that is, the
condensate wave function is given by the ground state of the
GPE, ψg(x), which is close to the Thomas-Fermi profile for
the parameters chosen (see Sec. II). Two nearby normalized
states are then created by weak perturbations linear in x,

ψ1,2(x,0) = N1,2(1 ± αx)ψg(x), (23)

with normalization constants N1,2. Simultaneously with the
release at t = 0 the external potential U (x) is switched on. For
the perturbation parameter α controlling the distance between
ψ1 and ψ2 we typically choose α = 10−4. We have verified
that the extracted values for the Lyapunov exponent λ are
independent of the value of α.
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A. Weak periodic potential

We first consider the expansion of the BEC in weak periodic
potentials,

U (x) = U0 cos (2πx/l), (24)

with periodicity l and strength of the weak potential U0. We
require

U0/ε � 1, (25)

where ε = E/N is the total energy per particle of the
interacting system. We use in the following U0 = 0.2ε. The
chemical potential is to a good degree of accuracy µ(t = 0) =
2ε at t = 0 for our choice of initial conditions. Unlike ε,
µ(t) is not conserved during the expansion and, therefore, we
use ε as characteristic energy scale. The periodic potential
gives rise to a band structure of the linear problem with
bandwidth of the first band, W = π2/2l2 (in literature also
called recoil energy [26]), and a band gap at the first Brillouin
zone boundary, � ≈ U0. The wide band-gap limit corresponds
to W/U0 � 1, the nearly free particle limit to W/U0 � 1.
The spatial periodicity l is assumed to exceed the coherence
(healing) length ξ of the condensate

l >∼ ξ, (26)

with

ξ = 1√
8ε

. (27)

In the opposite limit ξ � l, the condensate can no longer
resolve the local variation of the potential.

The initial wave functions are chosen as above
[Eq. (23)] having identical energy in the potential [Eq. (24)]
and a Thomas-Fermi length of LTF ≈ 8.4, which is larger
than the potential periodicity l = 5.8ξ with ξ = 0.0945. The
nonlinearity is g0 ≈ 390. For t > 0 the condensate wave func-
tions expand and acquire an increasingly complex fluctuation
pattern.Appreciable deviations start to emerge near the center
x = 0, where fluctuations have the largest amplitude [see
Fig. 3(a)]. The deviations increase with increasing time [see
Fig. 3(b)], such that locally the amplitudes of ψ1 and ψ2

become uncorrelated [see the inset of Fig. 3(b)]. Such an
extreme sensitivity to initial conditions is the hallmark of wave
chaos. It is worth noting that on the length scale of l both wave
functions tend to mimic the oscillations of the potential while
on larger length scales fluctuations of ψ1 and ψ2 lose their
correlation.

We quantify the loss of correlation and the seemingly
random fluctuations by the Lyapunov exponent λ [Eq. (17)].
Positive λ signifies wave chaos. The time evolution of the
distance function d (2)(ψ1,ψ2; t) resembles the time evolution
of particle chaos. After an initial generic nonexponential
(quadratic) growth (see Fig. 4), d (2) grows exponentially
until the regime of fluctuations around the saturation value is
reached. The slope of the exponential growth makes it possible
to numerically extract the Lyapunov exponent (λ ≈ 0.7 for the
case of Fig. 4).

The deterministic nature of the the exponential separation
can be verified by the time-reversal test [Eq. (11)]. Upon
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x

(a) t = 15

0.001 × U(x)
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0.03

-200 -150 -100 -50 0 50 100 150 200

x

(b) t = 20

0

0.02

10 12

0

0.01

10 20

|ψ1(x, t)|2
|ψ2(x, t)|2

|ψ1(x, t)|2
|ψ2(x, t)|2

FIG. 3. (Color online) Onset of divergence between ψ1 and ψ2

as a function of time. |ψ1|2 and |ψ2|2 are given for (a) t = 15 and
(b) t = 20. Inset in (a): comparison of the spatial fluctuations of the
wave function and the period of the potential U (x). The potential
parameters are U0 = 0.2ε and l = 5.8ξ . The nonlinearity is g0. Inset
in (b): increasingly uncorrelated fluctuations of |ψ1|2 and |ψ2|2.

reversal of the direction of time, the two condensate “trajec-
tories” approach each other again to distances close to their

10−7
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0 10 20 30 40 50 60

d
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1
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t0

