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By means of the dynamical vertex approximation (D�A) we include spatial correlations on all length

scales beyond the dynamical mean-field theory (DMFT) for the half-filled Hubbard model in three

dimensions. The most relevant changes due to nonlocal fluctuations are (i) a deviation from the mean-field

critical behavior with the same critical exponents as for the three dimensional Heisenberg (anti)

ferromagnet and (ii) a sizable reduction of the Néel temperature (TN) by �30% for the onset of

antiferromagnetic order. Finally, we give a quantitative estimate of the deviation of the spectra between

D�A and DMFT in different regions of the phase diagram.
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Almost 50 years after the invention of the Hubbard
model [1] and despite modern petaflop supercomputers, a
precise analysis of the criticality of this most basic model
for electronic correlations has not been achieved so far, at
least not in three dimensions. Dynamical mean-field theory
(DMFT) [2–4] was a big step forward in studying the three
dimensional Hubbard model since the major contribution
of electronic correlations, i.e., the local one, is well cap-
tured within this theory. Local correlations give rise to
quasiparticle renormalization, the Mott-Hubbard transi-
tion, magnetism, and even more subtle issues such as kinks
in purely electronic models [5]. However, nonlocal spatial
correlations are also naturally generated by a purely local
Hubbard interaction, and, as it is well known, they become
of essential importance in the vicinity of second-order
phase transitions. As these correlations are neglected in
DMFT, this scheme provides only for a conventional
mean-field (MF) description of the critical properties.

To overcome this shortcoming cluster extensions to
DMFT such as the dynamical cluster approximation
(DCA) and cluster DMFT have been proposed [6]. In these
approaches spatial correlations beyond DMFT are taken
into account, however, only within the range of the cluster
size, and due to computational limitations the actual size of
d ¼ 3 clusters is restricted to about 100 sites. Hence, short-
range correlations are included by these approaches,
whereas long-range ones are not (e.g., for spacings larger
than five lattice sites in d ¼ 3). Nonetheless, Kent et al. [7]
were able to extrapolate the cluster size of so-called Betts
clusters to infinity, albeit assuming from the beginning the
critical exponents to be those of the Heisenberg model.
This way they extrapolated the Néel temperature of the
paramagnetic-to-antiferromagnetic phase transition which
was found in agreement with earlier lattice quantum
Monte Carlo (QMC) results by Staudt et al. [8].

As an alternative to cluster extensions and, in particular,
to include long-range correlations on an equal footing,

more recently diagrammatic expansions of DMFT have
been proposed: (i) the DMFT plus spin-fermion model
[9]; (ii) the dynamical vertex approximation (D�A)
[10–12] which approximates the fully irreducible
n-particle vertex to be local [10] or that of a DCA cluster
[12]; and (iii) the dual fermion approach [13]. As for phase
transitions, D�A with Moriyasque corrections [14] ful-
fills—in contrast with dual fermion calculations of [15]—
the Mermin and Wagner theorem in two dimensions and,
as we will discuss in the following, corrects the MF behav-
ior for the critical exponents in three dimensions.
In this Letter, we apply the aforementioned approxima-

tion of the D�A scheme (with Moriyasque corrections
[14]) for studying the phase diagram of the three dimen-
sional Hubbard model at half-filling. In particular, we
(i) calculate the critical exponents, (ii) determine the phase
diagram with TN substantially reduced compared to the
DMFT one, and (iii) define the region where nonlocal
correlations become too strong so that DMFT is not appli-
cable anymore.
We consider the Hubbard model on a cubic lattice

H ¼ �t
X
hiji�

cyi�cj� þU
X
i

ni"ni#; (1)

where t denotes the hopping amplitude between nearest

neighbors,U the Coulomb interaction, and cyi�(ci�) creates
(annihilates) an electron with spin � on site i: ni� ¼
cyi�ci�. In the following, we restrict ourselves to the
paramagnetic phase with n ¼ 1 electron per site at a finite
temperature T. For the sake of clarity, and in accor-
dance with previous publications, we will define hereaf-

ter our energies in terms of a typical energy scale D ¼
2

ffiffiffi
6

p
t [16].