α = 10−4

α = 10−5

FIG. 4. (Color online) Exponential growth of d (2) for two con-
densate wave functions propagated by the GPE in a weak periodic
potential (same parameters as in Fig. 3). Time-reversed propagation
for t > t0 recovers the initial state precluding numerical noise as
origin of the exponential growth. Two different distortion parameters
have been used: α = 10−4 and α = 10−5.
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FIG. 5. (Color online) Distance d (2) between ψ1 and ψ2 as a
function of time for different γ . The parameters of the periodic
potential are Ū = 0.2ε̄ and l̄ = 5.8ξ̄ . (b) Logarithmic plot of (a)
squared after rescaling time according to t = γ t̄ . The curves coincide.
The gray solid lines underline the region of exponential growth and
saturation and are guides for the eye.

initial value (Fig. 5). The distance function between ψ1(x,0)
and U−t [ψ1(x,t)] is of the order of 10−9. The near-perfect
reversibility precludes numerical noise or “numerical chaos”
as a source for divergence.

Furthermore, the scaling property of the GPE [Eq. (15)] is
verified to a high degree of accuracy (Fig. 5). We scale the
initial conditions according to µ̄(t = 0) = γµ(t = 0), such
that Ū/ε̄ is constant. Likewise, the period of the potential
is scaled such that l̄/ξ̄ = √

γ l/
√

γ ξ is kept fixed. Despite
a large absolute variation of d (2) with γ [Fig. 5(a)], upon
rescaling, d (2) coalesces to a remarkable degree of accuracy
[Fig. 5(b)]. The γ scaling is also equivalent to an effective
change of the numerical grid in (x,t), that is, an increase of
the numerical accuracy, since we have used the same absolute
grid size for all calculations. The invariance of the results
clearly demonstrates numerical stability. Since the Lyapunov
exponent scales inversely with time λ̄ = γ λ, λ decreases with
decreasing γ in accordance with Fig. 5(a). Note, however, that
this power-law scaling does not provide information on the
existence (or absence) of critical thresholds for wave chaos
(see below).

In the single-band mean-field Bose-Hubbard model, a
threshold for stochastic dynamics has recently been observed
[31]. We explore now the behavior of λ in the continuum
analog, the GPE with a periodic potential. The Lyapunov
exponent λ will, in general, depend on the nonlinearity g,
the period l, and the amplitude U0 of the potential. The
corresponding three energy scales are the total energy per
particle ε (controlled by the nonlinearity g), the bandwidth of
the first band W , and the amplitude U0. The scaling property
makes it possible to interrelate the dependences of λ on
these three parameters. For example, one can investigate the
dependence of λ on the ratio ε/W at constant U0 by keeping ε

constant and decreasing W (increasing l), giving the Lyapunov
exponent λ(ε), or keeping W constant and increasing g, hence,
ε giving λ(W ). If the ratio ε/W remains invariant for the
two cases, the Lyapunov exponents are interrelated by the
scaling property (provided one of the initial wave functions is
rescaled) as λ(ε) = γ λ(W ) with γ < 1. Therefore, it is sufficient
to consider the ratio ε/W and not W and ε separately. We arrive
at a two-dimensional parameter plane (U0/ε, ε/W ). A scan of
λ is performed from the first to the second band of the linear
system.

We observe a clear threshold of λ in form of a rapid
increase along both the U0/ε and the ε/W axis (see Fig. 6).
Below the threshold λ is vanishing. A power-law fit to the
threshold line gives ε/W ∝ (U0/ε)−0.65 (see dashed line in
Fig. 6). As the control parameter ε/W can be related to the
parameter κ , the ratio between the nonlinearity parameter and
the hopping parameter of the discrete system, it is suggestive to
assume that the transition in the discrete system [31] and in the
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FIG. 6. (Color online) The Lyapunov exponent λ as a function
of ε/W and U0/ε. ε is the energy per particle, W = π 2/2l2 is the
bandwidth of the first band of the linear system, and U0 is the
amplitude of the potential [Eq. (24)]. The period l is kept fixed
l = 0.548 11. The same initial wave function has been used for
all data points. λ has been determined numerically via a linear
fit to the logarithmic increase of d (2) [Eq. (16)]. The deviation
(summed absolute difference between the linear fit and the numerical
curve) is on average well below 0.4 and maximal ≈0.6. To improve
the graphical appearance, every second point in the figure is an
interpolation between two numerical points. The white dashed curve
is a fit to the threshold according to ε/W = 0.165(U0/ε)−0.65. The
white dots mark the point where the energy ε equals the energy at the
point of inflection of the first band.
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present continuous system are of common origin. However, the
discrete system does not account for the transition along U0/ε.
In other words, the mapping to the single-band Bose-Hubbard
is not straightforward and a comparison to a multi-band model
seems to be necessary.

Exponential divergence of wave functions above a threshold
resembles the dynamical (or modulation) instability previously
observed [22,24,26]. The modulation instability can be related
to energetically surpassing the point of inflection along the first
band of the linear problem: When the second derivative of the
dispersion relation turns from positive to negative [24]. The
position of the inflection point, however, does not agree with
the position of the threshold (in Fig. 6 marked by white dots).
The reason may be that the simplified picture of modulation
instability also does not account for the threshold along U0/ε.
More importantly, the threshold does not seem to be sensitive
to specific features of the linear problem, as presented in the
next section.

B. Weak aperiodic potential

In order to explore whether wave chaos in the GPE is a
specific feature of the interplay between the periodic linear
problem and the nonlinearity, we investigate the dynamics in
a strictly aperiodic potential,

U (x) = U0[c1 cos (2πx/l1) + c2 cos (2πx/l2)], (28)

where l2/l1 = 1
2 (1 + √

5) is the “most” irrational golden mean
number and c1 = c2 = 1/2. A well-defined band gap or well-
defined negative mass dispersion relation near the Brillouin
zone boundary which invoked the explanation of instability
and stochastic motion [22,24,26] are absent for Eq. (28). For
comparable values of U0/ε as in the periodic case we find
positive Lyapunov exponents (see Fig. 7). Interestingly, the
threshold as well as the overall behavior agree well with the
periodic case, suggesting that chaos does not depend on the
specifics of the linear system but rather on the overall length
and energy scales. In agreement with Fig. 6, the threshold
shifts toward smaller values of U0/ε for higher ratios of ε/W

[Figs. 7(a) and 7(b)]. Note that a characteristic energy W can
be defined for any potential with a characteristic length lc as
W ∝ 1/l2

c . Obviously, the wave chaos we have identified in
the GPE is a general feature not coupled to specific properties
of the band structure of the periodic linear problem.

C. Weak disorder

A further generalization is the GPE with random disorder
replacing the smooth (a)periodic potential. This case is of
particular interest in the context of Anderson localization
recently studied for expanding BECs [7,8]. The latter exper-
imental observations refer to the (quasi)linear regime when
the nonlinearity was sufficiently weak such that the local-
ization dynamics is governed by the Schrödinger equation.
Localization in the presence of interactions has remained an
open question. For the discrete NLSE, subdiffusive expansion
rather than localization was observed numerically [20,57,58].
We focus on the interplay between the randomness induced by
the potential and by the wave chaos in the GPE.
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FIG. 7. (Color online) Lyapunov exponent λ as a function of U0/ε

for the periodic and aperiodic potentials. The period of the periodic
potential is (a) l = 0.548 11 and (b) l = 0.945 03. l1 of the aperiodic
potential [Eq. (28)] is chosen respectively l1 = l. The potentials are
given in the inset. The energy ε ≈ 14 is constant such that ε/W is
larger in (b) ε/W ≈ 2.5 than in (a) ε/W ≈ 0.85.

We follow closely the scenario employed in the investi-
gations of Anderson localization [7,17]: The BEC initially
trapped in a harmonic oscillator expands in a disorder potential.
We construct a disorder potential with Gaussian correlation
and zero mean. At Nd equidistant grid points xi we place
Gaussians with width σ and random weight Ai :

Ũ (x) =
Nd∑
i=1

Aie
−(x−xi )2

2σ2 . (29)

After subtracting the mean, �U (x) = Ũ (x) − 〈Ũ (x)〉, and
normalizing by the standard deviation, 〈�U (x)2〉1/2, the
disorder potential becomes (Fig. 8)

Ud(x) = U0

〈�U (x)2〉1/2
�U (x). (30)

For U0 we choose the same values as in the cases of periodic
and aperiodic potentials above. The disorder potential Eq. (30)
is by construction Gaussian correlated,

C(x) = 〈Ud (x0 + x)Ud (x0)〉 = U 2
0 e

−x2

(2σ )2 , (31)
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FIG. 8. (Color online) Disorder potential for different values of
the correlation length σ . The amplitude for both potentials is U0 =
0.2ε and Nd = 2 × 104. The energy ε and healing length ξ correspond
to the ground state of the GPE in a harmonic oscillator at nonlinearity
g0 [Eq. (5)].

with a Gaussian-shaped Fourier transform (Fig. 9):

C̃(k) =
√

2σU 2
0 e−k2σ 2

. (32)

Unlike for speckle potentials, the averages over odd powers
〈U 2n+1

d 〉 vanish (numerically only approximately). The corre-
lation length of the disorder potential σ provides a length scale
competing with the healing length ξ of the free condensate.