The D�A approach to the model (1) was derived in
Refs. [10,14]. The dynamic nonuniform spin (charge) sus-
ceptibility reads
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q;! ¼ P

��0�
��0!
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��0 ½ð��0
0q!Þ�1��0

� � ���0!
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U��1, ��0
0q! ¼ �T

P
kGk;�0Gkþq;�0þ! (particle-hole bub-

ble),Gk;� ¼ ½i�� �k þ�� �locð�Þ��1 (Green function),

and �locð�Þ (local self-energy). The vertex ���0!
sðcÞ;ir is deter-

mined from the solution of the single-impurity problem
[10]. In fact, the complete inclusion of nonlocal corrections
in the irreducible vertices in all channels can be achieved
only via the fully self-consistent D�A equations. However,
as discussed in Ref. [14], when considering a situation
where no competition between different instabilities oc-
curs, a restriction to one specific channel and the evaluation
of the self-consistency effect via the corresponding
Moriyasque correction �sðcÞ is possible [14]. In the half-

filled casewe neglect nonlocal particle-particle fluctuations
since this channel is strongly suppressed by the repulsive
interaction. Furthermore, at half-filling, charge excitations
are generically expected to be irrelevant for the critical
behavior as well. Indeed we find �c

q!, �
pp
q! � �s

q! (�pp
q!

is the particle-particle susceptibility); hence, we neglect
nonlocal particle-particle contributions as well as �c and
determine �s from the exact sum rule (which also holds for
DMFT) �R1

�1
d�
	 Im�k;� ¼ U2nð1� n=2Þ=2, where the

nonlocal self-energy is given by

�k;�¼1
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with 
�!
sðcÞ;q ¼ ð��

0q!Þ�1
P

�0���0!
sðcÞ;q, and �

��0!
sðcÞ;loc is the reduc-

ible local spin (charge) vertex, determined from the single-
impurity problem.

The starting point of our investigation of the critical
properties of the antiferromagnetic (AF) instability is the
corresponding (divergent) spin susceptibility

�AF ¼ �s
Q;0 ¼

Z �

0
d�hSz;Qð�ÞSz;�Qð0Þi (4)

with Q ¼ ð	;	;	Þ. While the D�A with Moriyasque
corrections well reproduces the textbook Mermin and
Wagner results for the Hubbard model in d ¼ 2 yielding
finite, but exponentially large susceptibility at finite T [14],
the situation in d ¼ 3 is even more intriguing, since the
AF phase remains stable in a broad region at finite T,
allowing for a direct study of the critical properties.

Of particular interest is the analysis of the evolution of
the critical region as a function of the Coulomb repulsion.
In Fig. 1, we show the inverse susceptibility ��1

AF as a
function of T for different U values. The vanishing of
��1
AF / ðT � TNÞ
 marks the onset of the AF long-range

order, defining the corresponding TN for a given U. More

important is, however, the examination of the critical
behavior: While in a MF (or DMFT) approach ��1

AF is

vanishing linearly close to TN in accordance with the MF
(Gaussian) critical exponent 
 ¼ 1 (see the lower inset of
Fig. 1), D�A data clearly show a bending in the region
close to the AF transition (i.e., for T < TG, the so-called
Ginzburg temperature), indicating a D�A critical exponent

 definitely larger than 1. The nonperturbative nature of
D�A also allows for a treatment of the critical behavior,
e.g., the size of the critical region, as a function ofU. From
our data it emerges that, in the U range studied, the size of
the region where the critical behavior deviates from the MF
predictions (here: from linearity) increases withU. In order
to quantify this statement, we have performed D�A calcu-
lations at higher T (upper inset of Fig. 1) for U up to 1.5,
and fitted the data linearly in the high-T regime. TG has
been hence estimated as the temperature below which the
relative deviation of ��1

AF from the above-mentioned linear

fit becomes larger than 10% (red arrows in the upper inset
of Fig. 1). By this criterion for TG, the size of the critical
region with non-MF behavior, i.e., �Tcrit ¼ TG � TN , in-
creases from ’ 0:01 for U ¼ 1:0, to ’ 0:02 for U ¼ 1:25
and ’ 0:025 for U ¼ 1:5, following therefore the depen-
dence determined by the Ginzburg criterion, which implies
the inapplicability of the standard Landau-Ginzburg ex-
pansion in the temperature region �Tcrit / T2