For σ < ξ the wave function is exponentially localized
[17], which is characteristic for Anderson localization [see
Fig. 10(b)]. For σ > ξ (we have chosen σ = 2ξ ), the con-
densate wave function develops algebraically decaying tails
[17] that travel seemingly undisturbed through the disorder
potential similar to propagation in free space [see Fig. 10(a)].

We probe for wave chaos for these two cases. It should be
noted that in the presence of disorder, the determination of the
exponential separation of nearby initial wave functions on the
energy hypersphere faces the additional difficulty that it is not
straightforward to create two nearby wave functions ψ1(x,0)
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FIG. 9. (Color online) The Fourier transform of the correlation
function C̃(k) for U0 = 0.2ε and σ = 0.7ξ (Fig. 8). C̃(k) agrees very
well with Eq. (32) when smoothed over the fluctuations.
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FIG. 10. (Color online) Chaotic fluctuations of ψ1 and ψ2 at t =
24 for (a) σ = 2ξ in the algebraic regime and (b) for σ = 0.7ξ in the
“localized” regime (in the potentials of Fig. 8). The local fluctuations
of ψ1 and ψ2 strongly deviate.

and ψ2(x,0) with equal energy. In the present case the energies
of the wave functions are kept close with a relative deviation
of the order of 10−4.
In both cases, the algebraic and the exponential regime, we
observe an exponentially growing separation and eventual
saturation near the maximal value of separation d (2)(ψ1,ψ2) ≈
1, confirming the intuitive notion that a random potential
induces wave chaos. The Lyapunov exponent is λ ≈ 0.85 in the
algebraic regime [Fig. 10(a)] and λ ≈ 0.86 in the exponential
regime [Fig. 10(b)].

It is instructive to inquire into the relation between wave
chaos and localization. Wave chaos is a signature of the
nonlinearity in the wave equation, while localization is the
hallmark of disorder in the linear wave equation. In discrete
nonlinear models a variety of relations have been observed,
one of which is subdiffusive growth rather than localization
(see, e.g., Ref. [58] and references therein). As measure for the
localization dynamics we use the time evolution of the variance
of the condensate wave function, �x =

√
〈x2〉 − 〈x〉2. Note

that our measure for the width is the square root of the second
moment m2 in Ref. [58]. We observe (Fig. 11) for the expansion
in a disorder potential a slowing down of the spread which
locally scales like �x ∝ ta . In qualitative agreement with the
prediction in Ref. [58] the exponent is not constant but changes
over time. We observe for the system in Fig. 11 with nonlin-
earity g0 an exponent of a ≈ 0.75 up to t = 60 (compare our
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FIG. 11. (Color online) The variance �x of the wave function
ψ1(x,t) for propagations in free space, in a periodic potential
(U0 = 0.2ε, l = 20ξ ) and in a disorder potential (U0 = 0.2ε and
σ = 0.7ξ as in Fig. 8). The black dashed lines correspond to ψ2(x,t)
for the periodic and disorder potentials where chaos is present. The
nonlinearity is g0 ≈ 390. The inset gives a long time evolution for a
weaker nonlinearity g0/10 in a disorder potential with U0 = 0.2ε and
σ = 0.32ξ . In this case the initial wave function corresponds to the
ground state of the GPE for g0/10.

data also with Ref. [17]). To stay numerically on the safe side
during long-time evolutions we performed also calculations
with g0/10. The exponent is predicted to be independent of
nonlinearity [58]. Note that for a direct comparison the time
in units used in this paper is to be scaled by a factor2 of
1250 to obtain the units of Ref. [58]. We observe that the
exponent a changes from 0.78 between t = 0 and t = 100 to
0.52 between t = 100 and t = 300 and becomes 0.34 between
t = 300 and t = 400, in qualitative agreement with Ref. [58].
It should be noted, however, that the extraction of this exponent
for the chaotic GPE is numerically much more challenging
and less accurate than for discrete models. For example,
the rigorous convergence test for time-reversed propagation
[Eq. (11)] begins to fail for the longest propagation times
displayed in Fig. 11.

Without spatial confinement of the system the density may
become eventually sufficiently low such that the nonlinearity
(g|ψ |2) can be neglected compared to the disorder potential
and the system reacts by localization in the linear regime. The
experimentally observed Anderson localization of expanding
BECs [7] is likely associated with the approach of the linear

2A direct conversion of units to these of Ref. [58] faces the difficulty
that we do not use a finite difference grid but a FEDVR basis with
nonequidistant grid points in space. For the conversion factor we have
taken the mean grid spacing.

regime. However, the presence of subdiffusive expansion due
to residual nonlinearities cannot be ruled out.

A further interesting observation is that the variances (�x)
for the two nearby initial states ψ1 and ψ2 agree well (Fig. 11).
Despite the intrinsic randomness of the propagated condensate
wave functions on length scales of the potential, averages such
as �x agree very well with each other.

VI. DISCUSSION AND CONCLUSIONS

We have shown that the expansion of the condensate
wave function described by the GPE features wave chaos as
determined by a positive Lyapunov exponent in Hilbert space.
We find wave chaos to be generic, that is, present for a variety of
one-body potentials U (x), including weak periodic, aperiodic,
and random potentials. The wave functions develop on the
length scale of the healing length and of the local variation of
U (x) fluctuations with amplitudes and phases exponentially
sensitive to the initial state such that nearby states become
approximately orthogonal to each other. We note a remarkable
exception: For harmonic potentials, U (x) = 1

2x2, wave chaos
is absent as a consequence of the harmonic potential theorem
for many-body states [59].

The physical implications of these findings are of consid-
erable interest and raise many conceptual questions. Wave
chaos is a signature of the development of condensate
density fluctuations. For a weakly interacting Bose gas
condensate density fluctuations coincide with total density
fluctuations of the many-body system and represent long-wave
phonon excitations. For stronger interactions, the delayed
onset of exponential divergence may delimit the characteristic
time over which the GPE for the condensate is capable
of describing the expanding BEC. Beyond this time, the
expanding condensate is depleted by multiple excitations
which the GPE attempts to mimic within a mean-field one-
particle wave function by random fluctuations. Simply put,
in this regime wave chaos may mark the breakdown of the
mean-field approximation. Such reasoning would be based
on the lack of exponential sensitivity to initial conditions
in the real many-body system. If we consider two many-
body wave functions for N particles, ψ1(x1, . . . ,xN ,t =
0) and ψ2(x1, . . . ,xN ,t = 0), expanded in the basis of
energy eigenfunctions ψn(x1, . . . ,xN ) of the underlying
Hamiltonian: ψ1(x1, . . . ,xN ,t = 0) = ∑

n cnψn(x1, . . . ,xN )
and ψ2(x1, . . . ,xN ,t = 0) = ∑

n c′
nψn(x1, . . . ,xN ), the dis-

tance function d (2)(ψ1,ψ2) remains constant irrespective of
the choice of the underlying Hamiltonian. The overlap of wave
functions does not change in time. This fundamental property
of linear time evolution should be reproduced by any approxi-
mative theory. However, the difficulty with this argument lies in
the fact that the distance function d (2) in the many-body Hilbert
space H = ∏N

i=1(L2)i is unrelated to that in the L2 space
of the reduced mean-field wave function entering the GPE.
Moreover, ensemble expectation values, such as the moments
of the distribution (e.g., �x discussed above), which represent
averages over the condensate wave function over fine-scale
density fluctuations, are found to be insensitive to small
variations of the initial state. The GPE may remain predictive
for such expectation values on longer times scales. The latter
would explain the large number of successful applications of
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the GPE to condensate expansions (see, e.g., Refs. [3,7–9,13]).
Such a link between chaotic wave functions and observables
would be analogous to classical chaos for particles and phase-
space distribution functions: While the long-time evolution of
individual trajectories becomes unpredictable, the ensemble or
time average over stochastic regions in phase space remain well
defined and yield stable ensemble expectations values. Going
beyond large-scale averaging, the characterization of the
fine-scale random fluctuations developing under propagation
with the GPE remains a widely open problem. Propagation
of many-body wave functions beyond the GPE may shed
light on the question to which extent the GPE fluctuations,
in the mean-field level, may faithfully represent at least some
of the features of multi-particle excitation. The latter may
also provide insight into the applicability of a wave function
“thermalization hypothesis” originally developed for wave
functions of the LSE for classically chaotic systems [60] to
wave chaos in the GPE. Furthermore, it would be of interest to
experimentally search for and characterize local fluctuations

and structures in expanding condensates, for example, by
elastic light scattering.
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