N [17]. For
U < 1 (not shown) the bending of ��1

AF becomes hardly

visible, since in this regime TN � e�1=WU (withW / 1=D),
and therefore the size of the critical region is rather narrow;
the linear behavior for U > 1:5 becomes confined to tem-
peratures even higher than those shown in Fig. 1.
A more quantitative study of the critical behavior re-

quires also a precise evaluation of the critical exponent(s).
From the behavior of the spin susceptibility, one can
extract the values of the critical exponent �, which controls
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FIG. 1 (color online). Inverse AF spin susceptibility as a
function of T for different U values. Lower inset: Inverse
DMFT susceptibility with a MF (
 ¼ 1: linear behavior) critical
exponent. Upper inset: larger T interval.
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the divergence of the AF correlation length 
 (defined
as the square root of the inverse mass of the spin-spin
propagator at q ¼ Q, ! ¼ 0) when T ! TN . This can be
computed either from the divergence of �AF (i.e., directly
from the data shown in Fig. 1), using the relation 
 ¼ 2�
[18], or by extracting from �AF the value of 
 by fitting its
q dependence for different T [19].

The results of our analysis, shown in Fig. 2, demonstrate
that D�A can describe well the AF criticality of the
Hubbard model. For the largest values of U ¼ 2:5, indeed,
both divergences of �AF and 
 observed in D�A can be
described (left panels of Fig. 2) with high accuracy by the
critical exponent � ¼ 0:707 of the d ¼ 3-Heisenberg AF.
This is expected to be the correct exponent, not only
because the half-filled Hubbard can be mapped onto the
Heisenberg model but also since dimension and symmetry
of the order parameter suggest the same universality class.
Similar results, though with a lower degree of precision,
can be found by directly fitting the value of the � exponent
to ��1

AF and 
 (right panels). For U ¼ 2:5, our two fits
provide an estimate of � �0:70 and 0.73, respectively.
This shows the Heisenberg universality is still valid also
in a parameter region (i.e., at intermediate coupling),
where the Hubbard model is not well approximated by
the Heisenberg model [20].

A natural by-product of the calculations of the critical
exponents is the determination of TN at the D�A level,
whose values overall well agree with the most accurate
DCA [7], QMC [8], and determinant diagrammatic
Monte Carlo (DDMC) [21] data (see Fig. 3). The devia-
tions around U ¼ 1 might originate from neglecting the
rather small nonlocal corrections of the charge- and

particle-particle channels, which could affect nonuniversal
quantities such as TN . On the other hand, also the DCA/
QMC finite-size extrapolation is difficult in this region
since the AF correlation length is large. Let us also note
that the D�A self-energy compares well with the DCA one
of Ref. [22] (U ¼ 1:633, T ¼ 0:0714): The deviation
1
N

P
njIm�D�Aðk;!nÞ� Im�DCAðk;!nÞj=jIm�D�Aðk;!nÞj

is <5% in the sum over the first N ¼ 7 Matsubara fre-
quencies (i.e., for those, where a deviation from DMFT is
observable). This is within the DCA difference between the
two largest clusters considered (84 and 100 sites).
Finally, we investigate the effects of the nonlocal cor-

rections on the spectral properties of the d ¼ 3 Hubbard
model. On general grounds, the maximum impact of non-
local corrections is to be expected close to the second-order
transition line. This is because the corresponding spin
susceptibility, which explicitly enters in theD�A equations
for�, is diverging at the transition (red solid line in Fig. 3).
Such behavior is particularly evident in the spectra shown
in the two lower insets of Fig. 3 for temperatures slightly
above the TN ofD�A. Specifically, we compared paramag-
netic DMFT and D�A spectral functions at two different
k points on the Fermi surface (FS) [23], i.e., k1 ¼ ð	2 ; 	2 ; 	2Þ,
k2 ¼ ð	; 0; 	2Þ. At weak coupling (U ¼ 1) we observe a

strong broadening of the DMFT quasiparticle (QP) peak.
At U ¼ 2, the enhanced scattering by nonlocal spin
fluctuations even qualitatively changes the spectra: the
(already) damped QP peak of DMFT is transformed into
a ‘‘pseudogap’’ in D�A. In principle, one can expect
pseudogap behavior very close to the Néel temperature
also for an arbitrarily small Coulomb interaction. The
corresponding region appears, however, at small U very
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FIG. 2 (color online). Fit of ��1
AFðTÞ and 
�1ðTÞ for the highest

interaction value considered, i.e., U ¼ 2:5. Left: fit with fixed
� ¼ 0:707 (Heisenberg exponent in d ¼ 3 [24]). Right: free fit,
showing the good compatibility with the d ¼ 3 Heisenberg
universality class.
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narrow: a qualitative estimate according to Eq. (3) yields
the condition for the pseudogap behavior 
 >
4	v3

F=ðTNU
2Þ (vF is an average Fermi velocity), which

can be hardly fulfilled at small U, where TN is exponen-
tially small. Outside the pseudogap region, AF fluctuations
yield only an increase of the scattering rate 
ðkÞ ¼
�Im�ðk; ! ¼ 0Þ; e.g., at T � TN and U ¼ 1 we obtain

DMFT ¼ 0:02, 
D�Aðk1Þ ¼ 0:033, and 
D�Aðk2Þ ¼ 0:041.

By increasing T, nonlocal corrections become naturally
weaker, since AF fluctuations are reduced in intensity
and spatial extension, see, e.g., the temperature behavior
of 
 in Fig. 2. As a criterion to evaluate the impact of
nonlocal correlations, valid for the pseudogap as well as
for insulating spectra, we have chosen the relative change
between the D�A and DMFT self-energy at the lowest
Matsubara frequency: j�DMFTði�1Þ � �DGAðk2; i�1Þj=
j�DMFTði�1Þj. Note that this criterion is directly related
to the QP weight Z in the metallic phase if the linear
low frequency behavior of the self-energy already holds
(approximately) at the lowest Matsubara frequency i�1.
By this one-particle criterion, DMFT is reliable down
to the violet line in Fig. 3 below which deviations exceed
10%. Above this line, the impact of the nonlocal correla-
tions on the spectral functions appears indeed moder-
ate (upper inset of Fig. 3): this is also confirmed by
the analysis of the spectral function, where the QP weight
Z is unchanged (within errors) from the DMFT
value (Z ¼ 0:76) and the enhancement of 
 is much
smaller than before [
DMFT ¼ 0:027, 
D�Aðk1Þ ¼ 0:028,

D�Aðk2Þ ¼ 0:036].

While our findings may validate (a posteriori) the usage
of DMFT for computing spectral functions in d ¼ 3, pro-
vided one is not interested in the immediate vicinity of
(second-order) magnetic instabilities, it is important to
note that the width of the critical region is not small at
intermediate U. For instance, we observe that the size of
the critical region �Tcrit at U > 1:25 exceeds the violet
line. Significant effects of nonlocal correlations may occur
even further away from the AF transition, depending on the
quantity under consideration. In particular, relevant devia-
tions from the DMFT predictions at even higher Ts have
been reported when analyzing the temperature dependence
of the entropy [21].

In conclusion, we have analyzed nonperturbatively the
effect of nonlocal correlations in the d ¼ 3 half-filled
Hubbard model by means of D�A. When considering
regions where spatial correlations strongly modify the
DMFT physics, which is particularly true close to magnetic
instabilities, D�A represents a very powerful tool for
studying the critical properties beyond the MF/DMFT
level: critical exponents of the Hubbard model are found
to be—within the error bars—identical to those of the
d ¼ 3 Heisenberg model, and D�A provides also for a
proper reduction of TN with respect to the DMFT predic-
tion. Moreover, since the D�A scheme includes both

spatial and temporal electronic correlations in a nonpertur-
bative way, it looks naturally very promising also for future
analysis of quantum phase transitions beyond the weak-
coupling regime.
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